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ABSTRACT In modern defense technology, signal intelligence plays an important role in military operations
as an intelligence source. Among its target signals, telemetry and telecommand signals can use line-coding
schemes for their advantageous properties in the presentation of binary data of transmission systems.
Therefore, in a non-cooperative context, blind classification of the line-coding scheme is the final crucial
step in recovering target information from an unknown received signal. In this paper, we examine the
characteristic features of line-coding schemes and then propose a simple blind classification algorithm for
the schemes. We also analyze correct classification probabilities of the proposed algorithm in a noiseless and
noisy environment through computer simulations. The proposed method can discern line-coding schemes,
allowing reconstruction of the original information data.

INDEX TERMS Blindness, classification algorithms, signal reconstruction, line coding, signal intelligence.

I. INTRODUCTION
The information-bearing signal is generally converted to dig-
ital data in binary bits and then the bits are encoded into elec-
trical pulses or waveforms in order to transmit information
over the channel. The procedure for choosing a particular
pair of waveforms and turning the digital data into electrical
waveforms is commonly called line coding, which is widely
used in various signals for telecommunication, telemetry and
telecommand.

In modern defense technology, signal intelligence
(SIGINT) plays an important role in military operations as
an intelligence source. Among its target signals, telemetry
and telecommand signals can use line-coding schemes for
their advantageous properties in the presentation of binary
data of transmission systems. To be specific with telemetry
and telecommand signals in military technical standards such
as Inter-Range Instrumentation Group (IRIG) standard, they
use conventional line-coding schemes [1]. Therefore, in the
viewpoint of SIGINT, it is important to be able to blindly
classify line-coding schemes adopted in a received signal.
A good introduction to line coding is given in [2]–[4]. Line
coding is a popular scheme for binary data transmission due
to several desirable properties, including a small transmission
bandwidth, power efficiency, zero dc value, simple synchro-
nization in the pulses, and transparency for the transmission

and reception of arbitrary symbols or bit patterns. Therefore,
it is highly probable that an unknown received signal could
include a certain line-coding scheme for the efficient trans-
mission of information data.

In a non-cooperative context, such as signal intelligence
or spectrum surveillance applications, a receiver cannot
understand received signal directly when it has no informa-
tion on system parameters of the transmitter. Consequently,
the receiver must blindly estimate the parameters to interpret
the received signal without help of transmitter to fulfill the
mission [5]–[13]. FIGURE 1 shows the relationship among
a received signal, information data, and a receiver in a non-
cooperative and cooperative context with regard to line-
coding schemes.

Classification of the line-coding schemes is the final cru-
cial step in recovering target information from an unknown
received signal. Ample research is available on the blind esti-
mation of unknown transmission parameters, such as inter-
leaver parameters [5]–[7], modulation schemes [8]–[10], and
channel coding schemes [11]–[13], however, blind classifica-
tion of line codes, to the best of our knowledge, has not yet
been reported.

There are two general algorithm classes for signal
identification: likelihood-based (LB) and feature-based (FB)
algorithms. The former uses the likelihood function of an
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FIGURE 1. Relationship among a received signal, information data, and a
receiver in a non-cooperative and cooperative context.

unknown received signal and makes a decision of identifi-
cation by comparing the likelihood ratio to a threshold value.
In theory, though the LB algorithm gives an optimal solution,
it requires high computational complexity. In the case of FB
algorithm, expediently-selected signal features are used to
make decisions on an unknown received signal by compar-
ing values. Even though the algorithm presents sub-optimal
performance, it can be easily implemented [14]. In this paper,
we propose a simple FB method using characteristic features
for the blind classification of line codes from an unknown
received signal. It is a sequential classification algorithm to
discriminate among multiple line codes blindly. We derive
equations for correct classification probabilities of the core
function of the proposed method and validate the classifica-
tion performance in both noiseless and noisy environments
by computer simulations.

This paper is organized as follows. Section 2 presents
the characteristic features of line-coding schemes. Section 3
explains the proposed blind classification algorithm and
section 4 provides numerical and simulation results. Finally,
section 5 offers conclusion.

II. CHARACTERISTIC FEATURES OF LINE-CODING
SCHEMES
It is well known that there are two representative cate-
gories of line codes: return-to-zero (RZ) and non-return-
to-zero (NRZ). In RZ-coded signals, the waveforms revert
to a zero-voltage level at some point, normally half of a
bit interval; this does not take place in NRZ-coded signals.
The line-coding schemes are further categorized as unipolar,
polar, bipolar, andManchester codes according to the manner
of assignment of voltage levels to the binary data [2]–[4].
These codes are selectively applied to maximize the bit
rate for a given channel, to minimize transmission power,
to recover synchronization from the received signal, or to
reduce dc value in various digital communication systems.

Since every line-coding scheme has its unique waveform
format and characteristic features based on its polarity of
pulses, dc value, number of consecutive 1’s or 0’s, spectral
occupancy, and average power, we typically consider more

TABLE 1. Classification of line-coding schemes according to
characteristic features.

than one criterion when selecting a scheme. Note that the
given average power feature, which is important in the pro-
posed blind classification algorithm, can be considered as
peak-to-average power ratio (PAPR) changing according to
the mark ratio in an unknown received signal.

TABLE I shows the classification of line-coding schemes
according to four characteristic features: pulse polarity, zero
level, number of consecutive 1’s or 0’s, and PAPR. With
regard to pulse polarity, the codes divide into two types:
one using negative value to represent binary bits and the
other using no negative value. Zero level lets us identify
two schemes, polar NRZ andManchester, which have no zero
level in their waveforms. The number of consecutive 1’s or 0’s
in line-coded waveforms can be utilized to identify some
schemes. Finally, line codes of interest have three different
PAPR values. Since every line-codedwaveform has its unique
format for the same binary sequence, these characteristic
features can be used to perform blind classification of line-
coding schemes in a non-cooperative context.

III. PROPOSED ALGORITHM FOR BLIND CLASSIFICATION
We propose an algorithm based on the characteristic features
of pulse polarity, zero level, number of consecutive 1’s or 0’s,
and PAPR to classify the line-coding scheme blindly from
an unknown received signal and FIGURE 2 shows the major
steps of the proposed algorithm.

First, the levels of the unknown received waveforms Sr
need to be decided among 1, 0, and −1. It is straightforward
in a noiseless environment. However, in a noisy environment,
we use a threshold ε to make the decision among levels. After
the level decision, it is possible to detect unipolar signaling
by examining the presence of negative values to represent
polarities of line codes. Then, by PAPR comparison, we can
distinguish between NRZ and RZ signaling. The remainder
after detecting unipolar signaling should be one of three
line-coding schemes: polar, bipolar, and Manchester codes.
We distinguish Manchester and polar NRZ by detecting zero
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FIGURE 2. Block diagram of algorithm for blind classification of
line-coding schemes.

value because they have no zero level in waveforms. Then
we can count the number of consecutive 1’s in the received
waveforms. Since Manchester signaling can have consecu-
tive 1’s having the length of 2 at most, we can discriminate it
from polar NRZ by setting the threshold β to be 3. Now three
choices, bipolar NRZ and RZ, and polar RZ signaling, remain
and they can be distinguished by PAPR comparison and the
number of consecutive 0’s. Since polar RZ signaling can only
have consecutive 0’s as long as 1 in its waveform, we can
separate it from bipolar NRZ by setting the threshold γ to
be 1. With regard to PAPR comparison in the block diagram
of FIGURE 2, the PAPR threshold α is used to discern
between NRZ and RZ for both unipolar and bipolar cases
of the unknown received signal. In TABLE I, the rightmost
column presents nominal PAPR values of typical line-coding
schemes for the same binary sequence. The actual PAPR
value, however, is variable according to the number of marks
(or spaces). In consequence, the classification is probabilistic
in both noiseless and noisy environments.

In this manner, the proposed algorithm allows us to classify
line-coding schemes without any prior information about the
applied waveforms, which is a crucial advantage especially in
applications of signal intelligence or spectrum surveillance.

IV. NUMERICAL AND SIMULATION RESULTS
The simple theoretical formulations of correct classification
probability for unipolar NRZ and RZ in a noiseless channel
are derived and analyzed as follows. Since the PAPR values
of unipolar NRZ and RZ are determined by the probabilities
of occurrence of mark and space, we can derive the correct
classification probability based on them. The simple theoret-
ical formulation for the probability of occurrence of x marks
out of N line-coded waveforms can be obtained from the

binomial probability density function (pdf) as in (1).

fx (x) =
N∑
k=0

(
N
k

)
pk (1− p)N−k δ (x − k) , (1)

where N is the number of data, x is the number of mark
occurrences, p is the probability of occurrence of mark,
and δ(·) is the delta function.

Unipolar NRZ signaling can be successfully classifiedwith
our PAPR-based algorithm when mark ratio is greater than
predefined threshold value as in (2) and the range of the
integer x can be defined as (3).

α ≤
x
N
≤ 1 (2)

and

dαNe ≤ x ≤ N , (3)

where α is the threshold for PAPR comparison and de is the
ceiling function.

By taking advantage of the range of x, the correct classifi-
cation probability for unipolar NRZ can be formulated as (4).
With regard to unipolar RZ scheme, the probability of appear-
ance of x marks out of N line-coded waveforms can also be
represented as (1). However, a receiver can be considered
to receive 2N waveforms to be blindly classified in a non-
cooperative context because data bits 0 and 1 are line-coded
into 00 and 10waveforms, respectively. Therefore, the correct
classification for unipolar RZ signaling can be obtained when
the mark ratio x to 2N is smaller than predefined threshold
value as (5).

PuniNRZ (N ) =
N∑

x=dαNe

fx (x)

=

N∑
x=dαNe

N∑
k=0

(
N
k

)
pk (1− p)N−k δ (x − k)

=

N∑
x=dαNe

(
N
x

)
px (1− p)N−x (4)

0 ≤
x
2N

< α (5)

In this case, the range of the integer x for the correct
classification becomes

0 ≤ x ≤ b2αNc , (6)

where bc is the floor function. Therefore, the probability of
correct classification for unipolar RZ can be achieved by

PuniRZ (N ) =
b2αNc∑
x=0

fx (x)

=

b2αNc∑
x=0

N∑
k=0

(
N
k

)
pk (1− p)N−k δ (x − k)

=

b2αNc∑
x=0

(
N
x

)
px (1− p)N−x . (7)
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FIGURE 3. Comparison of simulation and theoretical results regarding
correct classification probabilities of the PAPR comparison of the
proposed algorithm for unipolar cases (results for every 1-waveform
increase of the number of input waveforms).

For the bipolar NRZ and RZ signaling in a noiseless
channel, the correct classification probabilities can also be
obtained by (4) and (7), respectively, since the absolute-
valued bipolar signaling becomes identical to unipolar
signaling in the waveform and PAPR value. The PAPR com-
parison of the proposed algorithm can be verified by exploit-
ing (4) and (7) because the equations are based on a binomial
distribution which explains properly the probabilistic occur-
rence of mark and space in the received line-coded signal.
When the mark ratio in the signal is higher than the pre-
defined threshold α, the applied line-coding scheme will be
classified as unipolar NRZ, and therefore the correct classifi-
cation probability can be formulated as (4). On the other hand,
when the mark ratio is lower than the threshold, the scheme
will be classified as unipolar RZ. Hence, the correct classifi-
cation probability can be given by (7). To verify the PAPR
comparison part, the correct classification probabilities for
the unipolar signaling are presented versus the number of
received waveforms with theoretical and simulation results
in a noiseless channel. We compare the results from the
derived equations with numerical simulations in FIGURE 3.
In the simulations, we assume p = 0.5 and α = 0.375; for
the threshold α, it is median between the PAPR values of
unipolar NRZ and RZ. The simulation results are obtained
by 100,000 times of iterations for Monte Carlo simulation.
FIGURE 3 shows the excellent match between theoretical
and simulation results, where we depict results for every
1-waveform increase of the number of waveforms. The cor-
rect classification probabilities initially fluctuate markedly
for every 1-waveform increase of the number of waveforms
up to around 30 waveforms; this is mainly because of the
rapid change of the instantaneous PAPR values obtained from
the input waveforms. Then, as the number of input waveforms
becomes larger enough, the instantaneous PAPRs become sta-
ble and the correct classification probabilities converge to 1.

FIGURE 4. Comprehensive simulation results regarding correct
classification probabilities of the proposed algorithm in a noiseless
environment.

More than 30 input waveforms are needed to achieve the
correct classification probability higher than 0.9.

To confirm the functionality of the proposed algorithm
comprehensively, we extend the simulation over multiple
line-coding schemes in a noiseless environment. The simu-
lations are designed to follow the proposed algorithm in FIG-
URE 2 and performed by using Monte Carlo simulation
assuming average power of 1 for the received signal. FIG-
URE 4 presents the results of simulations to classify the line-
coding schemes of TABLE I in a noiseless environment; the
resulting correct classification probabilities are given ver-
sus the number of input waveforms and plotted for every
5-waveform increase of the number of input waveforms
from 0 to 100. We see the improved correct classification
probabilities in most of schemes as the length of input wave-
forms increases, except in Manchester code. Since the prob-
abilistic factors of the proposed algorithm, such as PAPR
comparison, become stable as the length of input waveforms
increases, the correct classification probabilities approach
to 1.Manchester code presents the correct classification prob-
ability of 1 for all the values of abscissa since there is no
probabilistic factor in the process of blind classification using
the proposed algorithm.

We now turn our attention to the blind classification of
line-coding schemes in a noisy environment. To investigate
the functionality of the proposed algorithm, we perform
computer simulations by considering additive white Gaussian
noise (AWGN) environment. In this case, the line-coded
waveforms are affected by AWGN and the values of levels
become probabilistic. Thus, the levels in the received wave-
forms need to be decided using threshold ε = 0.5. After the
level decision, we can handle waveforms in the same manner
as the noiseless case. FIGURE 5 and FIGURE 6 show the
results of simulations using the proposed algorithm to classify
the target line-coding schemes with 50 and 100 input wave-
forms, respectively, in a noisy environment; the resulting
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FIGURE 5. Comprehensive simulation results regarding correct
classification probabilities of the proposed algorithm with 50 input
waveforms in AWGN.

FIGURE 6. Comprehensive simulation results regarding correct
classification probabilities of the proposed algorithm with 100 input
waveforms in AWGN.

correct classification probabilities are given versus SNRs. Aswe
found in FIGURE 4, the correct classification probabilities
are influenced by the length of input waveforms. Therefore,
the performance in a noisy environment needs to be analyzed
according to the number of input waveforms as well as signal-
to-noise ratio (SNR). Regarding FIGURE 5 and FIGURE 6,
the correct classification probabilities are influenced by the
number of waveforms as presented in FIGURE 4. It is mainly
because of the characteristics of function modules of the
proposed algorithm. Among the modules, when the number
of input waveforms is small, PAPR comparison will be
affected by an instantaneous PAPR value and produce the
comparison results biased to negative decision. As a result,
in the case of 50 input waveforms, the correct classification
probabilities for unipolar NRZ and bipolar NRZ schemes
converge toward around 0.97 even in the high SNR region.
To be specific, the PAPR values of unipolar NRZ and bipolar

NRZ schemes varywith the number of 0 levels while the polar
RZ scheme has a fixed PAPR value independent of the num-
ber of 0 levels. On the other hand, other line-coding schemes
show slightly enhanced correct classification probabilities in
the case of 50 input waveforms. This seems related to other
modules, including negative value exam, zero level detection
and consecutive level counters, which can be affected by only
one erroneous level change in a noisy environment. There-
fore, the correct classification probabilities become enhanced
with 50 input waveforms compared to the case of 100 input
waveforms in the same SNR region, and we can obtain
reasonable performance with the limited number of unknown
received waveforms in a noisy environment. Regarding the
50 input waveforms case, to achieve the correct classification
probability 0.9 for all the target line-coding schemes, SNR
should be higher than around 12.5 dB in a noisy environment.
Therefore, acquiring necessary waveforms and securing SNR
condition will play important roles in the blind classification
of target line-coding schemes using the proposed algorithm
for signal intelligence or spectrum surveillance.

V. CONCLUSION
In order to reconstruct target information from an unknown
received signal in a non-cooperative context, the receiver
must be able to estimate system parameters of the trans-
mitter blindly. An algorithm for the blind classification of
line-coding schemes is crucial to SIGINT operations as the
last step in recovering target information from an unknown
received signal since the line coding is essential in the pre-
sentation of binary data for telecommunication, telemetry and
telecommand systems.

In this paper, we proposed a sequential blind classification
algorithm for typical line-coding schemes, derived numerical
expressions for the core function, and validated comprehen-
sive performance of the proposed algorithm in both noiseless
and noisy environments by computer simulations. The algo-
rithm is based on a systematic method using characteristic
features of line codes and able to classify typical line-coding
schemes. We expect that this algorithm will play its role
in the blind classification of unknown received signals for
the purposes of signal intelligence or spectrum surveillance.
It will help to make the techniques simpler andmore accurate.
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