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ABSTRACT Human–robot interaction is a growing area of research as robotic applications expand into
unstructured environments. However, much of the current research has focused on tasks involving limited
degrees of freedom (DOF), while not allowing the human the ability to choose the DOF on which they
wish to focus. In this paper, a controller that allows human–robot cooperation in six-DOF Cartesian space
is presented, which allows the human to direct their focus as they desire. The developed scheme was tested
using a virtual reality system while maintaining physical interaction with the robot. Overall, the subjects
were 100% successful in completion of the tasks and were able to exchange leader/follower roles with the
robot bidirectionally. In addition, a reinforcement learning algorithm was shown to decrease the estimated
mechanical power applied by the human to exchange roles. The latter proves the efficiency of the proposed
scheme and makes it a strong candidate for applications that involve sophisticated human–robot interaction
in collaborative tasks found in a plethora of cases, e.g., industry, manufacturing, semi-autonomous driving,
and so on.

INDEX TERMS pHRI, physical human-robot interaction, cooperation, reinforcement learning, virtual
reality, augmented reality.

I. INTRODUCTION
The physical interaction of a human with a robotic sys-
tem is an essential part of an increasing number of robotic
applications. Robotic systems are being successfully used in
the rehabilitation of humans [1], in exoskeletons to improve
human ability [2], [3], and as an aid to workers [4]. Addition-
ally, researchers have been investigating the use of machine
learning algorithms to improve this interaction as in [5]–[7].

One important type of interaction is cooperation. For
our purposes, we define human-robot cooperation as a
human and robot physically interacting to achieve an overall
goal. When a human and robot are cooperating together,
there typically is a role assignment for the human and
robot. One of the most common methods is to permanently
assign the role of the robot as the follower of the human.
Kosuge et al. [8] proposed a method for using impedance
control of multiple robots to aid a human moving an object
and conducted an experiment with motion along one degree
of freedom (DOF). Duchaine and Gosselin [9] developed a
controller using variable impedance for human-robot interac-
tion. The robotic system determines if the human’s intent is to
accelerate or decelerate. It then either decreases or increases
damping (impedance to velocity) to aid the human. This

system always acts a follower to the human and was tested
in a two DOF maze task and a three DOF pick and place task.
Corteville et al. [10] examined a human-robot cooperation
controller. The robotic system only acts as a follower of the
human in a one degree of freedom task. They created an
estimator to determine the desired motion assuming a bell-
shaped velocity profile. Bussy et al. [11] examined human-
robot cooperation in a three DOF planar task. The robotic
system predicts the motion of the human and actively follows
by aiding in that motion. Tsumugiwa et al. [12] created a
variable impedance controller for human-robot interaction.
They tested this controller on a three DOF task and found
that impedance of the robot aided the human in placing the
object accurately. Passenberg et al. [13] used a two DOF
haptic device to interact with a computer to simulate a human-
robot interaction and investigated optimization of the assis-
tance provided by the robot to the human. This research has
improved themethods available for a robotic system to follow
a human.

The ability of a robotic system to follow the lead of the
human is important. However, many compelling applications
of human-robot interaction are where the robotic system
could provide elements that the human cannot or would prefer
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not to provide. For these types of applications, some method
of exchanging roles between the human and the robot would
be essential. Role exchange between humans and robotic
systems has been examined in two main ways, the study of
human-human interaction and human-robot interaction.

The goal of human-human interaction research is to extract
useful concepts for later application in human-robot interac-
tion. This has the potential of discovering ways for the robotic
system to naturally interact with the human. Groten et al. [14]
created a measurement of dominance between two humans
interacting through a haptic one DOF knob. They showed
that humans had a preference for a dominance differential
when working together as opposed to mutually shared con-
trol. Additionally, there were differences in individual subject
preferences to being more or less dominant. Madan et al. [15]
investigated human-human cooperation in a planar three DOF
task. The humans individually interacted with a haptic device
and watched a separate computer display of the task. They
were also presented with goals of the task and in some trials
these goals conflicted. After the testing, they categorized the
interaction of the two humans as harmonious, conflicting,
and passive agreement. They were able to classify these
states correctly in 81% of the time, using a support vector
machine. Stefanov et al. [16] created two role categories in
human-human interaction. One is execution and the other is
conductor. They performed a one DOF experiment where
each subject interacted with a haptic interface. They were
then able to identify these roles through haptic data from
the human-human experiment. Groten et al. [17] examined
decision making in a human-human one DOF experiment.
The subjects interacted with a one DOF haptic device and
looked at a monitor for visual feedback. This was tested
with and without haptic feedback and they found that haptic
feedback improved performance.

Reed and Peshkin [18] also investigated human-human
interaction. In a one DOF experiment, they found that the
humans would specialize in different elements of the task.
This specialization allowed for increased performance of the
task. This is an important concept and it would be benefi-
cial for human-robot systems to accommodate specialization
within the task.

Researchers have also investigated this field by examining
human-robot (or human-computer) interaction directly. This
can help determine the unique issues that adding a robotic
system can cause. Reed and Peshkin [18] found that humans
rated the performance of a partner differently when they
thought it was a human compared to when they thought
it was a robot. Parker and Croft [19] examined a human-
robot cooperative carry task of a long object. The task was
a vertical lift with leveling, a two DOF task, they found
that there were significant variations based on the speed of
the task and differences between subjects. Oguz et al. [20]
examined using a haptic device to control a two DOF virtual
game with role exchange between the human and computer.
Wojtara et al. [21] created a prototype robotic system for
placing a thin, flat object on a surface. The robotic system

only has a general location of the target position and the
human interacts with the impedance of the robot to adjust the
final position. Lawitzky et al. [22] utilized a two DOF haptic
device to investigate an effort sharing paradigm. Balanced
effort, minimum robot effort, and maximum robot effort
behavior was analyzed.

Evrard and Kheddar [23] created a homotopy switching
model that essentially created a continuous function of vary-
ing levels of leader roles. They tested this on a haptic device
with two DOF virtual lifting task. One element from this
experiment is that in numerous trials the computer was acting
as the leader of the task, however the human subject believed
they were the leader of the task. This suggest the need for
more distinctive role exchanges and potentially relates to the
preference in human-human dyads for disparity in dominance
as noted above in Groten et al. [14].
Kucukyilmaz et al. [24] used a haptic device for a human-

computer two DOF virtual task. They applied three condi-
tions; one where there was equal control by the human and
computer, one where there was a role exchange, and one
where there was a role exchange with additional vibrational
and visual cues regarding role allocation. They found that the
role exchange method enhanced performance over the equal
control method. However, the method with additional cues
degraded performance.

One element that is often utilized in both human-human
and human-robot research is the utilization of machine learn-
ing, as in Wang et al. [25] and Madan et al. [15]. This is done
as a way of potentially improving the control of a robotic
system and the interaction with the human.

A. MOTIVATION
From examining the prior research, there are several limi-
tations to be considered. The first is that much of the prior
research focusses on using limited numbers of degrees of
freedom. One of the main goals of the field is for humans
and robotic systems to be able to cooperate in an unstructured
everyday environment De Santis et al. [26]. If robotic systems
are going to be utilized in these types of environments, then
they need the DOF and the control methods to do so. This
means that studies involving full six DOF cooperation need
to be pursued. This tests both the complexity of the robotic
control as well as the ability for the human to interact along
these various axes simultaneously.

Second, a number of researches have utilized haptic inter-
faces to simulate physical interaction. While this has led to
meaningful research, to continue to move the field forward,
research needs to be done that utilizes the types and scale
of physical interaction with a robotic system that future
unstructured applications will demand. Many of the haptic
devices would be excellent choices for telerobotic applica-
tions but they offer very different physical interaction dynam-
ics than physical interaction with robotics. Additionally, in an
unstructured environment, the human may choose to grip the
object of interest in a variety of different ways during the task
and even switch between manual and bimanual manipulation.
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Many haptic devices significantly limit or preclude the human
from performing these types of variations.

Robotic systems need to be able to adapt. There are signifi-
cant differences between humans, but also there is a need to be
able to adapt to the task. Humans are limited in the numbers of
things they can focus on. Robotic systems need to be able to
adapt to the human both with regard to individual differences
and to what part of the task that the human is currently
focusing on (or specializing in as in Reed and Peshkin [18]).
Allowing the human to vary the number of DOF to focus on
creates a cooperation with the robotic system that is asym-
metric. We define asymmetric cooperation as cooperation
where the ratio of leader roles between the human and robotic
system can vary. As an example, the robotic system could be
a leader in four DOF and this would allow the human to only
need to focus on leading two DOF.

Finally, robotic systems that operate in an unstructured
environment may have incomplete or incorrect information
and experiments need to reflect this.

To meet these challenges, this research will:

1) Utilize 6 DOF human-robot cooperation while main-
taining realistic physical human robot interaction.

2) Allow the human to choose what to focus on by using
a controller that allows asymmetric cooperation.

3) Test in an environment that includes mistakes made by
the robotic system.

4) Improve this cooperation and adaptability by utilizing
machine learning.

The rest of the paper is organized as follows. Section II
presents the development of the virtual reality (VR) physical
human robot interaction system (pHRI). Section III presents
the controller of the robotic system. The experimental meth-
ods are presented in Section IV. The results of the experiments
are presented in Section V, while Section VI concludes the
paper.

II. DEVELOPMENT OF VR pHRI SYSTEM
One of the main goals of our research was to examine human-
robot cooperation in 6 DOF Cartesian space. In order to
accomplish this, we needed a robotic system that was con-
trollable in this space. We also needed to create a necessity
for the human and robot to interact in the full 6 DOF space.
The former requirement was satisfied by using a KUKA LBR
iiwa robotic arm that has 7 DOF, the details of which will be
discussed later. The latter requirement however created some
possible concern. To create tasks that require cooperation in
6 DOF, there needed to be restrictions along these axis.

Our initial concept was to create a physical obstacle or
restriction that the human and robot have to negotiate during
the cooperative task. However, building physical restrictions
has the potential to place the human at greater risk of injury
and creating a greater risk of damage to the robotic system.
To deal with this risk, we choose to create virtual restrictions
in a virtual reality system while preserving the real physical
interaction of the human and robotic system. As mentioned

previously, maintaining the physical interaction between the
human and robot was an essential element to this research.

One of the main concepts of this system was to display
an object virtually to the human that also corresponds to a
real object that was connected to the end of the robot and
that the subject physically interacts with. This system also
displays virtual restrictions to the user so they can understand
the desired task motion. For this experiment, a virtual wall
was displayed to the user with a hole in the wall. This hole
in the wall varied in location and orientation matching to a
particular 6 DOF solution that the user and the robot must
cooperate to achieve.

FIGURE 1. Virtual Wall and Jointly manipulated Object- A, B, and C are the
virtual holes for position 1, 2, and 3 respectively. D was the jointly
manipulated object attached to the end of the robotic arm.

A visual system needed to display to the subject the virtual
world. For this, Unreal Engine 4 was chosen for its ability
to display objects in three-dimensional space, compatibility
with various VR headsets, and a simple licensing agreement.
A virtual world was created in this system. This world had
a virtual wall with a hole displayed that would be used in
the experiment as well as the virtual representation of the
jointly manipulated object as shown in Fig. 1. There were
three different possible holes. Only one of the holes would
be displayed at a time during the experiment.

For each trial, the hole for that trial was displayed. To coor-
dinate the motion of the block in the virtual world with
the real world, a network connection was created between
the robotic control system and the computer system running
the visualization code. This network connection allowed the
computer that ran the robotic control software to send position
and orientation data to the visualization system. For this
experiment, the physical feedback of running into the virtual
wall was unnecessary since the purpose of the experiment was
to examine the interaction of the robot and human prior to
arriving at the goal location, although this would be possible
for future experiments.

To display the virtual reality to the human, an Oculus Rift
was used. This was the current commercially available ver-
sion (CV1). It has a separate position sensor that determines
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the absolute position of the headset with respect to the sensor.
This was useful because it takes into account both rotation of
the headset as well as translation.

FIGURE 2. Virtual and Real World Alignment.

One difficulty encounteredwas aligning the virtual and real
worlds together, and an initialization procedure was created.
Prior to each session with the robot, the robot was placed in a
specific position and a fixture was attached as seen in Fig. 2.
This fixture was designed to hold the headset in a specific
location and orientation. The VR headset position was then
reset using an internal menu in the system. This zeroed
position corresponds to the initial camera position in the
virtual reality software, Unreal Engine 4. The experimenter
then verified that the virtual system was aligned with the real
world. Although difficult to create an exact measurement, the
discrepancy of the object in the virtual world with the object
in the real world appeared to be less than 5 mm. Additionally,
this system maintains the accuracy throughout the experi-
ment. Most of the subjects (4 out of 6) spontaneously made
positive comments on the accuracy with which the virtual and
real world matched. No negative comments were made by the
subjects.

III. ROBOTIC CONTROL METHODS
For this experiment, a 7 DOF robotic arm was used (KUKA
LBR iiwa). This robotic system utilizes KUKA’s SunriseOS
software on the robotic controller. This software allows for a
number of possible control methods. For interaction between
humans and robotic systems, we desired to utilize impedance
control. By using impedance control we are able to give the
robotic arm a level of compliance to external interaction.
Impedance control uses displacement as the input to the
system with force and torque as the output. The tasks that
the robotic system and the human will be engaged in are
best described in Cartesian space. For this reason, we desired
to control the robot also in Cartesian impedance control.

Mechanical impedance is described by equations (1) - (4).

F =

 Fx
Fy
Fz

 = Mẍ − Bt ẋ − Ktx (1)

T =

 Tx
Ty
Tz

 = J θ̈ − Br θ̇ − Krθ (2)

Kt =

ktx 0 0
0 kty 0
0 0 ktz

 x =

xp − xeyp − ye
zp − ze

 (3)

Kr =

krx 0 0
0 kry 0
0 0 krz

 θ =

αp − αeβp − βe
γp − γe

 (4)

where F was the force vector along the x, y, and z direc-
tions. T was the torque vector generated about the x, y,
and z axis. The mass matrix, M ,and the rotational inertia
matrix, J , are computed by the robotic system during the
experiment. Bt and Br are the damping coefficients matrices
for translation and rotation and are effected by the damping
ratio for the experiment. Kt and Kr are the stiffness matrices
for translation and rotation respectively. The dampening ratio
was set at 1 and remains constant throughout the experiment.
The stiffness was set at ktx = kty = ktz = 600N/m and
krx = kry = krz = 15Nm/rad when the robotic system
was acting as the leader of that DOF and ktx = kty =
ktz = 300N/m and krx = kry = krz = 15Nm/rad when it
was acting as the follower. The current translational position
was represented by (xp, yp, zp) and the current orientation
was (αp, βp, γp). The equilibrium position was represented
by (xe, ye, ze) and (αe, βe, γe) for translation and rotation
respectively. Additionally, α, β, and γ are roll, pitch, and yaw
angles respectively. For an in depth look at impedance control
of robotics, see [27].

The KUKA LBR iiwa has more than one method for creat-
ing Cartesian impedance control. KUKA’s Direct Servo con-
trol system was used. This allows for the equilibrium point
in impedance control to be specified in Cartesian space as
well as modifying the stiffness values, features that were not
supported by the other methods. The timing of the command
cycle of the robot was typically at 5ms per cycle.

A. HUMAN-ROBOT COOPERATION CONTROL
For our cooperative control system, we are using three dif-
ferent states for each DOF. These states are robot lead-
ing, robot following, and a transitional state between these
leader/follower states.

Our research creates the ability for the human and the robot
to cooperate asymmetrically. This means that the human can
be the leader of as many or as few of the DOF that he/she
desire to be in order to achieve the overall goal. The control
diagram can be seen in Fig. 3, which is explained below.

1) DESCRIPTION OF HUMAN-ROBOT CONTROL DIAGRAM
Leader Trajectory is the trajectory when the robotic system
was acting as the leader for a particular DOF. This trajectory
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FIGURE 3. Human-Robot Control Diagram.

was generated using eq. (5) which is a fifth order spline with
the form given in [28].

mtr = ms + (me − ms)
(
10 (τ )3 − 15 (τ )4 + 6 (τ )5

)
(5)

The starting value was ms and me was the ending value.
The next value in the trajectory was mtr . This equation relies
on τ to progress the trajectory toward the goal. To do this,
two methods were used. The first was time and τ was a ratio
of the elapsed time divided by 6 seconds. This was used only
for the DOF moving toward the wall (x-axis). For the other
values of τ , we used a ratio for how far the object had moved
from its starting position toward the wall along the x-axis.
Additionally, we also stipulated that if the object was moved
closer to the end goal than the trajectory equilibrium point,
then that point was used. This allowed the human to positively
influence the motion towards the goal without necessarily
taking over as leader of that axis. When the robot was the
leader of a translational DOF, the stiffness value for that axis
was set to 600 N/m, while for a rotational axis it was set
to 15 Nm/rad.
Follower Trajectory is the trajectory when the robot is

following the robotic system. For this experiment, we used a
passive follower, where mtr was equal to the last measured
position. This makes the robotic system compliant along
that axis. However, from some pilot studies, it was felt that
increasing the damping may be useful in the follow mode in
the rotational axis. To achieve this the stiffness value for the
impedance control for rotation was maintained at 15 Nm/rad.
For the translational case, it was reduced to 300N/m. Because
the equilibrium point was reset at each command cycle to
the last measured position, the effect of the stiffness was
seen on the amount of motion that has occurred during the
previous command cycle. This has the effect of dampening
even though it was being implemented using stiffness.

The Transition Trajectory was needed to transition the
robot to either the follower or leader mode. This was done
over 125 command cycles of the robot (0.6 seconds). This
utilized a fifth order spline similar to equations (5). The
difference was the initial state was the trajectory of the current
role and the final state was the trajectory of the new role.

The value of τ is the fraction of the current number of cycles
of transition divided by 125 cycles. After 125 cycles the
transition was complete and the next command cycle will be
the new role (leader or follower).

The Role planner determines if the robotic system needs
to switch from its current role (leader or follower) to a dif-
ferent role. This was substantially different for the threshold
method compared to the machine learning method and will
be discussed in detail in the role determination section.

The Human Robot Cooperation Planner takes the new
equilibrium point and the stiffness value for each DOF.
It aggregates the 6 DOF into a single impedance control com-
mand and sends this to the Impedance/Low Level Controller.

The Impedance/Low Level Controller system takes the
impedance control command and creates the low level control
command to control the robotic system.

2) ROLE DETERMINATION WHEN ROBOT IS LEADER
For determining if the human wanted to take over as leader
of a DOF from the robotic system, two methods were eval-
uated. The first was a threshold method based on the force
(or torque) applied along individual DOF. The second was a
reinforcement learning algorithm that used force and torque
as an input to predict the value of future rewards for either
staying as the leader or switching to the follower.

For the threshold method, a value of force (or torque in the
rotational DOF) was used to determine if the human wants
to take over as leader of the DOF being evaluated. This was
done by comparing the absolute value of the current force
(or torque) with a threshold value. A switch of a leader was
initiated if this value was larger than the threshold. This is
described by the equations (6)-(10). The threshold values that
were chosen were determined based on previous experiments
as well as an initial pilot study that was done prior to this
experiment.

For the purposes of clarity and compactness of equations
involving different types of DOF, we defined three sets a, b,
and c as in equation (11). a is the set of translational DOF.
b is the set of rotational DOF. c is all DOF, or a ∪ b. The
subscripts a, b, and c are used to denote that a variable applies
to all members of that set. In summation, if the variable has
an a subscript then it is valid for all translational DOF. For a b
subscript, it is valid for all rotational DOF. For a c subscript,
it is valid for all DOF. Additionally, a variable with a subset
in parentheses, such as x(n) means that it is the nth sample of
that variable in time.

S =
[
Sx Sy Sz Sα Sβ Sγ

]
(6)

R =
[
Rx Ry Rz Rα Rβ Rγ

]
(7)

Rc =

{
1, robot leads DOF
0, otherwise

(8)

Sa =

{
1, if Fa > C1 and Ra = 1
0, otherwise

(9)
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Sb =

{
1, if Tb > C2 and Rb = 1
0, otherwise

(10)

a ∈ {x, y, z} b ∈ {α, β, γ } c ∈ {x, y, z, α, β, γ } (11)

where Fa was the force applied to the joint object by the
human and Tb was the torque applied. These values are esti-
mated by the robotic system using the measured joint torques
values for the 7 joints on the robotic system. C1 = 12N and
C2 = 2Nm. Sc = 1 was the value that indicates that a switch
is to take place along the particular DOF. Rc = 1 indicates
that the robot was leading that DOF.

The other method evaluated was a reinforcement learning
algorithm. Reinforcement learning is one type of unsuper-
vised learning algorithms. This was chosen because it was
desired for the system to be able to learn and improve its
interaction with a human without requiring the additional
input needed for a supervised learning algorithm to function.
In reinforcement learning the system makes choices based on
expected rewards or the expected value of the summation of
the rewards.

One method for determine what the rewards would be for
a decision is to use a predetermined model that equates the
inputs to rewards. This approach can be very useful for a
number of applications for which a reliable model can be
determined. These types of algorithms very closely resemble
optimal control and the optimization of rewards. The prede-
termined model however has two assumptions inherent to it.
The first is that an accurate model can be predetermined and
that the system does not change with time. For our applica-
tion, we know of no predetermined model that can accurately
predict how a human will generally react and interact with
a robotic system. Additionally, humans vary between each
other and adapt their behaviors.

To address the above consideration, a different technique
for reinforcement learning was used. This was where the
system learns to predict what the future rewards of an action
will be based on past rewards gained from this action. This
allows the system to learn and adapt to the interaction as
well as change over time as conditions change. The difficulty
that arises from a system that uses this type of method is the
initial operation. The initial operation for a robotic system
interacting with a human needs to perform in a safe and
predictable manner. We accomplished this by initially giving
the system data to make decisions based off of but replacing
the data with experientially determined data once that it was
available.

In reinforcement learning, the algorithm used to determine
the values of the rewards profoundly impacts the way the
system acts. At a conceptual level, we had two main goals.
First, we wanted the system to not require the human to apply
a large amount of physical effort to take over as leader of a
DOF. Secondly, we desired to penalize the system for giving
the human the lead of a DOF when the human was not trying
to become the leader. These were the overall concepts behind
our implementation. It is important to acknowledge that the
specific implementation of these concepts did not perfectly

reflect the conceptual idea andwas based on estimated values,
but it is useful to understand the underlying goals of the
implementation.

For the first goal of this strategy, we want to minimize
the effort that the human applies to the system in order to
take the lead of a degree of freedom. To turn this conceptual
idea into practice we settled on utilizing an estimate of the
mechanical power applied by the human. This value is an
estimate and is not without controversy. One can argue that it
is difficult (or impossible) to precisely determine the power
contributed by the human engaged in a joint action with a
robot, since it also relies on the interaction from the robot.
Additionally, we utilized the estimate of the force and torque
applied by the human at the end effector. This was estimated
by the system based off of the torque values measured at the
joints of the robot. A more accurate assessment of the input
could be created by utilizing extra components such as instru-
mented handles for the human to interact with. However, this
would have created specific requirements and limitations on
the use and application of the robotic system. While adding
additional components and sensors to the experiment may
provide data with less noise, it also detracts from the ability
of this system to be utilized in an unstructured environment
which was one of the main goals of this research.

As mentioned above, we utilized an estimate of the
mechanical power input by the human. This was applied as a
negative reward (penalty) for the system. This rewardwas tied
to an input variable (applied force and torque of the human).
The input and this reward are shifted in time so that the input
of force (or toque) will be used to predict the future power
that the human will apply to the system. This was evaluated
separately along each individual DOF. Work is defined as a
force applied over a distance as in equations (12). Power is
the time rate of mechanical work.

Wa =

∫
|Fa| da Wb =

∫
|Tb| db (12)

P =
dW
dt

(13)

To calculate the power input by the human we first utilize
the estimated externally applied force and torque values from
the KUKA robotic system.We combine this with the distance
traveled to yield mechanical work, as described by equa-
tion (12). To calculate the average power over time equation
(14) was used. i was the index of the data history for the
previous trial. g was one less than the number of samples the
average was calculated over.

Pc =

∑i+g
n=iWc(n)

t(i+g) − t(i)
(14)

Pc was the average power that begins at the current sample,
i, and continues till i + g. This was calculated to determine
the average power that will be expended by the human.
If Sc(i) = 0 and remains 0 for 200 cycles, then g = 199.
However, if it switches during these 200 cycles then g was
equal to the last cycle before the switch. In essence, this
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calculates the average power applied by the human in the stay
condition for either 200 cycles going forward or up until it
switches. To calculate Pc for the switch condition, it begins
at the sample that the switch began and g = 199.
To prevent the system from switching unnecessarily,

an additional penalty (negative reward) was created. This
penalty would be assessed if the velocity of the end effector
was below a threshold immediately after the humanwas given
the lead of that DOF. The assumption was that the human
was trying to lead the robot to the correct location when they
intend to take over as leader of a DOF. The result of this
would be that the velocity along this DOF would not be zero
or near zero immediately after switching leadership to the
human. Because there can be some motion due to noise in
measurement or other unintentional motions from the human,
a threshold value was used to determine if the human intended
the robot to give them the lead along a DOF. This is described
in equations (15) and (16).

Qa =

{
1, |q(j+h) − q(j+h−1)| < C3

0, otherwise
(15)

Qb =

{
1, |u(j+h) − u(j+h−1)| < C4

0, otherwise
(16)

where q was the translational position at the index specified.
uwas the rotational position at the index specified. jwas index
at start of switch of roles. h was 126 cycles. C3 =1.0 mm
C4 = 0.2 mrad . Q was the penalty for the DOF.

Vt = −Pc (17)

Vw = −Pc − Qc (18)

where Vt was the value of the rewards for staying. Vw was the
value of the rewards for switching.

For our reinforcement algorithm, we desired that the
learned rewards for a given force would be an average reward
for an applied force. To do this we choose to discretize the
force and torque inputs into bins. The process of determining
the correct bin is described by equations (19) and (20). The
system averages the rewards scored for a force input within
its bin. This is described in equations (21) and (22). This was
a simple way of averaging out noisy values. This average will
be used for the algorithm to predict the value of the rewards
it will receive by staying the leader of a DOF or switching to
the human as the leader of that DOF.

Nb (Tb) =


1, |Tb| < C4

b(|Tb| − C4)× 4c, otherwise
10, |Tb| ≥ C5

(19)

Na (Fa) =


1, if |Fa| < C6

b|Fa|c − C6, otherwise
10, if |Fa| ≥ C7

(20)

where bxc = max{n ∈ Z|n ≤ x} and Nc was the bin
number for the force or torque applied to each of the 6 DOF.
C4 = 1.0 Nm and C5 = 3.0 Nm. C6 = 7.0 N

and C7 = 15.0 N. These values were chosen based on prior
studies and pilot testing.

A1c (Nc) =

∑l1
n=1 Vt(n)
l1

(21)

A2c (Nc) =

∑l2
n=1 Vw(n)
l2

(22)

where A1c was average learned rewards for staying for that
bin and DOF. l1 was the total number of values that have
been averaged for that bin and DOF. A2c was average learned
rewards for switching for that bin and DOF. l2 was the
total number of values that have been averaged for that bin
and DOF.

For reinforcement learning to work, it needs to explore
to determine other possible solutions. When the system is
exploring, it is choosing to make a decision that is less
optimal based on what it already has learned. This is to
help the system learn if a different value results in a better
reward. To accomplish this a random number was gener-
ated with an even distribution from 0 to 1. As described in
equations (23) - (25)

rn ∼ U ([0 1]) (23)

E =


−1, rn < 0.25
0, 0.25 ≤ rn ≤ 0.75
1, rn > 0.75

(24)

A2c (Nc + E) > A1c (Nc) ∧ Rc = 1→ Sc = 1 (25)

were rn was a random number. E was the exploration value.
Nc was the bin value for a DOF. The comparison was then
made between staying and switching as in equation (25) and
Sc was set to one if the switch occurs if not it remains 0.
This was not evaluated if the system has not completed the
transition from a previous switch. However, this was eval-
uated across all 6 DOF each command cycle so that the
system can switch leader follower roles across multiple DOF
simultaneously.

At the beginning of each session, the machine learning
algorithm was initialized and has no information from pre-
vious sessions. For this experiment and in applications, the
robotic system needs to be able to cooperate with the human
from the beginning. The A1c and A2c are initialized according
to equations (26) and (27).

Nc ≤ 4→ (A1c (Nc) = 0 ∧ A2c (Nc) = −1) (26)

Nc > 4→ (A1c (Nc) = −1 ∧ A2c (Nc) = 0) (27)

The result of this was that at the start of the session the
system behaves as if there was a force or torque threshold
at Nc = 5.

3) ROLE DETERMINATION WHEN ROBOT IS FOLLOWER
For this experiment, the robot needs the ability to change roles
from leading a task to following a task and also the reverse of
this. This was needed to allow the human the ability to focus
on fewer DOF if desired.
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To determine if the human wants the robot to take over an
axis, we assume that the human was not currently using that
axis and utilize the history of the motion along that axis as
well as the history of the force (or torque in the rotational
case) along the axis. To create an efficient method that would
be robust against measurement noise, we used the 200-sample
moving average of these values and compare these values
against a threshold, as described in equations (28)-(32).

ha =
1
C7

i∑
n=i−C7

Fa(n) (28)

hb =
1
C7

i∑
n=i−C7

Tb(n) (29)

jc =
1
C7

i∑
n=i−C7

wc(n) − wc(n−1) (30)

where ha was moving average of the force applied along a
DOF ∈ a. C7 was 200 cycles. hb was the moving average
of the torque applied along a DOF ∈ b. jc was the moving
average of the change in position along a DOF ∈ c. wc(n) was
the position at cycle n along a DOF ∈ c.

|ha| > C8 ∧ |jc| > C9 ∧ Ra = 0→ Sa = 1 (31)

|hb| > C10 ∧ |jc| > C11 ∧ Rb = 0→ Sb = 1 (32)

where C8 = 0.3N C9 = 1.0 mm/cycle C10 = 3.0 N/mm
C11 = 0.02 mrad/sec

FIGURE 4. Human Robot Interaction-A was initial position. B, C, and D are
poses 1, 2, and 3 respectively.

IV. EXPERIMENTAL METHODS
A. PHYSICAL AND VIRTUAL EXPERIMENT SETUP
1) PHYSICAL SETUP AND VIRTUAL SETUP
The initial pose and the final poses for the three different holes
can be seen in Fig. 4. The start pose for all trials was (0 mm,

0 mm, 0 mm, 35◦, −30◦, 35◦). The final poses are (165 mm,
75 mm, 50mm, 0◦, 0◦, 0◦), (165 mm, −75 mm, 50mm, 0◦,
0◦, 90◦), and (165 mm, −75 mm, −110mm, 90◦, 0◦, 0◦) for
pose one, two, and three respectively. The three different hole
locations and orientations can be seen in Fig. 1. Since the
robot is kinematically redundant, the exact configuration of
the arm for each of those locations can vary keeping the final
position of the joint object the same.

B. EXPERIMENT PROTOCOL
For this experiment, six subjects participated. Each subject
performed five sessions, each session on a different day. The
first session was a training session and utilized the threshold
method for all subjects. This session was used as a way of
decreasing the effect of the subject learning the task on the
data. The subjects were not told that the first session was
a training session and the data from that session was not
analyzed. Other than that, the session was conducted the same
as the remaining four sessions.
Each of the subjects performed two threshold and two

machine learning sessions after the initial training session.
The types of sessions alternated between threshold and
machine learning. Three of the subjects started with the
threshold control algorithm for their first session after the
training session. The other three started with machine learn-
ing algorithm. The subjects were not informed which type of
control scheme was being used during their session.
Each session was composed of 60 trials. Each of the three

walls were used for 20 trials. In half of the trials, the robot
would move have the correct goals. In the other half, the robot
would have incorrect information as to the goal and would
use one of the other two positions. Additionally, half of the
experiments the subject started the trial being in control of
three degrees of freedom of translation and the robot leading
the three degrees of freedom of rotation. In the other half,
these starting roles were reversed.
Each subject completed 240 trials (excluding training tri-

als). Across all 6 subjects this totals to 1440 trials. The sub-
jects were told that they were to cooperate with the robot to
move the joint object to the correct position and orientation of
the object which was the hole in the wall. The hole in the wall
had an additional 5 mm removed around all edges to make it
easier to put the object in the correct location. If the subject
and robot moved the joint object to the correct location and
orientation, it was judged a success. This was scored by the
experimenter by verifying that the joint object was within the
5mm oversized hole in the virtual representation.
At the beginning of each trial, the subject acted as the

leader of three degrees of freedom and the robot was the
leader of the other three degrees of freedom. They were
told at the beginning of each trial which degrees of freedom
(translation or rotation) that they would start as the leader.
They were then informed that after the start of the trial these
roles can be exchanged with the robot. They were informed
that sometimes the robot would go in the wrong direction or
orientation and that they needed to correct the robot if it made
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amistake. Additionally, theywere told that the robot may take
back over as leader of a DOF if it determined that the subject
was not using it. Finally, the subjects were informed that they
could change their grip on the object if they wanted to during
the trial and that they were free to switch from using one hand
to using both and it was completely up to them to decide. They
were encouraged to cooperate with the robot in whatever way
felt natural to them.

These experiments were conducted in accordance with
ASU IRB # STUDY00004933.

V. RESULTS
A. COOPERATIVE RESULTS
Overall human-robot cooperation in 6 DOF cartesian space
was successful. Out of the 1440 trials completed, the subjects
and the robotic system were able to cooperate to place the
block in the correct location and orientation 100 % of the
time. In previous research [29], this was not always the case.
If the human believed that the system was unresponsive,
they would quit attempting to correct the robotic system
when it was moving in the incorrect direction in this previ-
ous research. In this experiment, this was not the case and
the human and robot were able to perform the cooperation
successfully.

TABLE 1. Leader/follower role exchange.

The subjects and the robot were able to exchange roles
of leader and follower of 6 DOF freely as can be seen
in Table 1. The asymmetric cooperation concept, discussed
earlier, allowed the human and the robot to cooperate in a
way that customized the solution both to the unique problem
and to the human. In Fig. 5, the leader status for the human
and robot for a particular trial was plotted. This shows how the
human was able to take over as the leader of roll and yaw axis
to correct a mistake made by the robot and then the robot was
able to take over as the leader of two of the translational axis.
The robot maintains these axis in the position that it took them
over in. This prevents the human from having to maintain the
position of these axis while he/she completed the task.

The robot would take back leader of a DOF if the human
was not moving it much and there were low forces over time.
If the human then takes back leader of that axis, this may
indicate an inefficiency when the human had to take back
over as leader. Out of all six subjects, all four sessions, all
60 trials, and all six axes the robot took back leader of an axis
1702 times. Out of these 1702 times the human took back
leader of that axis 76 times (4.4%). This means that 95.6%
of time the robot was able to take over as leader and perform
adequately. This shows the potential ability of this approach
to lessen the humans need to lead an axis.

FIGURE 5. Leader Status - Human starts as leader of translational DOF
and as follower of rotational DOF.

Allowing the human the ability to choose which degrees
of freedom to lead resulted in some of the subjects behaving
differently than anticipated. This can be seen in looking at
the time that was taken to complete the tasks. The progress
along the x axis was the main ways to control the pace of the
experiment. When the robot was leading all three degrees of
translation, the progress along the x-axis was based on time.
The progress of all other axes are based on the distance away
from the wall. Some of the subjects completed the trials at
a significantly faster rate than the others. The main way that
they were able to do this was by taking over as the leader of
the x axis when it was not required. As can be seen in Fig. 6,
the humans that completed the trials the fastest took over
as the leader of the x axis at the highest rate. In Fig. 6, the
subjects are ordered from fastest to slowest. This order also
perfectly matches the order of percentage of trials where the
human took over as leader of the x axis.

FIGURE 6. Completion Time and X axis Leader.

For subject 4 (fastest), out of the 60 trials where the robot
was initially leading translation and will move to the correct
location, subject 4 took over x axis 100% of the time. How-
ever, 55% of the time the subject only took over the lead of
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the x axis and the robot remained the leader of both y and z.
Additionally, 36.7% of the time the subject took over only
one additional translational axis. This means that 91.7% of
the time the robot remained as the leader of at least one of
the translational axis. This lessens the human’s responsibility,
while still allowing them to control the pace of the action.

However, this also produced interesting results at the
slower completion time. In 50% of experiments the robot was
going to the wrong location but the motion in x was correct.
Subject 1 was able to correct the y and z axis while allowing
the robot to continue being in control of the x axis in a number
of trials. Thus, choosing to maintaining the pace of the trial at
the speed that the robot was conducting it but correct for the
robots positional error.

B. MACHINE LEARNING
In this experiment, the machine learning algorithm adapts
the level at which the robot transfers leadership of a DOF
to the human. In order to accomplish this, it uses force and
torque values as a predictor of future power used as well as
an additional penalty for switching unnecessarily. To examine
the effects of the algorithm, power used to make a switch was
performed. The power that the user applied to the robot to get
the robot to switch to being the follower along a DOF was
calculated. This was calculated as the average power over the
200 cycles prior to the switch (or fewer if the switch happened
in less than 200 cycles from the start of the trial). These values
were then averaged for all DOF for the threshold and the
machine learning sessions separately. These values are then
compared as the machine learning average as a percentage of
the threshold values, as in Table 2. The overall average for
every subject was lower power used to take over as leader for
the machine learning sessions.

TABLE 2. Average power used to switch for ML trials (as % of the
subjects average for threshold trials).

As noted earlier, force and torque values are put into bins
for the machine learning algorithm. If the subject applies an
increasing force to the system an effective threshold value
can be determined by checking at which bin the robotic
systemwould switch leadership of an axis. The final effective
bin threshold was calculated for each session and difference
between the two sessions that each of subjects did were then
compared. Combining all subjects creates 36 comparisons.
A zero means no difference for that axis between sessions.
The histogram of these differences can be seen in Fig. 7. From
the data, there appears to be some consistency (52%within±
one bin) but also some day to day variation of subjects. This
suggests that both longer term adaptation with the ability of
day to day variations could be beneficial.

FIGURE 7. Histogram of consistency of ML.

FIGURE 8. Adaptation of Effective Threshold.

The value of the effective bin changes over time as the
system learns new information. A typical plot of this effective
threshold for one subject and one axis can be seen in Fig. 8.
The system adapts lower but then reacts to adapting too low
and finds a stable value.

VI. CONCLUSIONS
There are several elements from this work that combine to
contribute to the field of human-robot cooperation. Human-
Robot cooperation was successfully performed in a 6 DOF
environment by multiple subjects across multiple days.
Asymmetric cooperation allowed the human to vary the num-
bers of DOF that he/she were the leader of during the trial.
This interaction was improved using a reinforcement learning
algorithm. Additionally, all of these elements were tested in
an environment where the robotic systemmay make mistakes
that the human needed to correct.
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Overall, the VR pHRI system performed as expected dur-
ing the testing. In order to expand its use for additional
experiments, we have since added force interaction with
virtual objects, a visual representation of the robotic arm,
and an industrial factory virtual setting. For the purposes
of this experiment we did not feel that these elements were
needed. We did not use force interaction with virtual objects
because ourmain focuswas on testing the interaction between
the human and robot prior to possibly interacting with the
virtual wall. We also did not use a representation of the
robotic arm or a more complex setting because we desired
to limit the users focus to the jointly manipulated block and
the 6 DOF motion. However, the additional complexities that
these elements could add into the interaction are an additional
interesting area of research. Overall, we felt that this type of
system could be useful for a number of research experiments
investigating human robot interaction, while preserving the
complexities of actual physical interaction.

Some subjects’ interaction with the system was innova-
tive. In particularly, taking over as leader of the DOF that
approaches the wall as a way of controlling and increasing
the pace of the experiment. This unexpected adaptation by
some of the subjects adds to the case for allowing humans
the ability to choose which DOF they are leading and to have
the robot lead the remaining DOF. From general observations
during the experiment, subjects often broke down the task into
stages and satisfied the position requirements sequentially.
By allowing asymmetric cooperation, the subject was free to
determine the order of meeting these requirements and the
robotic system also was able to take back over as leader of a
DOF and to maintain the location that the human had set.

Although not explicitly tested in this experiment, the
response of the human-robot cooperation planner to an exter-
nal disturbance would be to interpret the disturbance as a
human input. This may result in the robotic system giving
the lead to the human along an axis that the human did
not intend to lead. However, this also has a benefit. One of
the potential sources of external disturbances is the robotic
system coming into contact with something unexpected. The
robotic system giving leadership to the human along axes that
correspond to the unexpected contact reduces the likelihood
that the robotic system would further drive the arm into the
unexpected object.

Moving forward there are additional areas of research to
pursue. A number of values used in this experiment were
determined from previous experiments and an initial pilot
study. While these we useful for the purposes of this study,
further research should examine these values. To additionally
move the field closer to being able to operate in an unstruc-
tured environment, these values should be investigated for
converting them from constant values to ones that are adapted
to the environment, task, and person. Additionally, the system
here used cartesian coordinates that are aligned both with the
robotic system and with the task requirements. We feel that
this could additionally be adapted to the task of the system.
With an additional ability for the robot to identify what the

likely external task is, the system could potential align the
cartesian axes of the leader/follower DOF to a random task.
Additional, the system potentially could identify different
coordinate systems that might better alignwith different types
of tasks.
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