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ABSTRACT It is of interest to analyze urban spatial structure by identifying urban subcenters, for which
published literature proposes many methods. Although these methods are widely applied, they demonstrate
obvious shortcomings that restrict further application. Therefore, it is of great value to propose a new
urban subcenter identification method that can overcome these shortcomings. In this paper, we introduce
an alternative method. Unlike two-stage procedures and other arbitrary methods, our method is not based on
arbitrary cutoff values and is entirely parameter free. We first calculate the commuting fluxes for each pair
of census tracts and use the fluxes to represent a local density. After that, the census tracts are partitioned
into several clusters using a clustering algorithm. Finally, subcenters are derived from the clusters through a
circularly shaped spatial scan statistic. We apply this method to 2010 and 2015 census data sets for Wuhan,
China. The identification and comparison results demonstrate that our proposed method is effective and can
be applied toward future research.

INDEX TERMS Urban subcenter, commuting flux, cluster, spatial scan statistic.

I. INTRODUCTION
Urban spatial structure has been studied extensively in order
to determine the ‘qualitative change’ in urban patterns and
spatial structures [1], [2]. Concordant with the development
of a city, the form of the spatial structure often evolves from
monocentric to polycentric [3]–[5].

A monocentric city possesses a single center. All of the
activities are concentrated within the central business dis-
trict (CBD), and the employment (or population) density
usually decentralizes away from it. In contrast, a polycentric
city usually has one or more subcenters in addition to the
CBD [6].

Rapid urbanization has two byproducts: high productivity
and overcrowding [7]. To maintain sustainable development
under an increasing population pressure [8], it is of substantial
importance to study urban spatial structure. Accordingly,
since the urban subcenter represents the concentration area of
the population and resources, studying the urban subcenter is
an effective way to analyze urban spatial structure.

The urban spatial structure refers to the relationships
arising from the underlying interaction of people, freight
and information in an urban space [9]. The urban sub-
center is the location wherein human social and economic
activities are clustered, and since it impacts urban spatial

reconstruction [10], it can represent a structural element of an
urban sub-system within a metropolitan configuration [11].

According to the published literature [6], [12]–[15], a rea-
sonable urban subcenter is defined as a site characterized
by a higher employment density relative to adjacent loca-
tions while maintaining a significant effect on the overall
employment density function. This indicates that the urban
subcenter should have a significant effect both locally as well
as globally.

Urban researchers have been concentrating on developing
robust methods in order to identify urban subcenters, espe-
cially because the detailed definitions of their characteristics
may vary.

Numerous studies regarding the identification of urban
subcenters have produced fruitful results after years of
research. McDonald [16] proposed an empirical method for
identifying subcenters wherein a census zone is considered to
be a subcenter if its employment density is larger than that of a
neighboring zone. On the basis of McDonald’s identification
method, Giuliano and Small [17] suggested that a subcenter
should constitute a contiguous set of zones, wherein the den-
sity of each zone is at least 10 per acre and the total number of
employees is at least 10,000. Small and Song [18] utilized the
same method with higher cutoffs, for which the least number
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per acre was raised to 20, and the minimum number of
employees was 20,000, and reasonable results were obtained.
All of the above techniques are known as minimum cutoff
point of density identification methods [3]. The primary
shortcoming of this method is that the cutoff points must be
obtained through trial and error, which requires researchers
to thoroughly obtain sufficient local knowledge [6].
To reduce the dependency on this local knowledge, a two-
stage nonparametric approach was initially proposed by.
McMillen and McDonald [19] and subsequently modi-
fied by McMillen [6], McMillen and Lester [14], and
McMillen and Smith [5]. The first step of this two-stage
nonparametric approach employs locally weighted regression
(a nonparametric estimator) to smooth the employment den-
sity as well as the sites which have significant positive
residuals (local effects) that are considered to be subcenter
candidates. The second step utilizes a semiparametric regres-
sion procedure to identify whether the subcenter candidates
have a significant effect on the employment density (global
effects).

Despite the broad utilization and advancement of min-
imum cutoff-point methods and two-stage nonparametric
approaches in the study of urban spatial structure, some
limitations still need to be eliminated:

1. The cutoff-points are unstable and require an excess of
local knowledge; for example, McMillen and McDonald [20]
changed the cutoff points by raising the minimum number
per acre to 20 and the total number of employees to 20,000
because the smaller cutoff points applied during an identi-
fication of the Chicago subcenter led to an oversized and
improper subcenter.

2. Employment data cannot be mobile in the urban subcen-
ter. In fact, urban subcenters should represent sites that have
strong internal associations but relatively weaker connections
between internal and external regions. Consequently, it is not
sufficient to identify urban subcenters solely using employ-
ment density.

3. Both of the minimum cutoff-point methods and the two-
stage nonparametric approaches result in the inefficient iden-
tification of the spatial relationships between census tracts.

4. Since we cannot define a CBD precisely, it is difficult to
confirm themost suitable density function in order to evaluate
census data.

5. Algorithms do not account for the influence area of
the subcenter; rather, they simply differentiate sites as either
significant or insignificant. For a census tract, we are unable
to constrain the subcenter that influences the tract most
significantly.

Motivated by these limitations, this article introduces an
alternative method to identify urban subcenters. A radiation
model, a clustering algorithm and a spatial scan statistic
are applied in this method. The radiation model is used to
estimate commuting fluxes between each census tract, while
the clustering algorithm is used to classify census tracts into
different clusters, and the spatial scan statistic is used to
identify ‘‘hot-spots’’ in each cluster as urban subcenters.

We apply this method to census data from 2010 and 2015
for the city of Wuhan, the results of which confirm that our
proposedmethod is effective and can be used to analyze urban
structures in future research.

The paper is organized as follows hereinafter.
In section 2, we introduce the theoretical background of

our method, as well as the manner in which it operates.
We subsequently identify urban subcenters by applying our

new method to the Wuhan census data for 2010 and 2015 in
section 3.

Finally, we summarize and discuss our results in section 4.

II. METHODOLOGY
A. APPROXIMATION OF COMMUTING FLUXES
A distinct way in which to measure the mobility from one
location to another is to count the physical interactions
between those two locations. Zhong et al. [21] employed
smart card data, which records all movement within the pub-
lic transport systems in order to identify the Hubs, Centers
and Borders in Singapore. Meanwhile, Zheng et al. [22] used
GPS logs to infer people’s modes of transport. In general,
datasets that can represent physical interactions including the
following: GPS-tracked vehicle datasets, telephone datasets,
and public transportation datasets, among others. However, in
some situations, these datasets are either inaccessible or unre-
liable. Thus, census tracts represent the most useful datasets
with which to analyze urban spatial structure, and it is thus
important to evaluate commuting fluxes between two areas
using the census dataset relative to other auxiliary datasets.

Simini et al. [23] proposed a universal radiationmodel with
which to predict population movement. It assumes that the
commuting fluxes between an origin location (m) to a desti-
nation location (n) are dependent only upon the population of
m(mi) and n(nj) and the population (sij) in a circle of radius rij
(the distance fromm to n) centered atm (excludingmi and nj).
The characteristics of the radiationmodel overcome the draw-
backs of the gravity model [24], [25], that is, lacking a
rigorous derivation, lacking theoretical guidance, requiring
excess parameters to fit the empirical data, requiring previous
ancillary data, and so on.

Masucci et al. [26] assessed the robustness, universal-
ity and accuracy of the radiation model in addition to the
gravity model by using three datasets (macroscopic datasets,
small-scale datasets andmoderate-sized datasets). The results
obtained from the assessment indicate that the principles of
the radiation model are reliable at large distances and for
small to moderate destination population scales, although
additional research is needed in order to improve the relia-
bility of the model.

The radiation model is defined as follows:

Fij =Fi
minj(

mi + sij
) (
mi + nj + sij

) (1)

wheremi is the population of the origin area (m), and nj is the
population of the destination area (n). The population in the
circle, whose center is the origin (that is, we use the centroid
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of the origin location as the center) and whose radius is the
Euclidean distance from the centroid of the origin area to the
centroid of the destination area, is sij (excluding mi and nj).
The variable Fi in the model is proportional to the popu-

lation m and is defined in equation (2), where Nc represents
the total number of travellers and N is the total number of the
population in the entire study area.

Fi = mi

(
Nc
N

)
(2)

Following the definition of Fi, equation (1) can be trans-
formed into equation (3) as follows:

Fij =
(
Nc
N

)
m2
i nj(

mi + sij
) (
mi + nj + sij

) (3)

C =
Nc
N

(4)

following which

Fij = C
m2
i nj(

mi + sij
) (
mi + nj + sij

) (5)

Because Nc and N are constants in the study area, C is
constant in equation (5). Afterwards, we calculate the degree
of travelling volume between any two areas without multipli-
cation byC (whereC is an invariant constant in the equation).
In this study, we calculate the degree of commuting fluxes

through the degree of physical interactions between any two
locations using equation (3) (without multiplication by C),
the radiation model for which is shown in Figure 1.

FIGURE 1. The radiation model employed in this study.

Note: The commuting fluxes can be properly estimated
using the radiation model. The numbers shown in Figure 1
represent the population in each area, wherein the population
of the origin tract (mi) is 561 and the population of the
destination tract (nj) is 930. Sij is composed of the population
of tracts that are lightly colored but does not consist of
mi and nj.

B. CLUSTERING BY COMMUTING FLUXES
A polycentric city should contain one or more subcenters
in addition to the CBD. Boundaries need to be generated
through the commuting fluxes in order to illustrate similar
activities across parts of the city. These boundaries then
partition the city into parts, after which we allocate them into
different clusters.

Rodriguez and Laio [27] proposed an algorithmwithwhich
to classify points into different clusters, wherein the local
density of the cluster center must be higher than the density
of those in adjacent regions, and must have a relatively large
distance from other cluster centers.

Two quantities (the local density ρi and distance δi) are
computed for each point, the definitions for which are respec-
tively shown in equations (6)-(7):

ρi =
∑
j

χ
(
dij − dc

)
(6)

δi = min
j:ρj>ρi

(
dij
)

(7)

where χ (i) is the function of the point set, dij is the Euclidian
distance between point i and point j, and dc is a cutoff distance
(Rodriguez and Laio suggested that dc can be chosen such
that the average number of neighbors is approximately 1% to
2% of the total number of points in the data set). If dij > dc,
then χx = 1; otherwise, χx = 0. This means that the local
density ρi represents the number of points that are closer than
the value of dc to point i.
δi denotes the minimum distance between point i and any

other point with a higher local density. For the point with the
maximum local density point, δi is max

(
dij
)
.

After the local density and the relative distance have been
computed for all of the points, the cluster centers are delin-
eated as those points with a high local density and a large
relative distance, that is, a high ρ and high δ. Those points
with high δ but low ρ are considered to be outliers.

The classifying algorithm of Rodriguez and Laio [27] is
performed in a single step, and can recognize distinct clusters
regardless of their shape or the dimensionality of the space
in which they are embedded. However, there are still some
shortcomings in this algorithm. For example, while the results
of the algorithm are robust with respect to the choice of dc,
it is difficult to derive a reasonable criterion with which to
select the ‘‘optimal’’ dc from both the theoretical and practical
points of view [28].

To allocate census tracts into clusters, we define a dataset
to represent the census tracts. For each point in the dataset,
the location is equivalent with the centroid of the census tract,
and the attribute corresponds to the census tract’s population.
Contrary to the work of Rodriguez and Laio [27], which only
considers the position of a point regardless of the weight of
the point, our study fixes the weight of each point as the
population attribute of the point. This means that points with
numerous surrounding points (that is, with low populations)
may have lower local densities than those points with fewer
surrounding points (with high populations).
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To overcome these shortcoming regarding the arbitrary
selection of dc and to ensure the classifying algorithm has the
ability to analyze census points (related not only to the density
of surrounding points but to the population of the census
area), we revise equation (6) using the radiation model [23].

After revision according to the radiation model, the local
density ρ

′

i is shown in equation (8):

ρ′i =
∑
j 6=i

F ′ji (8)

where F
′

ji is defined as equation (9):

F ′ji =
m2
j ni(

mj + sji
) (
mj + ni + sji

) (9)

Therefore, the local density ρ
′

i denotes the summation
of the commuting fluxes with other census tracts. These
commuting fluxes are calculated using the revised radiation
model. Figure 2 shows an example of the local density of the
150th tract.

FIGURE 2. The local density of the census tract.

Note: The local density of the 150th tract is the summa-
tion of the commuting fluxes with other tracts (the 146th,
147th, 148th, 149th, and 151st tracts). Mathematically, ρ

′

150 =

F
′

146,150 + F
′

147,150 + F
′

148,150 + F
′

149,150 + F
′

151,150.
After obtaining the local density, we classify each cen-

sus tract into a different cluster using the algorithm of
Rodriguez and Laio [27].

The distance δ
′

i is similar to equation (7) and the centroid
point that has the highest local density leads to δ

′

i being equal
to max(dij).
Subsequently, the density peak of each census tract can be

identified by the local density ρ
′

i and the distance δ
′

i . From
equation (7) and equation (8), the revised algorithm is a non-
parameter algorithm that only depends on the population of
the census tracts and the distance between the centroid points
of the census tracts.

It is apparent that equations (8)-(9) are used to simulate the
‘physical interactions’ between each census tract. If datasets
of ‘physical interactions’ are available and reliable, these
datasets can be applied directly towards classifying census
tracts into clusters without a ‘physical interaction simulation’.

C. IDENTIFICATION OF SUBCENTERS USING
A SPATIAL SCAN STATISTIC
Spatial scan statistics [29]–[31] and spatial autocorrelation
indices [32], [33] (Local Moran’s I and the Getis statistic,
among others) are widely utilized to detect ‘‘hot spots’’ for
agriculture, air pollution, drug offences, and so on [34]–[36].

There is a major shortcoming in the use of spatial auto-
correlation indices such that although many spatial weights
matrices have been created (e.g., the inverse distance raised to
some power, k nearest neighbors, centroid points within a pre-
defined threshold dθ , ranked distances, etc.), some models
that employ these schemes are misspecified.

Unlike spatial autocorrelation indices, spatial scan statis-
tics are based on a maximum likelihood ratio test, and employ
a scanning window to detect ‘‘hot-spots’’ in a given study
area [31].

Most spatial scan statistics are based upon special distribu-
tions, and may lead to very different results. Thus, we adopt a
distribution-free spatial scan statistic in order to discover the
center of each cluster.

The distribution-free spatial scan statistic [37] has a simple
criterion: the mean value inside the center should be signifi-
cantly higher than the mean value outside of the center.

Let D1, D2, . . . ,Di denote the local densities associated
with the centroids of the census tracts. Assume for each Di
that

E (Di) = µ and V (Di) = σ 2 and Cov
(
Di,Dj

)
= 0

Then, for the center Z as well as the area outside the center Z̄ ,
the difference of the mean values is as follows:

D(Z ) = µ(Z )− µ(Z ) (10)

µ (Z ) is defined as follows:

µ (Z ) =

n∑
i=1

Di (si ∈ Z )

n∑
i=1

1 (si ∈ Z )
(11)

where si is the centroid of the ith census tract, and Di is the
local density of si.
The variance of D (Z ) is:

V (D(Z )) = σ 2(
1

n(Z )
+

1

n(Z )
) (12)

where n (Z ) denotes the number of census tracts inside the
center Z ; thus,

I (Z ) =

√
n(Z )n(Z )√

n(Z )+ n(Z )

[
µ(Z )− µ(Z )

]
(13)
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is constructed as a concentration index λp in order to detect
the tract center wherein

λp =max(I (Z )) (14)

To employ the concentration index, a scanning window is
needed. Most spatial scan statistics use scanning windows
of predefined shapes (circular or elliptic) in order to detect
‘‘hot-spots’’. In this paper, a circular scanning window is
used, the size of which is variable, and the number of areas
does not exceed 50% of the number of areas within the study
region. Figure 3 shows the circular scanning windows with
different sizes and the scanning results.

FIGURE 3. Census tracts within scanning windows.

Note: The centroid of the census tracts are within the
scanning windows. If part of a census tract is within the
scanning window but the centroid is not, then it should be
excluded from the scanning results.

We calculate the concentration index for each scanning
result, and the region whose concentration index value is the
highest within a cluster is the most likely subcenter.

After the most likely subcenter has been identified,
a p-value is used to test whether it is significant. Here, we
define the p-value in equation (15):

pλ =

N∑
n=1

1(λn > λ)

N + 1
(15)

where N is the number of simulated datasets and λn is the
result (the max concentration index) of the nth simulation.
For each simulation, the population is randomly reallocated
among the census tracts.

In this paper, N is set as 999 and the confidence level is set
as 95%, which means the p-value of a subcenter should be
less than 0.05 if it is significant.

The above subsections demonstrate that our method over-
comes limitations one through five. These limitations existed
in both the minimum cutoff point of density identification
method as well as the two-stage nonparametric approach.

FIGURE 4. Work-flow diagram of our proposed method.

Our approach does not require prior local knowledge because
it uses the radiation model to calculate commuting fluxes,
which are then used to reveal the physical interactions
between census tracts and to classify the census tracts into
clusters. These clusters are then utilized to represent the area
of influence of each urban subcenter.

In addition, our approach does not incorporate a density
estimating function. Figure 4 illustrates the work-flow of our
proposed method.

III. APPLICATION TO WUHAN, CHINA
A. DATASETS
The Wuhan urban developing area, which is the area exam-
ined in this study, is located in Hubei Province, China. As the
largest and most important city of Central China, Wuhan has
a total administrative area of approximately 8,494 km2 and a
population exceeding 10,338,000. The Wuhan Metropolitan
region includes the urban area and its adjacent outer sub-
urbs. The urban area contains 7 districts (Jiangan, Jianghan,
Qiaokou, Hanyang, Wuchang, Qingshan and Hongshan), and
the suburban area contains 6 districts (Caidian, Jiangxia,
Dongxihu, Hannan, Huangpi and Xinzhou). The distribution
of the population of Wuhan is imbalanced and the spatial
differentiation of population growth is large. While the pop-
ulation growth in the suburbs is not significant, population
growth is more dramatic in urban areas.

Wuhan’s urban developing area is comprised of the
13 aforementioned districts: Jiangan, Jianghan, Qiaokou,
Hanyang, Wuchang, Qingshan, Hongshan, Caidian, Jiangxia,
Dongxihu, Hannan, Huangpi and Xinzhou. The first 7 dis-
tricts are defined as urban areas and constitute a greater
number of census tracts, which are smaller in size than those
of the latter six districts. Here, we have obtained the centroid
for each of the census tracts, which are plotted in Figure 5.
From the scatter diagram, we can observe that the census
tracts in the urban areas are much smaller than the tracts in the
suburban areas. Therefore, urban census tracts can provide
more precision than suburban census tracts. Table 1 provides
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TABLE 1. Summary of statistics of the census data.

FIGURE 5. Locations of the census tracts for Wuhan.

a summary of the statistics for the census data used in this
paper.

B. CLUSTERS OF THE CENSUS TRACTS IN THE
STUDY REGION
As mentioned above, in order to make use of the clustering
algorithm, we conduct an analysis using the centroids of cen-
sus tracts instead of the original census data.We exclude some
centroids due to zero population in order to avoid division
by zero. In a strict sense, the local density of a centroid is
needed to calculate commuting fluxes with other centroids,
and to calculate the total. However, this procedure is rather
time-consuming with a time complexity of O

(
n2
)
. We con-

clude through experiments that, if the distance between two
centroids is greater than 5 km, the value of the commuting
flux between either centroid is so small that it can be omitted.
Thus, after we obtain the local densities of the centroids, only
centroids within 5 km are considered.

Figure 6(a) illustrates that the plot of ρiδi displays in
descending order for the 2010 census tracts of Wuhan, while
Figure 6(b) shows the plot of δi as a function of ρi. The highest
value of ρiδi in Figure 6(a) is excluded in order to enhance
the readability of the graph, after which there are 5 other

FIGURE 6. Results for the 2010 census tracts of Wuhan. (a) The values
of ρi δi from (b) in descending order. The highest value of ρi δi , the blue
point in (b), is excluded in order to increase the readability of the graph.
(b) Density-distance plot for the census tracts.

FIGURE 7. Results for the 2015 census tracts of Wuhan.

points with relatively high values that correspond to points in
Figure 6(b) by color. A total of 6 points with different colors
have both relatively high values of the local density ρi and of
the distance δi. Following the population growth and a change
of the spatial distribution, the plots of δi and of ρiδi for the
2015Wuhan census tracts in Figure 7 exhibit different results
from those of the 2010 census data. The number of points with
relatively high values of both the local density ρi and of the
distance δi increase to 8, but demonstrate an overall smaller
value gap for ρiδi.
A comparison between the 2010 and 2015 census tracts for

Wuhan reveals an overall change of the spatial distribution.
The number of clusters of Wuhan census tracts changed from
6 for 2010 to 8 for 2015. Although the quantity increased,
their density values decreased, which indicates that the spatial
distribution has dispersed.
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TABLE 2. Comparison of analyses using census tracts from 2010 and
2015 for Wuhan.

FIGURE 8. The commuting flux of the census tracts in 2010 and 2015.

Table 2 illustrates the overall properties of the census tracts
for both 2010 and 2015. We can recognize that the total
population and average commuting fluxes of each census
tract in the study area increased gradually, and the number
of clusters increased by 2 from 2010 to 2015. In addition,
the maximum commuting flux in 2015 was much lower than
in 2010.

Another scatter diagram is shown in Figure 8, which illus-
trates the commuting flux in ascending order for the cen-
sus tracts from 2010 and 2015. It is apparent therein that,
although the maximum commuting flux in 2010 is much
higher than in 2015, the average commuting flux in 2010 is
generally lower than in 2015. This verifies our conclusion that
the spatial distribution throughout Wuhan has dispersed.

From Figure 6 to Figure 8 and from Table 2, we find that
the city of Wuhan is becoming more polycentric. Although
the traditional subcenters still play important roles, new sub-
centers obviously weaken their influence. This phenomenon
can be quantified by the decrease of ρiδi values: themaximum
value of ρiδi in 2010 and 2015 is 30,520,320 and 17,036,480,
respectively.

After the cluster centers have been identified, each census
tract is allocated to the nearest census tract centroid with the
higher local density. To make this procedure complete more
quickly, these census tracts are sorted by local density in
descending order, the results of which are shown in Figure 9
and Figure 10 for 2010 and 2015, respectively.

FIGURE 9. Clusters detected from the 2010 Wuhan census data.

FIGURE 10. Clusters detected from the 2015 Wuhan census data.

TABLE 3. The maximum commuting flux values among the different
clusters.

Although we classify the clusters according to decreas-
ing ρiδi values, it is not implied that the commuting flux is
also descending. In fact, some clusters are characterized by
low-commuting flux values but have a high relative distance
value. Table 3 shows the maximum commuting flux values of
the clusters obtained using the 2010 and 2015 census data.

The degree of difference in the ρiδi values and commut-
ing fluxes indicates that there are two types of subcenters.
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TABLE 4. Statistics for the subcenters in 2010.

Subcenters with high commuting fluxes have some subcen-
ters nearby, but it has more of an influence on nearby tracts.
Subcenters with low commuting fluxes are not adjacent to
any subcenters for a long distance. Although it does not have
as great of an influence on neighboring tracts as subcenters
with high commuting fluxes, subcenters with low commuting
fluxes are the most important sites over a broad region.

Comparing the variations in the clusters of census tract
between 2010 and 2015, the greatest changes occurred in
the west and south of the study area. A 2010 cluster in the
west (f) was divided into two clusters (f and g) in 2015. Two
2010 clusters in the south (b and e) were merged and then
re-divided into three clusters in 2015 (b, e and h). The other
clusters appear to have remained relatively stable.

It is observed that the new cluster in the west (g) corre-
sponds to the Hankou railway station and its adjacent areas
and that the new cluster in the south (h) corresponds to
Guanggu square and its neighboring areas. Both the Hankou
railway station and Guanggu square have rapidly developed
over these years.

C. SUBCENTERS IN THE STUDY REGION
For each cluster, census tracts are selected using a
distribution-free (DB-free) spatial scan statistic because the
distribution of census tracts is untractable. In this study, the
p-value is set as 5%.We then generate 999 simulated datasets
to represent the power of theDB-free spatial scan statistic. For
each simulation, we calculate the concentration index (λp)
and determine whether it is greater than the value of λp
calculated using the census tracts in a cluster. The results
are shown in Figure 11 and Figure 12 for 2010 and 2015,
respectively.

From Figure 11, we can see that there are 6 subcenters,
while 8 are observed from Figure 12. This suggests that all
of the subcenters detected using the DB-free spatial scan
statistic have a p-value lower than 5%. We also find from
Figure 11 and Figure 12 that the distribution of the sub-
centers transformed from concentrated to dispersed. In other
words, Wuhan became more polycentric from 2010 to 2015.
Statistics for the subcenters in 2010 and 2015 can be seen in
Table 4 and Table 5, respectively.

After the subcenters have been identified, we try to deter-
minewhether the subcenters have a relationshipwith the loca-
tions of metro stations. Because traffic data is not publicly

FIGURE 11. The location of subcenters in Wuhan, 2010.

FIGURE 12. The location of subcenters in Wuhan, 2015.

TABLE 5. Statistics for the subcenters in 2015

available, we obtain data from the official microblog
(http://weibo.com/u/3186945861) of METRO, WUHAN.

Every day, the official microblog posts data regarding
the Top 5 metro stations with respect to traffic flow. As a
consequence, we can use these data to locate ‘hot’ metro
stations. Ultimately, 428 data records were obtained from the
microblog.
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FIGURE 13. The ‘hot’ metro stations.

FIGURE 14. The 6 metro stations with the largest traffic flow values.

Figure 13 shows the statistical results for ‘hot’ metro sta-
tions, while Figure 14 illustrates the locations of the 6 metro
stations with the highest measured traffic flow (determined
using over 100 days’ worth of data).

We discover that 4 of the metro stations have the same
location with subcenters in 2015, except for Guanggu Square
and Wuchang Railway Station. Subcenters in cluster A con-
tain two metro stations: Jianghan Road and Zhongshan Park.
With the exception of the top 6metro stations, we compare the
locations of subcenters with other metro stations not included
in Figure 14. We subsequently find that all of the subcenters
in urban areas contain at least one metro station. This is the
same conclusion reached by Zhong et al. [21].

D. COMPARISONS OF METHODOLOGIES
1) COMPARISON WITH THE CUTOFF-POINT APPROACH
AND THE TWO-STAGE APPROACH
The minimum cutoff point of density identification method
and the two-stage nonparametric approach are based on the

FIGURE 15. Differences between the two approaches. (a) Our approach,
and (b) the two-stage nonparametric approach.

same exact idea wherein a subcenter should exert a sig-
nificant influence on both the local and global scope. The
first step in the two-stage nonparametric approach is to use
Z-scores to identify candidate subcenter sites. In most lit-
erature, the Z-score is defined as 1.28 or 1.96, respectively
corresponding to a 5% or 10% significance level. The second
stage is based on the candidate subcenter sites, which are
the sites that have statistically significant effects on a global
scale.

Our research could be regarded as a reversed two-stage
approach. Unlike the two-stage nonparametric approach, our
approach conducts an analysis at a global scale, following
which the real subcenters are obtained.

The differences between two approaches are shown in
Figure 15.

2) COMPARISON WITH MULTIPLE CLUSTER
SPATIAL SCAN STATISTIC
More than one significant cluster may exist within a geo-
graphical region, but only if their p-values are less than 5%.
Many methods have been proposed to retrieve multiple clus-
ters in a study region. Zhang et al. [38] proposed a sequential
version of the spatial scan statistic to detect other signifi-
cant clusters, except for the most likely cluster (MLC), by
removing the areas which comprise the MLC as well as the
areas adjacent to the MLC, or by making the ratio between
the number of cases and the population within the MLC
equivalent to the ratio outside of it.

Contrary to the method of Zhang et al. [38], we divided the
census tracts into smaller clusters so the chance that multiple
significant ‘‘hot-spots’’ coexist could be reduced for each
cluster. Therefore, we only obtained the MLC for each group.

IV. CONCLUSIONS AND DISCUSSIONS
This paper introduces an alternative method with which
to identify urban subcenters. These subcenters are then
used to analyze the variation of urban spatial structure in
2010 and 2015 in the city of Wuhan, China. Unlike previous
research, our approach does not require arbitrary cutoff values
and prior local knowledge, and it is entirely parameter-free.
Some methods have used spatial network analyses to identify
the spatial structure of city hubs, centers and borders utilizing
‘big’ datasets sourced from the automatic smart card fare
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collection system. In many other cases, however, no such
sets of data or ancillary data exist, and the only complete
and effective datasets are census datasets. Therefore, such
methodologies cannot be widely applied. We have demon-
strated that our approach is advantageous for the identifica-
tion of urban subcenters and the detection of urban spatial
structure variation.

The method introduced in this paper is discussed from
three different perspectives: the calculation of commuting
fluxes, the classification of clusters and the identification
of subcenters. The calculation of commuting fluxes only
requires census data. For each census tract, we calculate the
commuting fluxes between it and other census tracts. The
summation of commuting fluxes is then used to represent
the local density of the census tracts. This avoids the choice
of arbitrary cutoff values of dc. In fact, our method can be
applied to data sets insomuch that the interactions between
each tract can be calculated. Subcenters and regions of influ-
ence are key factors with which to analyze and demonstrate
variations in urban spatial distribution and urban spatial struc-
ture movement. Our approach has focused on these vital
factors and accordingly applied them to the 2010 and 2015
Wuhan census data. The results demonstrate that there were
some significant changes in west and south of the study
area and that the city became relatively polycentric by the
year 2015.

There is still a great deal of work that must be done in
order to improve our approach. In our method, a radiation
model was used to calculate the commuting fluxes between
each census tract with the others. We then calculated the
local density by summing up commuting fluxes. Although
the reliability of the radiation model at large distances, as
well as for small and moderate destination population scales,
has been assessed, additional research is required to improve
the reliability of the model. For example, in some extreme
cases, the radiation model may generate large errors and lead
to some results that are incorrect. The first thing needed in
order to improve our research is to increase the accuracy of
the radiation model to ensure improved local density results.
We filtered local density peak points by sorting the values of
ρi and δi, following which any value larger than 1000 was
chosen as local density peak point. This cutoff is arbitrary
and may lead to different results if we select a different
value. Although the published literature has introduced an
automatic selection technique for local density peak points,
it is only suitable for local density peak points that have
strong, large values of local density in addition to relative
distances, which can omit other weaker points. Developing a
method with which to choose these local density peak points
accurately is another key factor for improving our approach.
A spatial scan statistic was used to detect subcenters in each
cluster. Because the distribution of data sets is untraceable,
we adopt a distribution-free spatial scan statistic in this paper.
However, this distribution-free method can be unstable if the
real subcenter is not circular. Although an irregularly shaped
scan window can be used to detect subcenters, a few inherent

issues need to be resolved. Although the pre-grouping proce-
dure can reduce the chance of coexisting multiple significant
‘‘hot-spots’’, it cannot eliminate the potential. Moreover, if
there is more than one significant ‘‘hot-spot’’ in one cluster,
should the MLC be left as the sole subcenter in that cluster,
or should the cluster be divided into smaller clusters, which
can then be chosen as subcenters?

Future work should consequently focus on the follow-
ing aspects: the accuracy of the calculations for commuting
fluxes, the rationality of the selection of local density peak
points, and the stability of the spatial scan statistic. These
improvements will contribute toward a better understand-
ing of the urban spatial distribution and the urban spatial
structure.
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