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ABSTRACT With the exponential growth of traffic demand, ultra-dense networks are proposed to increase
the network capacity. However, the high-density access point (AP) deployment will increase the complexity
of AP coordination, and AP cluster (APC) needs to be considered in practical implementations. Due to the
dynamic changes in spatiotemporal distribution of users and service demand, we propose a social-energy-
based cluster management (SECM) scheme in order to reduce APC update frequency. Specifically, in social
domain, we propose a congeniality-based personalized recommendation (CPR) algorithm to predict users’
incoming requests. We further propose a CPR-based AP cluster algorithm to solve the matching problem
among users, APs, and content. In energy domain, we propose an inter-cluster energy cooperation scheme
to avoid the shutting down of members in AP cluster and reduce the update of clusters. Numerical results
demonstrate that our proposed scheme can achieve a gain of 77.8% in theAPCmanagement utility averagely,
without loss of fairness compared with the other state-of-the-art schemes.

INDEX TERMS Ultra-dense network, mmWave, AP cluster, matching game, personalized recommendation.

I. INTRODUCTION
According to Cisco, aggregate smartphone traffic will be
seven times greater than it is today, with a compound annual
growth rate (CAGR) of 48% [1]. In order to satisfy the grow-
ing traffic demand, UDN has been proposed as a promising
technique in 5G [2]. In UDN, APs are typically deployed in
hot spots (e.g., airports, markets, and train stations) with low
transmit power. Although UDN can substantially improve
the data rate of users (e.g., up to 10 Gbps), the network
densification is still limited.

Since the density of APs is much higher than that of
UEs in UDN, multi-connection technology becomes critical.
Coordination between APs in the network is complicated due
to the synchronization requirement, additional pilot overhead,
complex beamformer design, and scheduling. To reduce these
overhead, small size of cooperation clusters are required.
Clustering for cooperation set is key for optimizing the
performance in multi-connection technology. The clustering
algorithm was first proposed in a self-organizing network
such as a sensor network [3]. After that, there are many
studies which have considered the idea of clustering APs into
coordinated groups. In [4], the authors proposed a dynamic
clustering-based spectrum allocation scheme in a dense cell
environment. However, the authors only considered resource

allocation. In [5], the authors proposed a cooperative scheme
for femtocell network. In their work, femtocells cooper-
ate by forming coalitions which interference is eliminated
among femtocells through interference alignment. However,
the author assume split spectrum operation, where femtocells
have their dedicated spectrum which reduces spectrum effi-
ciency. [6] further proposed a clustering-based resource allo-
cation and interference management scheme for femtocells
based on exhaustive search.

Although those clustering methods perform well, they
are too complex to be suitable for dense networks. Due to
the high AP density in UDN, traditional network-centric
clustering schemes are inapplicable due to the precise syn-
chronisation requirement within coordinated cells, additional
pilot overhead, additional signal processing, complex beam-
forming design. Thus, [7] proposed three low signalling
overhead clustering algorithms in MIMO interference chan-
nels. In [8], a graph-based low complexity dynamic clus-
tering algorithm is proposed, which dividing the whole
network into a number of clusters under size constraint,
the maximum intra-cluster interference and minimum inter-
cluster interference in ultra dense network. But those above
studies only take consideration of physical constraints like
interference.
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Additionally, spatiotemporal distribution of users and
service demand will change dynamically. Therefore, social
information also has huge potential value in clustering algo-
rithms. Reference [9] proposed a dynamic clustering and user
association scheme inwireless small cell networkswith social
considerations. In their work, the author decomposed the user
association into a dynamic clustering problem and proposed
a social similarity based user association approach to solve
the problem. In [10], a service-aware user-centric clustering
and scheduling scheme is proposed to improve delay and
throughput performances for cloud-RAN with coordinated
multi-point transmission. This approach creates overlapping
clusters on a per-user basis adaptively based service demand.
However, these social-aware clustering schemes only con-
sider optimizing throughput performance without taking into
account the huge complexity and energy efficiency of dense
networks.

To this end, we propose a social-energy based cluster
management scheme by analyzing the User-centric UDN
(UUDN) architecture proposed by [11]. In the social domain,
in order to predict users’ incoming requests, we propose
a Congeniality-based Personalized Recommendation algo-
rithm. Particularly, predicting the incoming service request
of UE can help reduce the updating frequency of AP clus-
ter, thereby reducing the signaling overhead of the con-
trol plane. Then, we formulate the social-aware AP cluster
as a 3-dimensional (3D) matching problem. To tackle the
intractability of the 3Dmatching problem, we employ a series
of approximations to simplify it and propose the CPR-based
AP Clustering (CPRAC) algorithm. However, the AP’s on/off
will also lead to AP cluster update, thus, in energy domain,
we also propose an inter-cluster energy cooperation scheme
to avoid the shutting down of APs and reduce the update of
cluster. Our contributions can be summarized as follows:

1) A UUDN architecture with local access and core net-
work is proposed, where local control center includes
optical CoMP function, energy cooperation func-
tion and AP cluster function, and network control
center contains download history analysis function.
Aggregator implement the two-way energy trading
between the power grid and AP cluster.

2) We formulate the social-aware AP cluster as a
3-dimensional matching problem among AP, UE, con-
tent and propose a matching game based on the social
domain to achieve AP cluster.

3) After AP cluster, a shortest path-based energy coop-
eration algorithm is proposed for inter-cluster energy
cooperation.

4) We analyze the users’ preference with the personalized
recommendation by using three public datasets and
propose CPR to predict users’ incoming request. The
Precision and Recall are much higher than traditional
algorithms like Global Ranking Method (GRM) and
Collaborative Filtering (CF).

The rest of this paper is organized as follows. Section II
describes the system model consisting of UUDN architecture

and mmWave model, then we formulate the APC manage-
ment problem based on social domain and energy domain.
In Section III, the clustering problem based on social domain
is formulated as a matching game and the energy alloca-
tion subproblem is formulated as an intra-cluster energy
cooperation. Simulation results are presented in Section IV.
Finally, Section V concludes the paper.

II. SYSTEM OVERVIEW
In this section, we provide a detailed architecture of UUDN
where the mode is changed from network controlling users to
network serving users. In addition, we introduce a millime-
ter wave model using a free space line-of-sight propagation
model.

A. UUDN ARCHITECTURE
In a typical UDN, refers to the networks, the density of access
points is much larger than that of users, which can achieve
hundred of times improvement of capacity in hot-spot areas.
Therefore, UDN is promoted as one of the major technology
to meet the requirements of ultra-high traffic volume density
in 5G system. As one implementation of UDN, UUDN can
serve users seamlessly without users’ involvement through
virtual cell technology [11]. In this paper, we propose an
architecture of UUDN by decoupling the user plane and
control plane from the radio access network (RAN) and core
network (CN) side. An illustration of UUDN architecture is
shown in Fig. 1.

In this architecture, there are a set A = {1, 2, · · · ,A}
APs and a set U = {1, 2, · · · ,U} UEs randomly distributed
within the UUDN. Assume that dense deployed APs can
be organized intelligently as virtual cells to serve users in
a joint manner, e.g., using CoMP, which can guarantee the
QoS of each user. All kinds of APs are connected to users
by mmWave access links and the Local Access by fiber
fronthaul. Local Access consists of three parts, namely, Local
Control Center (LCC), Local Data Center (LDC) and Aggre-
gator. LCC is responsible for new user-centric functions, such
as AP cluster, optimal CoMP and Energy Cooperation. LDC
provides the user plane functions and acts as a plain access
router to forward content chunks to users. The aggregator is
an energy pool module that can store the renewable energy
collected from APs and distribute the energy to APs. At the
network side, the Network Control Center (NCC) conducts
Download History Analysis function in terms of social data
and Network Data Center (NDC) serves as the data gateway
for content distribution.

B. MILLIMETER WAVE MODEL
Due to the intensive deployment of APs, the complex
aggregation interferences have been a major challenge for
UDN. Since the interference from nearby mmWave APs
can be small due to shorter transmission distance and sen-
sitive blockage effects of mmWave spectrum, APs will be
essential for these spectrums [12]. Moreover, the spectrum
resource is abundant so that it can support high data rate
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FIGURE 1. Illustration of UUDN architecture.

for communications. Therefore, a dense deployment of the
the mmWave APs is required.

Due to limited coverage and dense deployment of APs,
in this paper, we only consider line-of-sight (LOS) link for
simplicity. In a mmWave network. The pathloss (in dB) for a
LOS link with distance d can be given as [13]:

PLLOS (d) = 20 log10(4π/λ)+ 10αL log10(d)+ χσL (1)

where αL is the pathloss exponent of a LOS link, and χσL
is LOS shadowing and χσL ∼ N (0, σ 2

L ), where σ
2
L is the

variance of the Additive White Gaussian Noise (AWGN). In
LOS link model, σL always has a small effect on the pathloss.
λ is the carrier wavelength.
Due to the strong propagation loss, fast channel variation

and low diffraction ability of mmWaves, directional beam-
forming is required in mmWave communication. For AP a,
the antenna gain is a function of the steering angle θ , which
can be given as [14]:

Ga(θ ) =

{
Ga, if |θ | < θa

0, otherwise
(2)

where θa is the main lobe width. The interference caused by
side lobe is ignored in our network.

By using the advanced multi-user interference cancella-
tion, such as optical CoMP technology [15],
Zero-forcing (ZF) precoding and the complex blockage
in urban, the inter-user interference can be almost elim-
inated. As a result, signal-to-noise ratio (SNR) provides
a good approximation to signal-to-interference-plus-noise

ratio (SINR). For each time slot, the SNR between an AP
a ∈ A and an UE u ∈ U can be written as:

SNRua =
PaGaGugauPL

−1
LOS (dua)

N0
(3)

where Pa is the transmission power of AP a,Ga is the antenna
gain of AP a andGu is the antenna gain of UE u. gau stands for
the rayleigh fading, PL−1LOS (dua) is the pathloss between AP a
and UE u. Noise power N0 can be given as BWσ 2

L , where BW
is the bandwidth of an AP. We assume all APs use the same
bandwidth.

III. PROBLEM FORMULATION
In this section, we first formulate the AP cluster problem as a
one-to-many matching problem between APs and UEs, and
then transform the matching problem into an optimization
problem based on social domain and energy domain.

Considering the constrained storage capacity, each AP can
only cache the limited number (i.e. Nmax

c ) of contents. For
analysis simplicity, we consider that the APs and the UEs are
all equipped with single antennas and each AP can only serve
one active UE in each time slot [16]–[18]. For each AP a, we
define the content cache vector as vCa = (ya1, ya2, · · · , yaC ),
where yac is binary decision variable and will be introduced
later. For each user, LCC will assign a cluster of APs (with
a maximum number of Nmax

a ) for serving. We assume that
each user requests content at the beginning of an interval with
duration time T . Once an AP cluster (APC) is established,
a unique APC-ID will be assigned by NCC and stored in
LCC. Then, those APs in APCs will be updated according
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FIGURE 2. Hierarchical bi-partite graph for AP cluster function.

to updating cases. We define the following two updating
events:

1) event R1: serving AP does not cache the content
requested in next time interval T .

2) event R2: servingAP ends up due to insufficient energy.

Hence, we consider the APCmanagement from the social and
the energy domains, respectively.

In social domain, the user-centric AP cluster is shown
in Fig. 2. In order to minimize the number of trigger-
ing event R1, we formulate the clustering problem as a
3-dimensional matching problem using social analysis.

NDC gathers content download records of all registered
users and saves them as entries in databases. Then, NCC
will query the entries and predict users’ future requests based
on Download History Analysis. Therefore, LCC can achieve
the clustering more effectively by reducing the number of
triggering event R1, when users request next content.

In order to predict users’ incoming requests, we propose
a Congeniality-based Personalized Recommendation (CPR)
algorithm. In download history bi-parte graph in Fig. 2, we
model users and content as nodes and use a bi-parte graph
G = (U ∪ C,E), where the edges represent download his-
tory. The left vertices U correspond to users while the right
vertices C correspond to the content. Except for the set of
users who download the content, we ignore all other feature
about content such as size, popularity, and download time of

the content. The edge e = (u, c) represents user u download
content c. For a user u, The less the amount of content u
downloads, the more important to estimate preferences for
each downloaded content. With all other things being equal,
for each vertex u ∈ U , the fewer edges of u, the greater
weight of each edge. Hence, we can use 0(u) to represent
edge weight, where 0(u) is the neighborhood list of user u.
For any user u1 and u2, if they have more common download
history, the more likely they have common interests, which
can be defined as Congeniality [19], as given by:

Cu1u2 =
|0(u1) ∩ 0(u2)|
|0(u1) ∪ 0(u2)|

(4)

Furthermore, for each user u, considering both download
request and download history, we denote the user’s download
vector as vDu = (zu1 , zu2 , · · · , zuC ), where zuc is a binary
decision variable, as given by:

zuc =

{
1, if user u downloads the content c
0, otherwise

(5)

Collaborative Filtering (CF) algorithm [20], [21] is a popu-
lar personalized recommendation algorithm. In CF, if people
have similar preferences and their preferences are stable,
their incoming requests can be predicted according to their
past preferences. In CF algorithm, we choose cosine simi-
larity measure method, and for any user u1 and user u2, the
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similarity between them can be written as follow:

Su1u2 =

∑
c∈ C zu1czu2c√∑

c∈C z
2
u1c

√∑
c∈C z

2
u2c

(6)

Thus, with the help of congeniality, the preference of user u
to content c in CPR can be calculated as:

PCPRuc =
∑

u′∈ U ,u′ 6=u
Cuu′Suu′zu′c (7)

For each user u, we define the user’s preference vector
vPu = (Pu1 ,Pu2 , · · · ,Puc, · · · ,PuC ), where Puc is the pref-
erence of user u for the content c. In particular, we assume
that users do not download duplicate content, that is, if a user
u has already downloaded a content c, the preferencePuc = 0.
In this case, the preference vector of user u can be calculated
as (1− vDu )� vPu , where � is a new operator and defined as:

(a1, a2, · · · , an)� (b1, b2, · · · , bn)

= (a1b1, a2b2, · · · , anbn) (8)

In energy domain, all APs are assumed locally deployed
with solar panels and/or wind turbines for energy harvesting
from the environment and equipped with smart meters to
enable their energy cooperation through the aggregator in
Local Access [22]. In UUDN architecture, there are thou-
sands of APs and the harvested energy can benefit the opera-
tors. In order to decrease Operating Expense (OPEX), Local
Access will decrease the amount of power it buys from
the Power Grid, instead, taking advantage of the renew-
able energy harvested from APs through Energy Cooperation
function.

Energy cooperation is a cost saving approach from the
perspective of operators, where APs are allowed to employ
two-way energy trading or sharing for better utilization of
the energy. It is worth noting that, it is complicated for
LCC to directly control thousands of APs, thus, the energy
trading and sharing in Local Access should be enabled by
using the aggregator [23]. We can divide APs into a finite
number of clusters and aggregator can serve as control center
with low complexity by implementing intra-cluster energy
cooperation.

In our energy cooperation model, at the beginning of an
interval τ , we assume the available energy at AP a is Ea(τ ),
the amount of energy harvested by AP a per unit time is E ina .
The transferred energy from AP a to AP i is εai(τ ) and the
energy transfer efficiency between a and i can be represented
as βai. Therefore, the available energy of AP a at time τ can
be written as follow:

Ea(τ ) = Ea(τ − 1)+
A∑

i=1,i 6=a

βaiεai(τ − 1)

−

A∑
i=1,i 6=a

εia(τ − 1)+ E ina (9)

To guarantee the performance of user plane and control
plane in UUDN architecture, we should consider not only

SNR to ensure user experience, but also signalling overhead
caused by AP updating. Hence, considering both throughput
and cost, we formulate the APC management utility as the
difference between the total network throughput and the over-
head caused by clustering updating cases. In this paper, we
assume users request a new content at a time interval T , and
the overhead caused by oneAP handover is C. Thus, the utility
maximization in UUDN can be formulated as:

max
xua

U∑
u=1

A∑
a=1

xua
(
BW log2(1+ SNRua)− w1C

na
T

)
s.t. C1: na =

{
0, if yaζa = 1 and Ea ≥ PaT

1, otherwise

C2: yac =

{
1, if AP a cache the content c

0, otherwise

C3: xua =

{
1, if AP a serve the UE u

0, otherwise

C4:
C∑
c=1

yac ≤ Nmax
c

C5:
U∑
u=1

xua = 1

C6:
A∑
a=1

xua ≤ Nmax
a (10)

where ζa is the content requested by user who is served
by AP a. Ea is the remaining energy in AP a, Pa is the
power consumption which is composed of two parts: the
dynamic power consumption related to the data transmission
for serving UEs, and the constant power consumption (e.g.,
at the circuits and air conditioners) for maintaining necessary
operations. na is the number of handover during AP cluster
updating. C1 ensures that both two cases can trigger the
handover. C2 and C3 are binary decision variables. C4 imply
that each AP can only cache a certain number of content
because of limited storage capacity andC5 specifies that each
AP can only serve one user at a time. C6 indicates that each
user can only be served by limited APs due to the complexity
of cooperative transmission.

The above problem is a multidimensional 0 − 1 knap-
sack problem (MKP) [24]. Hence, the problem is an
NP-hard, and it is difficult to find the optimal solution by
classical optimization approaches, especially in the UDN
scene. In order to quickly achieve a good performance, we
decompose the optimization problem into two subproblems,
i.e., AP cluster subproblem and intra-cluster energy alloca-
tion, and propose a social-energy based cluster management
scheme which consists of social-aware AP cluster scheme
and intra-cluster energy cooperation scheme to solve them
respectively.

A summary of key notations is presented in Table 1.
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TABLE 1. KEY notations used in this article.

IV. THE SOCIAL-ENERGY BASED CLUSTER
MANAGEMENT SCHEME
In this section, we resort to the SECM scheme to solve such
a complicated problem. In our scheme, we use the recom-
mendation system theory and matching game theory to solve
the AP cluster subproblem. After AP cluster, we use graph
theory and greedy algorithm to solve the intra-cluster energy
allocation subproblem.

A. SOCIAL-AWARE AP CLUSTERING
AS A MATCHING GAME
The AP cluster subproblem is similar to the college admis-
sions, which was proposed by Gale and Shapley [25]. There-
fore, we model the clustering problem as a matching game. In
a matching game, each player must rank the players who are
in the opposing set by using a preference relation that captures
this players evaluation of the players in the opposing set.

In this paper, we formulate the AP cluster subproblem as
a two-sided many-to-one matching game, where each user
u ∈ U will be assigned to at most Nmax

a AP

(a1, a2, · · · , aNmax
a
∈ A). Hence, we formulate the subprob-

lem as a many-to-one matching game given by the tuple
(U ,A,�U ,�A), where �U= {�u}u∈U denotes the set of
preference relations of UEs and �A= {�a}a∈A denotes the
set of preference relations of APs. Then, we define the notion
of a matching as:
Definition 1: A matching µ is defined as a function from

the set U ∪A into the set of U ∪A such that (u ∈ U , a ∈ A) :
1) µ(a) ∈ U and |µ(a)| = 1 for each AP, 2) µ(u) ∈ A and
|µ(u)| ∈ (1, 2, · · · ,Nmax

a ) for each user and 3) a ∈ µ(u) if
and only if µ(a) = u.
To fully describe thematchingµ, we define the preferences

from two perspectives of a game. Let Vu(·) and Wa(·) denote
the utility function of UE u and AP a respectively. After given
there utilities, a user u prefers AP a1 to a2, if Vu(a1) >

Vu(a2). Without loss of generality, we denote this preference
as a1 �u a2. Similarly, an AP a prefers UE u1 to u2, if
Wa(u1) > Wa(u2) and this can be written as u1 �a u2.
From the UEs’ side, each UE u can be served by several

APs and seeks to maximize its own individual satisfaction
function. Using the interference cancellation techniques and
blockage introduced by Section II-B, oneAP’s choice will not
affect the remainingAPs’ utilities and thematching gamewill
have no peer effects. For each user, the individual satisfaction
can be determined by its achievable data rate. Thus, for each
AP a ∈ A, we define the users’ utilities as:

Vu(a) = BW log2(1+ SNRua) (11)

where SNRua is SNR between AP a and UE u. The utility
reveals that users only care the data rate. It is worth noting
that the users’ preferences will change as the wireless envi-
ronment changes.

From the APs’ side, each AP a can serve only one user
and seeks to maximize its own individual contribution to
the control plane of Local Access. In order to reduce the
number of triggering event R1, LCC should predict users’
preferences and notify APs. Subsequently, APs can determine
the preferences for users. For each AP, it tends to select the
user whose preferences are more suited to its own cached
content. Therefore, for each user u ∈ U , the access points’
utilities are given by:

Wa(u) = vCa
(
(1− vDu )� vPu

)T
=

∑
c∈C

yac(1− zuc)Puc (12)

Thus, the utility reflects the similarity between preferences
and cached content. It is worth noting that the access points’
preferences will change as the download history updates.

Given the formulated many-to-one matching game, our
goal is to find a stable matching, which is a key concept in
matching theory [26]. Thus, we define a stable matching as
follows:
Definition 2: A matching µ is stable, if and only if no pair

blocks the matching, That is, for any stable pair (u, a) ∈ µ,
@ u′ ∈ U s.t. u′ �a u and a �u′ µ(u′), or @ a′ ∈ A s.t. a′ �u a
and u �a′ µ(a′)

10774 VOLUME 5, 2017



Z. Huang et al.: Social-Energy-Based Cluster Management Scheme for User-Centric Ultra-Dense Networks

A stable matching solution indicates that no AP can benefit
by changing its current serving UE and vice versa. In order to
find a stable matching solution for AP cluster problem, based
on deferred acceptance algorithm and collaborative filtering
algorithm, we propose a CPR-based AP Clustering (CPRAC)
algorithm.

According to definition 2, our proposed CPRAC algorithm
is guaranteed to converge to a local stable matching, which is
shown in Algorithm 1.

Algorithm 1CPR-Based APClustering (CPRAC)Algorithm
Initialization:NDC gathers content download history of
all registered users and save as entries in databases, NCC
queries the entries from these databases and calculates
users’ preferences based on CPR, and notifies LCC.
Then, LCC sends the user preference list to all APs.
End initialization
while µ(n) 6= µ(n+ 1) do
for Each AP a do
Calculates its own utility vector and constructs its
preference lists based on (13) and sends a proposal
to its most favored user.

end for
for Each UE u do
Calculates the utilities for all APs who are sent
proposals to UE u. Ranks those utilities with the
utilities from APs who has served u before as a list
and calculate the size of the list as Na.
if Na > Nmax

a then
select the top Nmax

a and withdraw others.
else
select them all

end if
end for
for Each AP a do
if Withdrew by UE u then
sets the utility Wa(u) = 0 and never sends a
proposal to user u

end if
end for
Form a new matching µ(n+ 1)

end while
Return Stable matching µ∗.

Proof: The numbers of APs and UEs are limited, hence,
all possible matching pairs are limited. Moreover, for a return
matching µ∗, if µ∗ is not a stable matching, there must be
a blocking pair (u,a) that blocks our matching µ∗. Thus,
u �a µ∗(a) and a �u µ∗(u). If u �a µ∗(a), it means that
AP a has sent a proposal to UE u before sending a proposal
to UE µ∗(a) due to the structure of the preference vector.
That is, AP a has already been rejected by UE u. Now let
us assume that AP a has been withdrawn by UE u due to
AP a′, which means a′ �u a. Let the utility provided by
a′ is Vc(a′). Therefore, in the final matching only someone

having a utility higher than Vu(a′) can be associated to u,
which means µ∗(u) �u a. This contradicts with our initial
assumption and (u, a) is not a blocking pair. Therefore, µ∗ is
a stable matching. �

B. SHORTEST PATH-BASED INTRA-CLUSTER
ENERGY COOPERATION
After AP cluster, those APs in APC are still possible to
handover because of triggering event R2. In order to reduce
the number of triggering event R2, we propose a suboptimal
solution with intra-cluster energy cooperation. For each APC,
the aggregator can transfer the energy harvested by those fully
charged AP to the AP with insufficient energy, which can
effectively prevent triggering event R2.

In order to average the energy of all the APs in each APC,
we employ a the greedy algorithm for energy cooperation.
For the sake of simplicity, we assume all APs harvest same
amount of power from the environment , i.e., Pina = Pin, and
we superimpose the harvested energy on the energy of the
battery.

In our shortest path-based energy cooperation (SPEC)
algorithm, the lowest energy AP in each cluster sends a
request to the highest energy AP to obtain energy in each
iteration. We assume identical transferred energy in each
iteration, denote as ε. It is worth noting that the energy losses
of each AP pair are different, here, we define a loss transfer
efficiency matrix Hl, which can be given as:

Hl =


β11 β12 . . . β1n
β21 . . . . . . β2n
. . . . . . . βij . . .

βn1 βn2 . . . βnn

 (13)

where βij represents the energy loss efficiency between
AP i and AP j, in particular, βii = 0. As we can see, this
is also a symmetric matrix. Hence, in order to minimize the
energy loss, we use the Floyd-Warshall algorithm to find
the best path for energy transfer. It is obvious that, after a
finite number of iterations, the energy of all APs will be the
same, and the algorithm terminates. The details of our SPEC
algorithm are provided in algorithm 2.

C. IMPLEMENTATION
The overall social-energy based cluster management scheme
for UUDN can be summarized as two steps. First, NDC
gathers content download history of all registered users and
save as entries in databases. Then, NCC will perform down-
load history analysis function, that is, query the entries from
these databases in NDC and predict users’ preferences. After
that, NCC sends these preferences as a data list to the LCC
through IP routers. When received these preference list, LCC
will streamline the preference list by excluding users without
service and send the preference list to all connected APs.
Next, LCC decides the APC for each registered user by
CPRAC algorithm and notifies the NCC, while NCC allo-
cates a unique APC-ID for each registered user’s AP cluster.
Once all the APCs have been formed, the LCC will begin
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Algorithm 2 Shortest Path-Based Energy Cooperation
(SPEC) Algorithm

Initialization: Aggregator gathers the loss transfer effi-
ciency of all AP pairs and sends to LCC. Then, LCC
formulates those data as a matrix of energy transfer
efficiency. and calculate its Shortest distance matrix and
Routing matrix by using Floyd-Warshall algorithm and
set i = 0.
End initialization
repeat
The AP l with the lowest energy Pmin send a proposal
to the AP h with the highest energy Pmax .
AP h transfer the energy to the AP l with ε through
routing matrix.

until ‖Pmax − Pmin‖ > 1

Algorithm terminates

to perform the energy cooperation function. Meanwhile, the
aggregator in Local Access will gather the energy transfer
efficiency of all connected AP pairs and sends to LCC. Then,
LCC formulates a matrix of energy transfer efficiency and
stores it in LDC to facilitate future inquiries. Finally, the
LCC completes the energy cooperation through the SPEC
algorithm. Our scheme can guarantee the QoS of users and
solve the signalling overload problem caused by dense AP
deployment effectively at the same time.

V. PERFORMANCE ANALYSIS
In this section, we conduct simulations of the proposed
clustered-based energy cooperation scheme in APC manage-
ment of UUDN. In our simulation scenario, APs and UEs
are randomly located within a square area of 1 Km2, and
the simulation parameters of the UDN model and mmWave
model are listed in Table 2. In particular, according to [27],

TABLE 2. Simulated parameters.

the omnidirectional LOS path loss exponent αLOS is 2.1 at
28 GHz. For each simulation scenario with the fixed APs and
UEs, we average the simulations by 1000 times, and each time
with the newly random-selected locations.

In order to show the efficiency of our proposed CPR-based
AP cluster algorithm, we compare the performance of our
scheme with two following schemes:

1) Average Selection (AS): Since each AP can only serve
one user at a time, APs preferentially serve those UEs
with fewer candidate AP sets to maximize the mini-
mum transmission rate of users.

2) Random Selection (RS): APs uniform randomly serve
UEs based on radius limits.

We also evaluate the performances of social domain on
three benchmark datasets, includingMovielens (http://www.
grouplens.org/), Netflix (http://www.netflixprize.com/) and
Amazon (http://www.amazon.com/). In order to capture
users preferences and recommend objects more precisely,
they all leverage ratings from 1 to 5 stars. Here we only
consider objects collected by users with ratings at least 3 stars.
Before the experiments, datasets are randomly divided into
two parts: a training set containing 90% links and a testing
set containing the rest 10%. Recommendation results are
generated by training set and evaluated by testing set. After
processing, detailed information of the datasets is shown in
Table 3.

TABLE 3. Primary information of the three datasets.

A. RECOMMENDATION
In order to show the satisfactory performance of our proposed
algorithm, we compared the performance of our scheme,
labeled asCongeniality-based PersonalizedRecommenda-
tion (CPR) with the following algorithms:
1) Global RankingMethod (GRM), [28], [29]: where all

the objects are sorted in the descending order of degree,
and those with highest degrees will be recommend.
GRM algorithm lacks personalization, but it is sim-
ple and widely used. GRM algorithm only considers
the most downloaded content and thinks users prefer
the most downloaded content. For each content c, the
download times ND

c can be written as:

ND
c =

∑
u∈ U

vPu (c) (14)

Therefore, the preference of each user u to content c is
given by:

PGRMic =
ND
c∑

c∈C N
D
c

(15)
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TABLE 4. Demographic Prediction performance comparison by three evaluation metrics.

2) Collaborative Filtering (CF) : where users’ near-
est neighbors are found based on history profile and
according to their neighbors’ interests to predict their
preferences with cosine similarity. The preference of
each user u to content c is given as follow:

PCFuc =
∑

u′∈U ,u′ 6=u
Suu′zu′c (16)

where Suu′ is defined in Eq. (6).

The results are reported in Table 4. It is easy to find
that the experimental results are very similar under different
recommendation list lengths L. As shown in the table, we use
three metrics to measure our recommended performance:

1) Precision [30]: Precisionmeasures the ratio of the num-
ber of the recommended testing links contained in the
top-L recommendation list for an arbitrary user.

2) Recall [31]: Recall is the proportion of the number of
all hitting links in testing set and the size of testing set.

3) Averaged ranking score < r > [32] : < r > measures
the average ranking of links in testing set in recommen-
dation lists.

In Table 4, compared with CF, our proposed algorithm
increases the precision and recall by 29.03%, 29.00% for
Movielens, 76.23%, 76.64% for Netflix and 11.73%, 11.61%
for Amazonwhen recommendation list lengths L is 10. When
recommendation list lengths L increases to 50, CPR increases
the precision and recall by 17.04%, 17.07% for Movielens,
53.78%, 54.10% for Netflix and 7.01%, 6.65% for Amazon.
It is worth noting that the Amazon data set reflects that people
prefer to buy books in their favorite areas, thus, it is more
suitable for using item-based recommendation algorithms.
Movielens and Netflix reflect the taste of people watching
movies and browsing web, which are more suitable for rep-
resent download history. Therefore, in our simulation, we
use the training set of Movielens as the download history in
NDC and the testing set of Movielens as the future request in
next time interval T . Since the number of items is 1574, we
assume each AP randomly caches 500 content (Nmax

c = 500).

In addition, It can be easily found that our proposed algorithm
CPR has a significant improvement in the recommended
performance compared to CF and GRM.

B. APC MANAGEMENT UTILITY
In order to validate our proposed SECM in APCmanagement
utility maximization, we compare its performance with three
other algorithms, namely RS, AS, CPRAC. The APC man-
agement utility can be given as:

Uu =
A∑
a=1

xua
(
BW log2(1+ SNRua)− w1C

na
T

)
(17)

where C is the overhead caused by oneAP handover in control
plane.

∑A
a=1 xua

(
BW log2(1+ SNRua)

)
represents the total

throughput of APC serving UE u and
∑A

a=1 xua
(
w1C naT

)
represents the total AP handover times of this APC. In our
simulation, we use the training set of Movielens as the down-
load history in NDC and the testing set of Movielens as the
future request in next time interval T .
In fig. 3(a), when the cluster size equals to 5 and the density

of APs equals to 1000 cells / Km2, the APC management
utility of SECM is higher than AS and CPRAC, with about
8.6% and 10.0%. AlthoughAS can achieve nearly throughput
performance with SECM, AS can lead to an increase of the
APC update frequency. Similar to AS, CPRAC increases the
APC update frequency due to lacking of energy coopera-
tion. RS algorithm performs worst, as it neither considers
the throughput of APC nor considers the overhead of APC
updating. SECM performs better than RS about 77.8% in
average. We also note that the APC management utility
decreases with the growing density of UEs. The reason is that
as the number of UEs increases, the size of APC decreases
and the throughput of each APC decreases. From Fig. 3(b),
the increasing density of APs from 1000 to 5500 can bring
significant performance improvement, while continuing to
increase the AP density from 5500 to 10000makes the system
performance close to saturation. Compared with the other
schemes, we can observe that our proposed scheme of SECM
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FIGURE 3. APC management utility with different clustering algorithms in the case of varying the density of UEs and APs. (a) Nmax
a = 5 and

λa = 1000 cells / Km2. (b) Nmax
a = 5 and λu = 200 users / Km2.

FIGURE 4. Average throughput of each user with different clustering algorithms in the case of varying the density of UEs and APs. (a) Nmax
a = 5 and

λa = 1000 cells / Km2. (b) Nmax
a = 5 and λu = 200 users / Km2.

always achieves the best performance. When the density of
APs is large enough (e.g. λa = 10000 cells / Km2), SECM
outperforms RS and AS about 18.3% and CPRAC about
13.5%. The reason is that as the density of APs increases, the
throughput of each APC approaches equal, but other schemes
do not consider energy cooperation, which can lead to APC
update frequently, resulting in signaling overhead in control
plane. Thus, these results demonstrate that our proposed
SECM can achieve good performance of throughput with less
signalling overhead.

C. THROUGHPUT
Then we analyze the average throughput of users under the
three following schemes: RS, AS, CRPAC. We set the cluster

size to be 5 and vary the density of UEs and APs, respec-
tively. The performance of the average throughput is shown
in Fig. 4(a) and Fig. 4(b), respectively.

The result indicates that the average throughput decreases
with growing density of users, because the size of each
APC decreases. In Fig. 4(a), we observe that the average
throughput of SECM is very close to the AS and outperforms
RS about 83.4%. Although the AS algorithm does not con-
sider maximizing the throughput of each link, it can ensure
the number of serving APs as large as possible, which still
results in good performance. However, the increase in the
number of service APs brings more the signalling overheads
in control plane. RS algorithm has the worst performance
since it neither maximizes the number of serving APs nor
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FIGURE 5. Fairness among users of different clustering algorithms in the case of varying the density of UEs and APs. (a) Nmax
a = 5 and

λa = 1000 cells / Km2. (b) Nmax
a = 5 and λu = 200 users / Km2.

maximizes the data rate of each link. From Fig. 4(b), we see
the average throughput increase due to the growing density
of APs. The reason is that as the density of APs increases,
each user can be served by more APs, in turn the advantages
of AS and SECM no longer exist. Thus, the throughput of
SECM, AS and RS become gradually equal when the density
of APs reaches to 10000 cells / Km2. We can also observe
that SECMoutperforms the other schemes, which reveals that
in APC clustering, the proposed SECM can achieve higher
throughput.

D. FAIRNESS
Jains fairness index [33] is employed to evaluate some
insights on sharing of the throughput among APCs. We
observe that changing the number of UEs or APs can affect
the throughput fairness under SECM, AS, RS. In Fig. 5(a),
we can observe that AS has the best fairness due to the
sizes of the APC clusters are averaged. The fairness under
all three schemes drop with increasing density of users. This
is because the number of serving APs reduces, leading to
a larger number of users without services. However, if the
density of the AP increases, those can be served by more
APs which can enhance the fairness, as shown in Fig. 5(b).
Therefore, our algorithm can obtain good performance of
throughput in data plane and less signalling overhead in
control plane without the sacrifice of fairness.

E. APC UPDATE FREQUENCY
We proceed to evaluate the APC update frequency with vary-
ing density of UEs, APs and the size of the cluster. Fig. 6
shows that the APC update frequency decreases with increas-
ing density of UEs. This is because the size of each APC
reduces as the density of UE increases, thus the possibility of
each APC update is reduced. Our proposed SECM performs

FIGURE 6. APC update frequency among APC of clustering algorithms in
the case of varying the density of Users.

better than CPRAC and AS about 10.4% in average. GECM
scheme consists of GRM in AP cluster and SPEC in intra-
cluster energy cooperation. Since the precision and recall of
CPR is better than GRM, so the performance of SECM is
better than GECM. Fig. 7 shows that APC update frequency
increases as the size of cluster enlarges. Because there are
higher possibilities for triggering event R1 or R2. We observe
that RS always has the lowest frequency, since RS reduces the
number of serving APs. AS and CPRAC always achieve the
worst performance. The reason is that the number of serving
APs is large under AS, which can increase the possibility
of APC update. Compared to other schemes, CPRAC does
not consider energy cooperation, as a result, it is easier to
trigger event R2. We also see that the APC update frequency
of SECM is slightly smaller than GECM. This is consistent
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FIGURE 7. APC update frequency among APC of clustering algorithms in
the case of varying the size of cluster.

FIGURE 8. APC update frequency among APC of clustering algorithms in
the case of varying the density of APs.

with the conclusion of section IV-A. Accurate prediction of
user preference helps to reduce the probability of event R1
triggering. Fig. 8 shows that APC update frequency increases
with growing density of APs. Because APC is more likely to
be updated with increasing size of cluster. Since the RS does
not consider the social domain nor the energy domain, the
APC update frequency will be the same as that of AS.

VI. CONCLUSION
UDN is a promising solution towards 5G networks. Based
on the analysis of the user-centric UDN, we propose a
novel social-energy based cluster management scheme.
Particularly, it consists of social-aware clustering and inter-
cluster energy cooperation. By formulating a matching game
problem in social-aware clustering, we propose a CPR-based
AP cluster algorithm. Based on theoretical analysis, we prove
the our algorithm is guaranteed to converge to a local stable

matching. Then, we propose a inter-cluster energy coop-
eration scheme. Simulation results show that our proposed
scheme can achieve a gain of 77.8% in the APC management
utility averagely, without loss of fairness compared with other
state-of-the-art schemes. When the density of APs is large
enough, SECM outperforms RS and AS about 18.3% and
CPRAC about 13.5%.

For future work, in order to further reduce the handover
times of AP and decrease signaling overhead of the control
plane, more comprehensive context information and more
complicated learning algorithms need to be used to achieve
more accurate predictions. In addition, for high density of AP,
a flexible backhauling scheme to support non-ideal, wireless
backhaul is very important to ensure the deployment. Another
challenge is the accurate modelling of wireless channel. Both
LOS and NLOS transmissions should be considered with not
only Rayleigh model but also Rician and Nakagami-m fading
models. Moreover, APs and UEs are equipped with MIMO is
another key issue for AP cluster.
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