
Received April 15, 2017, accepted May 21, 2017, date of publication May 25, 2017, date of current version June 27, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2708080

A New Method for Time-Series Big
Data Effective Storage
MAHMOUDREZA TAHMASSEBPOUR, (Senior Member, IEEE)
Department of Information Technology Engineering, Islamic Azad University–North Tehran Branch, Tehran 1969633651, Iran

ABSTRACT Today, one of the main challenges of big data research is the processing of big time-series
data. Moreover, time data analysis is of considerable importance, because previous trends are useful for
predicting the future. Due to the considerable delay when the volume of the data increases, the presence of
redundancy, and the innate lack of time-series structures, the traditional relational data model does not seem
to be adequately able to analyze time data. Moreover, many traditional data structures do not support time
operators, which results in an inefficient access to time data. Therefore, relational database management
systems have difficulty in dealing with big data—it may require massively parallel software that runs
on many servers. This has led us to implement Chronos Software, an in-memory background-based time
database for key-value pairs; this software was implemented using C++ language. An independent design
has been suggested through appropriately using temporal algorithms, parallelism algorithms, and methods
of data storage in RAM. Our results indicate that the employment of RAM for storing the data and of the
Timeline Index algorithm for getting access to the time background of the keys in Chronos translate into
an increase of about 40%–90% in the efficiency as compared with other databases, such as MySQL and
MongoDB.

INDEX TERMS Timeline index, NoSQL database, Chronos database, big data, key-value database.

I. INTRODUCTION
Due to the rapid growth of data sets and the volume
of information which need to be stored, a comprehensive
management is required to preserve such massive amounts
of information. Data production during recent years has
grown to such a volume that relational banks can no longer
control such data; moreover, today’s data is by no means
similar to the traditional data. Meanwhile, time datamanage-
ment has assumed growing importance in many applications;
among the database systems that already support the temporal
dimension of data, few present temporal operators which are
even of poor performance qualities. As a unified data struc-
ture, the Timeline Index efficiently supports time operators
such as temporal aggregation, time travel, and temporal join.
Owing to its independence of the physical sequence of data,
the Timeline Index allows for flexibility in physical design.

II. BIG DATA
Big data refers to such a large or complex collection of data
that it is difficult to handle using the present database man-
agement tools or the traditional data-processing applications.
Relational database management systems and visualization
packages cannot deal with big data—this may necessitate

employing massively parallel software running on a large
number of servers. The limit of big data depends on capabili-
ties of themanaging organization and on the applications used
for data analysis. The relevant challenges include extraction,
storage, search, sharing, transfer, analysis, and visualization
of data [2].

III. REVIEW OF LITERATURE ON-TIME DATA
Today, temporal data management has become an important
aspect of most databases. Modern database systems create a
new version of an object instead of a local update. Having
paid the extra costs of these new versions, the users expect
rich capabilities for querying and analyzing the data. For
example, users may want to compare the present status of
their investment to one year ago, which is an instance of time
travel—querying a historical version of the database. Though
the time data management has been extensively researched
into, the corresponding temporal database technology has not
received the same level of attention from the industry. Clearly,
the problem is not lack of market demand or interest; indeed,
customers are verymuch interested in receiving enriched time
features; for example, financial and sales–and distribution
software developers implement temporal operators as part

10694
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

M. Tahmassebpour: New Method for Time-Series Big Data Effective Storage

of the application logic—such features are not supported by
relational database products.

The problem of slow introduction of temporal features into
the industry can be put down to technical reasons. According
to the literature, the work done so far on temporal data man-
agement is highly specialized; that is, the index structures and
algorithms have only been given for a specific temporal func-
tion. Therefore, the implementation of a new data structure
for each type of temporal query is hardly affordable even for
global players in the market—the research outputs cannot be
generalized to other time data [2].

IV. ADVANTAGES OF USING NoSQL INSTEAD OF SQL
NoSQL enjoys a few advantages over SQL.Most importantly,
there is no need for a rigidly defined schema for the data
being inserted into a NoSQL database—the input data can be
altered at any time, to which the database adapts itself accord-
ingly. The second advantage is the automatic division and
smart detection of integration. In SQL, the designer should
implement the database schema according to the multiple-
server state considered in his/her design, but multiple servers
do not cause any problem in NoSQL systems, thanks to such
an intelligent and high-level system. The third advantage of a
NoSQL system over a SQL system is that the NoSQL caches
the data in memory in order to speed up the recovery of
information; that is, a NoSQL system stores useful data in
the cache, just like a processor saving similar resources in
the cache. Therefore, speeding the design and execution of
databases, NoSQL is essentially useful for today and future
data processing.

V. STATEMENT OF THE PROBLEM AND
SIGNIFICANCE OF RESEARCH
One of the recent problems of modern saving systems is their
scalability. Today, saving systems continually move towards
NoSQL, a new generation of simple and scalable saving
systems. Simultaneously, the preserving of time data for com-
mercial applications has become very important. Chronos,
which has been designed on the basis of scalability, is a
document-oriented database which allows data to be sepa-
rately distributed over multiple servers.

Though the scalability of Chronos is the main advanta-
geous reason for discarding relational databases, there are
other important merits in Chronos, too. Chronos is based on
the concept of replacing the model of a row with a more flexi-
ble model that is named document. Being document-oriented,
Chronos enables the user to create internal documents and
arrays. Moreover, it is a schema-less database.

VI. AIMS OF THE RESEARCH
A temporal database contains data that is related to future or
the scheduling of an application. Many of applications are
temporal, among which are financial and banking applica-
tions, and scheduling applications such as controlling flights
in an airport, trains schedules, etc.

Taking the above-given definitions into account, we have
built a temporal database aimed at i) creating a scalable

system to store time-related data, ii) presenting an effective
solution for storing time data with the use of the Timeline
Index data structure [1], iii) managing time data, and improv-
ing the analysis of time-series data, and iv) creating a sys-
tem quickly responsive to the delays in traditional database
systems.

We have realized our goals using the Timeline Index which
is a data structure used for efficient management of time data
and query performance on data.

VII. THE INNOVATIVE ASPECT OF THE RESEARCH
Here, we have simultaneouslymade use of the following three
characteristics of Chronos storage software: i) the software
can store the information on RAM, and not on the disk, just
similar to an in-memory database such as RAMCloud, ii) it is
specific to key-value data like Redis, and iii) is a background-
based database like Influx DB.Though these three features
are not unique to Chronos, there is currently no single soft-
ware that possesses all the aforementioned three qualities
together. Therefore, for the first time, we have made use of
Chronos to store time-series big data. The implementation of
the Timeline Index, an innovative algorithm, in Chronos is a
unique characteristic of our newmethod of storing time-series
big data.

VIII. HYPOTHESES
Processing of time-series data forms a large part of the big-
data research. Through high-speed saving and processing
of time-series data, Chronos can play a very important role
in processing big data, which has been established by our
results presented later in this article. Time-series data are
often in the form of key-value pair data and are inherently
background-based.

Taking these hypotheses into consideration, we have
replaced traditional database systems with a NoSQL modern
string according to key-value, and havemade use of the Time-
line Index data structure for storing and managing time data,
of RAM as the storage instead of the hard disk, and of the
temporal table algorithm. Therefore, we have implemented a
new system for storing time-series big data in this article.

IX. RESEARCH STRUCTURE
In the Introduction, big data has been defined, and the impor-
tance of time data has been highlighted along with some
brief notes on its background. Then, some advantages of
NoSQL over SQL have been pointed out. Thereafter, we have
explained the problem along with its significance necessitat-
ing studying such a problem as the topic of a substantial body
of research. This has then been followed by the section on
innovative aspects of our study and the hypotheses. In the
following section, the Research Method, the new data struc-
ture used in this research has been explained, followed by
the traits, principles, architectural design, and the algorithm
of data management in the third section. Section four is
allotted to the discussion of the data and findings. Section
five evaluates and compares the accidental data created by
the part codes related to each comparable database. Finally,

VOLUME 5, 2017 10695

M. Tahmassebpour: New Method for Time-Series Big Data Effective Storage

section six ends the article with our concluding remarks on
the work.

X. RESEARCH METHOD
A. CHRONOS DATABASE
Chronos is a background-based in-memory database for key-
value pairs which we have implemented and developed in
C++ language using the Time Index algorithm [1] of the
Timeline Index in order for the database to be practically
and functionally presented. This database uses hash tables
for storing data, and the Timeline Index data structure and the
Time Index algorithm for preserving history tables. The time-
background character of Chronos indicates that the values
stored in this database for each key are not discarded after
alteration and reform, but are kept in the time history for
future access.

Moreover, the in-memory state of this database means that
all the key-value pairs and their backgrounds are stored and
preserved in the main memory; that is, though the data is lost
if the application stops running, the in-memory character of
fail-safe systems allows for much faster access to the data as
compared to disk-based databases.

In relational databases, the task of managing the time
dimension of data is given to the programmers, which usually
results in inefficient and erroneous applications. Furthermore,
each given application requires its own specific solution;
therefore, it can be argued that there is an essential need for
building appropriate temporal databases.

B. OVERVIEW OF THE TIME INDEX
The Time Index is a data structure used for efficient manage-
ment of time data and query performance on the data. In this
research, we focus only on the time of the system; that is,
different versions of similar items are stored; the location
is not commonly updated, but a new version of the item is
created each time. Therefore, it is possible to compare the
current data with the previous data. The management of time
data has become more important with the development of the
web. Though such functional applications are in continuously
increasing use, their corresponding supporting data structures
are either mainly inefficient or only suitable for a specific
inquiry being necessary for the system. The Time Index is
independent of the physical aspect of data, therefore provid-
ing us with the flexibility in the physical design (schema
design). The time data Index produces a predictable perfor-
mance which is better than that of the other methods we have
evaluated here. The three types of the queries provided by the
Timeline Index are the temporal aggregation, temporal join,
and time travel.

XI. THE COMPONENTS OF THE NEW DESIGN OF
CHRONOS DATABASE
Fig. 1 shows the components of our new design of Chronos
software and the relations of its constituent parts.

The components of the Chronos database are as follow:
1) The standard template library (STL) includes the

structures and standard basic definitions of C++

FIGURE 1. Our architectural design of Chronos database.

programming language like strings, maps, vectors,
etc.—all the main necessary parts to build a software;

2) The longer includes the definitions which are essential
for writing timed-log messages in the terminal output,
which helps the user with the follow-up process of
responding to the requests submitted to the program,
and with handling possible errors occurring in the
course of executing the software;

3) Mongoose is a library written in C language and an
embedded light HTTP server which can respond to
many HTTP requests in a short period of time despite
its low-volume code. Mongoose library does not inde-
pendently respond to HTTP requests, and requires the
notification of a program accountability mechanism
through defining a call-back function which refers
the request to the HTTP server; this will be further
explained later;

4) The threading building blocks (TBB), a library writ-
ten by Intel Company, is used for writing multi-core
and parallel applications. The structures presented in
this library are very similar to those given in the
STL library, except that the TBB structures such as
Concurrent HashMap can process parallel requests,
guaranteeing the protection of data health and a suit-
able speed of execution. Among other features of this
library is the necessary set-up provided for performing
compound atomic operators whose execution is spon-
taneous according to the rest of the system. Atomic
operators are among themost basic segments of parallel
systems used in this research;

5) The HTTP server is the part of Chronos software
which analyzes the HTTP requests received from
Mongoose via the Callback, and then, transforms it
into a language understandable to the other parts
of the software. Since the HTTP is a text-based
protocol, we need to extract the type of request and
other necessary information before performing the
request, which is the task of theHTTP server. After ana-
lyzing the request, the HTTP server transfers it to the
Request Handler explained later. Moreover, after the
analysis, the server produces an output and transforms
it into a user-understandable language and format, and
then, sends it to the user;

6) The request handler is the practical starting point for
processing a request made by the user. After receiv-
ing the analyzed request from the HTTP server, the
request handler calls the desired process from the
temporal table according to the type of the request

10696 VOLUME 5, 2017

M. Tahmassebpour: New Method for Time-Series Big Data Effective Storage

(get set, etc.), and then, returns the produced response
to the HTTP server;

7) The temporal table is the core of Chronos software—
where all the data is stored, and all the requested
processes are performed. The temporal table is indeed
an in-memory implementation of the Timeline Index
algorithm. Since Chronos is designed for conditions
with high access rates, this system requires very accu-
rate access control to prevent the data from being
destroyed; moreover, the accuracy of the access control
becomes more crucial for an in-memory database to
protect the data stored in the RAM. In the temporal
table, this access control is achieved using the Con-
current HashMap structure data of the TBT library.
This structured data is an implementation of the Open
Hashing with partitioning, which allows for simultane-
ous accesses and reduction in the waiting time.

FIGURE 2. General Architecture of Timeline Index.

XII. GENERAL PRINCIPLES AND ARCHITECTURE OF
THE TIMELINE INDEX
Fig. 2 shows how time data is managed [3]. For each table, the
database keeps the current version of the table and separately
preserves all the history of previous versions of the table in
the structures. In other words, it is assumed that the current
version is always the repeat timeline.

The current table allows for efficiently accessing the cur-
rent situation of the database—this is the most important
access for the user. The time features, for example, the time
travel, are performed using the temporal table, and this is
where the Timeline Index takes place—this is the indexwhich
accelerates the operation performed in the temporal table.

For each temporal table, there is exactly one timeline index.
The temporal tables and timeline indices are the aims of this
operation.

XIII. THE BUILDING OF THE TIMELINE INDEX
According to the design of the index presented in [1], defining
an efficient production and also gradual updating is possi-
ble, even when the determined data is not in the order list.
In [1], the BULK algorithm is first presented for specifically-
ordered data and is then generalized to other cases. The repair
and protection algorithms are based upon the counting sort
algorithm [2].

The general time rank of this algorithm is linear compared
to the temporal table, because it requires connecting only
twice to each multiplex, once for counting the number of

occurrences and once for writing the amount in the list of
occurrences. The physical sequence of data is not relevant
because the sequencing of the counter of the versions is done
by a middle table.

Moreover, if the temporal table is arranged according to
time, the index can be updated in a step-by-step fashion only
through showing the new version and its corresponding event
in the timeline index.

Finally, in contrast with the algorithms of the time data
structures presented in [4]–[6], this algorithm lends its fea-
tures to parallelism and distribution, based on the scan that
states the difference in the versions.

The Timeline Index keeps the paths of all prints, updates,
and omissions in the database. The time database requires
tracking of the input validity with respect to the versions.
Therefore, except the data kept in the database, the database
keeps information such as ‘from’ and ‘to’ of each line refer-
ring to the time of the system related to the toppling. Two
kinds of input exist, one for the opening of the field which
means that it is valid for the current version, and the other for
setting the field for example for those which are old.

XIV. ANALYSIS OF DATA AND FINDINGS
A. APPLICATION AND COMMANDS
Contrary to popular databases like Mongo DB and MySQL,
each of which presents its particular exclusive user inter-
face for recording, searching, and receiving data, Chronos
is a powerful internal light HTTP server which presents an
HTTP-based easy user interface. Use of a protocol like the
HTTP makes it easier to produce and develop security and
customer services. Furthermore, Chronos commands can be
performed and tested even via a simple internet browser. The
default port number on which Chronos HTTP server runs is
8008 which can be changed through entering argument –p on
the command line.

The general format of all Chronos commands is as follows:
[host_address:port]/[command]?[query_parameters]

B. EVALUATION AND COMPARISON
To correctly evaluate the efficiency of Chronos software, we
compare it to other databases. All the obtained time data were
calculated using a computer featuring in 14.04 LTS Ubuntu
operating system, Intel Core i5 processor with 2.6 GHz clock,
8 GB internal memory with 1600 GHz clock, and an external
hard memory with 5400 RPM speed.

C. METHOD OF DATA TABLE CREATION
A suitable way for investigating the operation of databases
is evaluating the sensitivity of their performance in lieu of
increasing the number of data stored in them. It must be noted
that time data is often high-frequency data, and Chronos soft-
ware is no exception to the ability to support large volumes
of data.

Each of the mentioned databases has been created
with the tables of frequencies of 10 thousand (10k),

VOLUME 5, 2017 10697

M. Tahmassebpour: New Method for Time-Series Big Data Effective Storage

TABLE 1. Comparison of execution times of commands for inputting data
in three types of databases.

100 thousand (100k), 1 million (1M), and 10 million (10M)
random data. Different methods were employed to create
these tables in each of the databases under study owing to
their different user interfaces, which will be briefly dealt with
later.

D. CREATING RANDOM DATA IN CHRONOS
For example, Chronos supports HTTP requests for sending
commands to users. Therefore, random data were entered by
the following PHP code.

Function populate ($table, $num) {
$curl = curl_init ();
For ($i<$num; $i++) {
Curl-setup_array ($curl, array (
CURLOPT_RETURNTRANSFER=>1,
CURLOPT_URL=> ‘http://localhost:8008/set?’’.
‘key=’. $table.
‘&value=’. (mt_rand () / mt_getrandmax ()),
));
Curl_exec ($curl);
}
Curl_close ($curl);
}
Populate (‘t10k’, 10000);
Populate (‘t100k’, 100000);
Populate (‘t1m’, 1000000);
Populate (‘t10m’, 10000000);

E. COMPARISON OF EXECUTION TIME
The times of commands for inputting the data have
been summarized in Table 1. This data was obtained in
MySQL using the Explain command, in MongoDB using the
Mongo-Hacker software, and in Chronos using theMicrotime
function available in the PHP.

The results show that Chronos has a higher speed of data
inputting compared to those ofMySQL andMongoDBwhich
are respectively 59% and 72%.

F. TIME OF COMMAND EXECUTION
Despite the importance of the speed of data inputting in a
database, much more significance should be attached to the
efficiency of the database in performing queries, for indeed
the queries impose the highest load on the database. There-
fore, it is highly important to investigate the efficiency of a
database in performing queries.

FIGURE 3. The times of execution of queries for the table with
10 thousand numbers.

FIGURE 4. The time of execution of queries for the table with
100 thousand numbers.

Here, the efficiencies of previously mentioned software
in performing the processed queries are compared, which is
related to the time background of Table 1 (key).

XV. COMPARISON AND RESULTS
The time of execution of each of the SUM, AVG, and
MIN/MAX commands at different frequencies for each
database have been given in Fig. 3 to Fig. 6.

XVI. COMPARISON AND RESULTS
To present a new design for the storage of time data, we have
directed our attention to factors affecting the storage, organi-
zation, and the speed-up, timely, and efficient analysis. With
the development of the internet and the constantly growing
volume of increasingly diverse data, previous storage systems
are not capable enough to efficiently analyze the data, due
to an increase in query time and a delay in the storage time.
Therefore, it was a difficult task to state temporal questions
using present languages like SQL. This all has necessitating
lead us to research into a new design for a temporal storage
software.

10698 VOLUME 5, 2017

M. Tahmassebpour: New Method for Time-Series Big Data Effective Storage

FIGURE 5. The time of execution of queries for the table with 1 million
numbers.

FIGURE 6. The times of execution of queries for the table with 10 million
numbers.

Our research into a new design for storage of temporal
data has led us i) to improve our understanding of concepts
like big data, new generation databases, and their relation
to big data, and of the effect of indexing on improving the
performance of databases, ii) to review the performance of
hardware components like RAM and hard disks, the use of
parallelism algorithms that influence the speed factor, and the
use of the Timeline Index data structure and iii) to learn to
select an appropriate operating system for the implementation
of different databases. Traditionally, there are two general
methods for the implementation of temporal databases, one
of which is to use the current implementations and to expand
them, and the other is to convert the temporal language
expressions to SQL using the present DBMS. Although the
first method increases the efficiency of the system, the second
method seems more practical even though it is more complex
and redundant.

On the other hand, in designing a temporal database, the
effect of time in all aspects must be taken into consideration.

Among these effects are the management of temporal struc-
tures and the state of events, the variation of the relations,
cursors and temporal views, the control of the database com-
prehensiveness, and the management of the present time.

Improvement of the query in temporal languages is much
harder than the usual state. One reason is that the queries
defined on temporal data are usually longer, and require
more processing. The other reason is that improving temporal
components is harder. These have been well researched into
in order that we could arrive at a new design.

The idea of expanding databases such that they can deal
with time data is not a new subject, but an exclusively inde-
pendent design has so far been missing in the literature;
we have built such a design, making use of temporal and
parallelism algorithms along with the methods of data storage
in RAM.

Our results indicate that employing RAM for storing data,
and the time index algorithm for accessing the time back-
ground of the keys in Chronos software—though as minor
and even not-technical-enough improvements, have to lead
to the efficiency of the system increasing about 40% to 90%
compared to the that of databases likeMySQL andMongoDB
which have been matured and kept by large companies.

REFERENCES
[1] M. Kaufmann, A. A. Manjili, P. M. Fischer, D. Kossmann, F. Farber,

and N. May, ‘‘Timeline index: A unified data structure for processing
queries on temporal data in SAP HANA,’’ in Proc. SIGMOD, 2013,
pp. 1173–1184.

[2] M. Tahmassebpour and A. M. Otaghvari, ‘‘Increase efficiency big data
in intelligent transportation system with using IoT integration cloud,’’
J. Fundam. Appl. Sci., vol. 8, no. 3s, pp. 2443–2461, 2016.

[3] D. E. Knuth, ‘‘The art of computer programming,’’ in Volume 3: Sorting
and Searching. Reading, MA, USA: Addison-Wesley, 1998.

[4] G. Adel’son-Vel’skii and E. M. Landis, ‘‘An algorithm for the organization
of information,’’ in Proc. USSR Acad. Sci., 1962, pp. 1259–1263.

[5] B. Becker et al., ‘‘An asymptotically optimal multiversion B-tree,’’ VLDB
J., vol. 5, no. 4, pp. 264–275, 1996.

[6] R. Elmasri, G. T. J. Wuu, and Y.-J. Kim, ‘‘The time index: An access
structure for temporal data,’’ in Proc. VLDB, 1990, pp. 1–12.

MAHMOUDREZA TAHMASSEBPOUR (SM’16)
was born in Kerman, Iran, in 1975. He received the
B.Sc. degree in electrical engineering from Islamic
Azad University, Tehran, Iran, the M.Sc. degree
in information technology engineering from the
Iran University of Science and Technology, Iran,
and the Ph.D. degree in computer science and
information technology from the University of
Malaya, Kuala Lumpur, Malaysia, in 2009.

In 2011, he joined the Educational Group of
Iran, UAE, as a Lecturer. Since 2013, he has been with the Department of
Electrical and Computer Engineering, University of Science and Culture,
Tehran, where he is an Assistant Professor. Since 2016, he has been with
the Department of Information Technology Engineering, Islamic Azad
University–North Tehran Branch, Iran, where he is an Assistant Professor.
He is a member of TPC as reviewer of some IEEE and international
conferences and journals.

VOLUME 5, 2017 10699

