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ABSTRACT An accurate and robust altitude controller is critical for vertical takeoff and landing (VTOL)
unmanned aerial vehicles (UAVs) in achieving quasi-stationary flight. Most UAV altitude control designs
neglect the rotor dynamics. Therefore, they cannot be used for a tail-sitter UAV equipped with turbine
engines because of the complicated engine dynamics with an apparent time delay. In this paper, we develop
an integrated altitude controller that considers the engine dynamics. The new controller consists of a
proportional-derivative (PD) control term and an acceleration feedback term. The stability region in the
parameter space is analyzed and the controller is designed to achieve specific gain and phasemargins. AUAV
hover flight experiment is conducted and the results are presented to demonstrate the effectiveness of the
proposed altitude controller.

INDEX TERMS Tail-sitter UAV, turbine engine, time delay, altitude control, acceleration feedback.

I. INTRODUCTION
In recent years, VTOL UAVs become very attractive due to
their ability to perform quasi-stationary flight (hover or near
hover flight), which enables their application to special mis-
sions such as monitoring and inspection for both military
and civil uses [1]. An accurate and robust altitude controller
is critical for VTOL UAVs to achieve a quasi-stationary
flight [2].

A lot of work has been done to address the altitude
control problem for VTOL UAVs under quasi-stationary
flight conditions. For example, Herisse et al. [3] developed
a proportional-integral (PI) altitude controller for an elec-
tric quadrotor UAV. A stability analysis of their altitude
controller was performed, and the hover flight experiment
results were given. Another example is the work by Azinheira
and Moutinho, who investigated a backstepping-based hover
flight controller for a remote monitoring airship UAV [4]. The
global asymptotic stability of the UAV was demonstrated in
their work, although only simulation results were presented.
Later, Lee et al. [5] proposed an altitude controller based
on dynamic surface control theory for an electric quadro-
tor UAV. They performed both numerical simulations and
experiments, which demonstrated the effectiveness of their
controller. In addition, Min et al. [6] developed an adaptive

robust altitude controller for a quadrotor-type UAV, although
only simulation results were presented. Other examples of
UAV altitude control can be found in [7]–[11]. However, all
the controllers in the work described above suffer from an
important limitation: they all neglect the actual rotor dynam-
ics, which means that they all assume that the desired thrust
can be achieved immediately. Although some of the above
controllers were applied to real UAVplatforms, this important
limitation could hinder their use to more complicated UAVs.

Limited work has been done on UAV altitude control
while considering rotor dynamics. Here, we select two of
the most relevant works for discussion. Besnard et al. [12]
developed a cascade control framework for a quadrotor UAV.
Although the rotor dynamics were considered in their control
design, it was assumed that the rotor dynamics are much
quicker than the airframe dynamics. In addition, they did not
perform stability analysis due to the complicated structure
of their controller. Moreover, only the numerical simulation
results were presented. A more relevant work is the study
by Kita et al. [13], who developed a two-stage altitude con-
troller for a tail-sitter VTOL UAV equipped with an electric
propeller. The controller consists of a proportional-integral-
derivative (PID) controller and a PI controller. Although the
structure of this controller is simpler than that in [12], no sta-
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bility analysis was conducted to guide the control parameter
selection. Consequently, to obtain the control parameters used
in their experiment, a simulation-based parameter-tuning pro-
cess had to be performed, which was time consuming.

In this work, we investigate the altitude control design
for a tail-sitter VTOL UAV equipped with turbine engines.
In contrast to the electric motors used in previous UAVs,
the propulsion system of our UAV is more powerful and can
enable a wider range of applications for this type of UAV.
However, the dynamic system of the turbine engines is more
complicated than the above-mentioned electric motors, and
the system has an apparent time delay. Therefore, the engine
dynamics cannot be neglected in the altitude control design.
We therefore design an integrated controller that considers
the engine dynamics. In this control design, the rotor speed
command is the control input. This is different from previous
control designs in which the thrust force is the control input.
The proposed controller consists of a PD control term and an
acceleration feedback term. A stability analysis is performed
and can be used to guide the parameter selection for the UAV
experiment. In addition, the controller is also designed to
achieve specific gain and phase margins. We conduct UAV
experiments to demonstrate the effectiveness of our inte-
grated controller. To the best of our knowledge, the altitude
control and the stability analysis for this type of UAV have
not been considered before.

This paper is organized as follows. In Section II,
the configuration of the tail-sitter UAV will be introduced.
In Section III, the integrated altitude model for UAV quasi-
stationary flight will be discussed. In Section IV, the altitude
control scheme is proposed and analyzed. The experimental
results will be presented in Section V. Finally, we conclude
the paper in Section VI.

FIGURE 1. The tail-sitter UAV equipped with turbine engines.

II. UAV CONFIGURATION
A new prototype tail-sitter VTOL UAV has been developed
at Tsinghua University as shown in Figure 1. The UAV is
equipped with two Jetcat P200 micro turbine engines. Each
engine is able to provide amaximum thrust of 230N at amax-

imum rotor speed of 112,000 revolutions per minute (RPM).
With two engines, the UAV has a maximum thrust of 460 N,
which corresponds to a takeoff mass of approximately
46 kg. The length of the UAV (from nose to tail) is close
to 2 m, and the wingspan is approximately 1.6 m. The over-
all weight (including the engines) of the UAV is approxi-
mately 23 kg, depending on the amount of fuel carried.

The UAV is also equipped with a micro-computer, an iner-
tial measurement unit (IMU), a Hall sensor and a laser range
finder. The micro-computer controls the UAV by processing
all themeasured data and providing commands to the engines.
The IMU (Analog Devices ADIS16488A) measures the atti-
tude and acceleration of the UAV and provides the data to
the micro-computer at a frequency of 25 Hz. The IMU is
installed at the center of gravity of the UAV to prevent the
rotation (due to external disturbance) of the UAV body from
influencing the acceleration measurement. The Hall sensor
measures the engine rotor speed with high accuracy (error
range of ±10 RPM for a rotor speed of over 80,000 RPM).
The laser range finder (Dimetix DLSB-15) measures the
altitude (height above the ground) of the UAV at a frequency
of 5 Hz, and it has a measurement error of less than±1.5 mm.

III. MODELING
The translational dynamic equation of the UAV in the vertical
direction can be written as follows:

mz̈(t) = Fz(t)− mg, (1)

where m is the mass of the UAV, z(t) is the altitude as a
function of time t , Fz(t) is the non-gravitational resultant
force in the vertical direction, and g is the gravitational accel-
eration. Under quasi-stationary flight conditions, the thrust
force, which points toward the nose of the UAV body, pre-
dominates over the aerodynamic forces [14]. By neglecting
the aerodynamic forces, the engine thrust, designated Ft (t),
can be regarded as the only non-gravitational force exerted on
the UAV. Therefore, Fz(t) is the vertical component of Ft (t).
Because the attitude of the UAV body can be effectively
controlled to be vertical by a high-gain attitude controller
under quasi-stationary flight conditions [1], [3], the engine
thrust, Ft (t), can be approximated as in the vertical direction.
This results in the following:

Fz(t) = Ft (t). (2)

Therefore, equation (1) can be rewritten as follows:

mz̈(t) = Ft (t)− mg. (3)

A. ENGINE MODEL
Our previous work has shown that the overall engine model
can be divided into two components: a linear dynamic
model (rotor speed model), which characterizes the linear
relationship between the rotor speed command and the rotor
speed response, and a nonlinear static model (thrust model),
which characterizes the nonlinear relationships between
the rotor speed response and the engine thrust response.
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A detailed derivation and description of the engine model
can be found at [15] and [16]. In this work, we use the
model directly. The two components of the engine model are
given by the following:{

�̇(t) = K (�δ(t − TD)−�(t − TD)),
Fe(t) = a3�(t)3 − a2�(t)2 + a1�(t)− a0,

(4)

where�(t) represents the rotor speed response,�δ(t) denotes
the rotor speed command, TD is the time delay of the rotor
speed model, K is the proportional coefficient, a3, a2, a1
and a0 are the polynomial coefficients of the nonlinear thrust
model, and Fe(t) is the thrust force of a single turbine engine.
As mentioned before, the UAV is equipped with two

turbine engines with the same specification. Because they
receive the same rotor speed command, the two engines
operate at the same rotor speed and generate the same thrust
force. Therefore, we have the following:

Ft (t) = 2Fe(t). (5)

We now introduce another term, Fe0, to represent the single-
engine thrust at which the UAV is at the equilibrium
point (z̈(t) = 0). Under such conditions, the total engine
thrust (from the two engines) equals the gravitational force
of the UAV. Therefore, we should have Fe0 = mg/2. The
corresponding equilibrium rotor speed, designated �0, can
be defined as follows:

a3�0
3
− a2�0

2
+ a1�0 − a0 = Fe0. (6)

We then linearize the engine thrust model, equation (4b),
at the equilibrium rotor speed as follows:

Fe(t) = Fe0 + Ke(�(t)−�0), (7)

where Fe0 = mg/2 and

Ke =
dFe(t)
d�

∣∣∣∣
�(t)=�0

= (3a3�0
2
− 2a2�0 + a1). (8)

By substituting (5) and (7) into (4), we get the following:{
�̇(t) = K (�δ(t − TD)−�(t − TD)),
Ft (t) = mg+ 2Ke(�(t)−�0).

(9)

B. INTEGRATED ALTITUDE MODEL
By combining (9) with (3), we can obtain the following:{

�̇(t) = K (�δ(t − TD)−�(t − TD)),
mz̈(t) = 2Ke(�(t)−�0).

(10)

If we define

�̄(t) = �(t)−�0, �̄δ(t) = �δ(t)−�0, (11)

equation (10) can be rewritten as follows:{
˙̄�(t) = K (�̄δ(t − TD)− �̄(t − TD)),
mz̈(t) = 2Ke�̄(t).

(12)

Equation (12) can then be transformed into the frequency
domain using the Laplace transformation, the results are as
follows:{

s�̄(s) = K (�̄δ(s)e−sTD − �̄(s)e−sTD ),
mz(s)s2 = 2Ke�̄(s).

(13)

Based on (13), we can obtain the integrated single-input
single-output altitude transfer function model, which char-
acterizes the relationship between the engine rotor speed
command and the UAV altitude as follows:

z(s) = G(s)�̄δ(s), (14)

where

G(s) =
KGe−sTD

s2(s+ Ke−sTD )
with KG =

2KeK
m

. (15)

FIGURE 2. The integrated altitude control system.

IV. CONTROL DESIGN
The integrated altitude control system is shown in Fig. 2,
where zr is the altitude command, z is the UAV altitude
response, C(s) is the controller, and G(s) is the altitude trans-
fer function defined in (15). In this paper, we propose a new
altitude controller that consists of a PD control term and an
acceleration feedback term. The controller can be expressed
as follows:

C(s) = Kp + Kd s+ Kas2, (16)

where Kp + Kd s is the PD control term and Kas2 is the
acceleration feedback term, with Kp, Kd and Ka being the
parameters of the controller.

In this section, we will analyze the stability performance of
the integrated altitude control system. The controller is also
designed to achieve specific gain and phase margins to satisfy
the requirement of robustness.

A. STABILITY REGION WITH FIXED ka
The characteristic equation of the closed-loop integrated con-
trol system shown in Fig. 2 can be written as follows:

δ(s) = KGe−sTD (Kp + Kd s+ Kas2)+ s2(s+ Ke−sTD ). (17)

The closed-loop system is bounded-input bounded-
output (BIBO) stable if the characteristic equation, δ(s), has
no roots in the closed right-half of the s-plane [18]. We now
analyze the roots of δ(s). To do that, we define δ∗(s) as
follows:

δ∗(s) = esTDδ(s)

= KG(Kp + Kd s+ Kas2)+ s2(sesTD + K )

= s3esTD + kas2 + kd s+ kp, (18)
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where ka = K + KGKa, kd = KGKd , and kp = KGKp. Note
that K and KG are the parameters of the UAV engine model,
and they are constant for a particular UAV.

Because there are no finite zeros of esTD , the roots of δ∗(s)
are identical to those of δ(s) [19]. Therefore, we study the
roots of δ∗(s) instead of doing that directly on δ(s).

According to the D-partition theory [20], the boundaries
between the stable and unstable parameter regions consist
of three parts: the real root boundary (RRB) defined by
δ∗(0) = 0, the infinite root boundary (IRB) defined by
δ∗(∞) = 0, and the complex root boundary (CRB) defined
by δ∗(jw) = 0 for w ∈ (−∞, 0) ∪ (0,∞) by letting s = jw.
One can easily find that the IRB does not exist for the

characteristic equation described in (18) according to [21].
The following discussion will be focused on the RRB and
the CRB.

The RRB requires δ∗(0) = 0. Based on (18), we can easily
obtain the RRB as follows:

kp = 0. (19)

To obtain the CRB, we need to investigate δ∗(jw) = 0
for w ∈ (−∞, 0) ∪ (0,∞). Because the parameters of
the characteristic equation are real, if s = jw is a root
of the characteristic equation, so is its complex conjugate
(s = −jw). Therefore, it is sufficient to consider δ∗(jw) = 0
for w ∈ (0,∞) to compute the CRB. By substituting s = jw
into (18), the equation can then be rewritten as follows:

δ∗(jw) = δr (w)+ jδi(w), (20)

with δr (w) and δi(w) represent the real and imaginary parts of
δ∗(jw), respectively, and they are expressed as follows:{

δr (w) = w3sin(wTD)− kaw2
+ kp,

δi(w) = −w3cos(wTD)+ kdw.
(21)

Both δr (w) = 0 and δi(w) = 0 are needed to have
δ∗(jw) = 0. Therefore, the solution of the CRB is expressed
as follows: {

kd = w2cos(wTD),
kp = −w3sin(wTD)+ kaw2.

(22)

From (22), it can be seen that kd and kp are functions of
ka and w. By fixing ka, we are able to obtain the CRB curve
(kd (w), kp(w)) in the kd -kp plane with w varying from 0 to∞.

We now present an example to show the RRB and CRB
curves in the kd -kp plane for ka = 3.6. As shown in Fig. 3,
the red line indicates the RRB line, while the blue line indi-
cates the CRB curve. The stability region, if it exists, will be
bounded by the two curves. In the calculation of the CRB
curve, a time delay of 0.28 s (TD = 0.28) for the turbine
engine is used. This time delay was identified in our previous
work [15], and here, we use it directly.

After obtaining the RRB and CRB curves in the kd -kp
plane, we need to determine which side of the curves the sta-
bility region falls onto. For the CRB, the following proposi-
tion is used [23]: the stability regionmust be on the right-hand

FIGURE 3. The RRB and CRB curves and the stability region in the kd -kp
plane for ka = 3.6.

side of the CRB curve following the curve in the direction of
increasing w if detJ < 0; otherwise, the stability region must
be on the left-hand side of the CRB curve, where J is the
Jacobian matrix defined as follows:

J =


∂δr (s)
∂kd

∂δr (s)
∂kp

∂δi(s)
∂kd

∂δi(s)
∂kp


(kp,kd ,ka,TD,w).

(23)

In this work, detJ = −w < 0 because we consider
w ∈ (0,∞). Therefore, the stability region must be on the
right-hand side of the CRB curve in the kd -kp plane following
the curve in the direction of increasing w which is indicated
by the arrow in Fig. 3.

Now, we need to determine which side of the RRB line the
stability region falls onto. There are two regions (R1 and R2)
separated by the RRB line, as shown in Fig. 3. Both regions
are on the right-hand side of the CRB curve, whichmeans that
they both satisfy the CRB stability criterion. Because there is
no analytical method to determine the stability region for the
RRB line, a numerical test is needed. To this end, we need to
select a random test point in R1 and another test point in R2,
and we apply the method developed in [24]. The region to
which the stable test point belongs is the stability parameter
region. In this work, we identified the shaded area R1, which
is above the RRB line, as the stability region for our control
system.

B. STABILITY RANGE OF ka

In the previous section, we computed the stability region in
the kd -kp plane for ka = 3.6. If we then vary the value of ka,
we will obtain different sets of RRB and CRB curves and
the corresponding stability regions. The new stability regions
may be of different size or shape compared with the stability
region shown in Fig. 3. For certain ka values, the stability
region may vanish. We now investigate the upper and lower
limits of ka with which the stability region exists.
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FIGURE 4. The RRB and CRB curves for larger ka values.

1) UPPER LIMIT OF ka

We first perform a numerical experiment to understand how
the stability region changes with increasing ka. The case with
ka = 3.6 is considered as the base case. We increase ka
to higher values (ka = 5, 5.8 and 6.6) and compute the
corresponding RRB and CRB curves in the kd -kp plane. The
results are shown in Fig. 4. The RRB lines for those higher
ka values are identical, and they all overlap with the kd -axis.
The curves with arrows are the CRB curves, and those arrows
again indicate the direction of increasing w. The stability
region for ka = 5, although not shown explicitly in the figure,
is still the confined area bounded by the RRB line and the
CRB curve. However, this stability region is of a different
shape compared with the stability region for ka = 3.6. It has
a higher maximum kp value but a smaller nonzero intersection
between the CRB curve and the RRB line on the kd -axis. If we
further increase ka to 5.8, it can be seen that the CRB curve
intersects itself before crossing the RRB line. In this situation,
the stability region is only bounded by the CRB curve, and the
region is much smaller. If we then increase ka to 6.6, we can
see that the confined area on the right-hand side of the CRB
curve (following the direction of increasing w) does not exist.
This means that there is no stability region for ka = 6.6.
Based on the numerical experiment, we can see that the

CRB curve strongly impacts the stability region. We now
derive the theoretical upper limit of ka by analyzing the CRB
curve. According to (22), we can compute the following:

dkd
dw
= −w2TDsin(wTD)+ 2wcos(wTD),

dkp
dw
= −w3TDcos(wTD)− 3w2sin(wTD)+ 2kaw.

(24)

For the ka values considered in Fig. 4, we can plot the dkd/dw
and dkp/dw curves in Fig. 5. Because dkd/dw is independent
of ka, all the dkd/dw curves collapse to one line (red line).
Here, we only plot a small portion of the dkd/dw and dkp/dw
curves. All curves will extend to below the w-axis (negative

FIGURE 5. The derivatives of kp and kd for larger ka values.

derivative) after crossing the w-axis. Those curves are not
shown in Fig. 5 because they are irrelevant to our discussion.
By defining wd as the minimum positive value, which
satisfies

dkd
dw

∣∣∣
w=wd

= 0, (25)

and wp as the minimum positive value, which satisfies

dkp
dw

∣∣∣
w=wp

= 0, (26)

we will have dkd/dw > 0 for w ∈ (0,wd ), and dkp/dw > 0
forw ∈ (0,wp). This indicates that kd is at its local maximum
at w = wd and that kp is at its local maximum at w = wp.
We first assume that wp < wd , and it is easy to obtain the

following:


dkd
dw

> 0,
dkp
dw

> 0, for w ∈ (0,wp),

dkd
dw

> 0,
dkp
dw

< 0, for w ∈ (wp,wd ).
(27)

According to the implicit function theorem, for w6=wd ,
the slope of the CRB curve can be written as follows:

dkp
dkd
=
dkp
dw

/dkd
dw

. (28)

For w ∈ (0,wp), both dkd/dw and dkp/dw are positive. This
results in an increase in kd and kp values with the increase
in w, and the slope of the CRB curve is positive until kp
reaches its local maximum at wp. For w ∈ (wp,wd ), kp starts
to decrease with the increase in w, while kd still increases.
The slope of the CRB curve becomes negative, and the CRB
curve ‘‘turns to the right’’ sharply following the direction
of increasing w until kd reaches its maximum at wd (see
the CRB curve for kd = 3.6 in Fig. 4). When w further
increases to greater than wd , both kd and kp will decrease
with increasing w. The CRB curve will continue ‘‘turning to
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the right’’. Depending on the value of ka, the CRB curve will
either cross the RRB line (kd -axis) at first or cross itself at
first (see the CRB curves for ka = 5 and ka = 5.8 in Fig. 4).
In either situation, a confined area will form on the right-hand
side of the CRB curve following the direction of increasingw,
and this area is above the RRB line. Therefore, this confined
area is the stability region of our control system.

However, if wp > wd , we will have:
dkd
dw

> 0,
dkp
dw

> 0, for w ∈ (0,wd ),

dkd
dw

< 0,
dkp
dw

> 0, for w ∈ (wd ,wp).
(29)

As a result, kd reaches its local maximum first at w = wd .
After that, kd starts to decrease, while kp continues increasing
until kp reaches its local maximum at w = wp. Because of
this, the CRB curve will ‘‘turn to the left’’ sharply at w = wd .
In this situation, there is no confined area on the right-hand
side of the CRB curve following the direction of increas-
ing w, i.e., the stability region does not exist (see CRB curve
for ka = 6.6 in Fig. 4).

Based on the above analysis, we can see that the magnitude
of wp relative to wd determines whether the stability region
exists. When wp < wd (for cases with ka = 3.6, 5 and 5.8),
the stability region exists. By contrast, whenwp > wd (for the
case with ka = 6.6), the stability region does not exist. The
boundary corresponds to the condition of wp = wd .

FIGURE 6. Relationship between ka and wp.

According to (24), wd is independent of ka, while wp
depends on ka. By substituting (26) into (24), we can obtain
the relationship between ka and wp as follows:

ka =
1
2
[w2

pTDcos(wpTD)+ 3wpsin(wpTD)]. (30)

We then plot ka as a function of wp for wp ∈ (0, 5) in Fig. 6.
As can be seen, ka monotonically increases with increas-
ing wp. Therefore, the upper limit of wp also corresponds to
the upper limit of ka. By substituting wp = wd into (30),

we obtain the following:

kau =
1
2
[w2

dTDcos(wdTD)+ 3wd sin(wdTD)], (31)

where kau is the upper limit of ka. An easy way of solv-
ing this equation is to compute wdTD at first by combin-
ing (24) and (25), which gives us the following:

wdTDtan(wdTD) = 2. (32)

By applying the numerical solution method, we obtain
wdTD = 1.08. We then substitute this into (31) and obtain
the following:

kau = 1.70/TD. (33)

As mentioned previously, TD = 0.28. Therefore, we finally
obtain kau = 6.06, which is the upper limit of ka above which
the stability region does not exist for the altitude controller.

2) LOWER LIMIT OF ka

We now investigate the lower limit of ka below which the
stability region does not exist. Similar to the previous dis-
cussion, we reduce ka from 3.6 and compute the RRB and
CRB curves for the smaller ka values. The results are shown
in Fig. 7. It can be seen that as ka decreases, the stability
region shrinks. Eventually, when ka = −0.2, the stability
region vanishes because the area on the right-hand side of the
CRB curve (following the direction of increasing w) is below
the RRB line. In the following discussion, we will prove that
the lower limit of ka is zero.

FIGURE 7. The RRB and CRB curves for smaller ka values.

According to (24), for cases in which ka is equal to or less
than zero, dkp/dw is negative when w begins to increase from
zero (see the dkp/dw curve for ka = −0.2 in Fig. 8). This
means that the CRB curve will go directly below the RRB
line, as can be seen in the CRB curve for ka = −0.2 in Fig. 7.
Under this condition, the stability region does not exist.
Note that the dkd/dw curve is unchanged, and it is positive
for w < wd .
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FIGURE 8. The derivatives of kp and kd for smaller ka values.

However, if ka is greater than zero, regardless of how
small ka is, we will have wp > 0 according to (30) and Fig. 6.
Based on previous analysis, we havewp < wd when ka is very
small (ka < kau). For the same as equation (27), we have the
following:

dkd
dw

> 0,
dkp
dw

> 0, for w ∈ (0,wp),

dkd
dw

> 0,
dkp
dw

< 0, for w ∈ (wp,wd ).
(34)

In this situation, kp reaches its local maximum at w = wp,
which occurs earlier than kd reaching its local maximum at
w = wd . As a result, the CRB curve will extend in the upper-
right direction from the origin and ‘‘turn to the right’’ to cross
the RRB line, which will form a stability region.

From the above analysis, we can conclude that the lower
limit of ka is zero to allow the stability region to exist.
Therefore, the range of ka should be 0 < ka < kau to achieve
a stable altitude control.

3) WHY ACCELERATION FEEDBACK IS NEEDED
As defined before, ka = K + KGKa, where K and KG
are the parameters of the UAV and Ka is the coefficient of
the acceleration feedback term. If we do not consider the
acceleration feedback, the Ka coefficient should equal zero.
Therefore, we will have ka = K . The altitude controller
reduces to a PD controller. For our UAV, K = 3.0881, which
means that ka = 3.0881. This ka value is still within the
stability range of ka computed above (0 < ka < 6.06). This
indicates that there exists a stability region for the reduced
PD controller.

However, as shown in (33), the upper limit of ka depends
on the time delay TD. For UAVs with turbine engines or other
propulsion systems with a larger TD, the ka range can be sig-
nificantly reduced. For example, if TD is doubled, the upper
limit of ka for a stable UAV altitude control will be reduced
to 3.03. In this situation, the stability region will not exist

for the PD controller because ka = 3.0881 is outside of the
stability range.

With the added acceleration feedback term, we can adjust
the Ka coefficient to let ka fall within the ka stability range.
This means that the new controller developed in this work is
able to achieve stable altitude control with much greater time
delay in the engines.

C. GAIN AND PHASE MARGINS
In reality, the UAV control performance is inevitably influ-
enced by external disturbances and the control model uncer-
tainties. The control system needs to be sufficiently robust to
ensure a successful flight. The gainmargin and the phasemar-
gin are two important measures for quantifying the robustness
of a control design [25]. We need to design our controller to
achieve certain gain and phase margins.

FIGURE 9. The altitude control system with the gain-phase margin tester.

The altitude control system with the gain-phase margin
tester, T (A, ϕ), is shown in Fig. 9. The tester is typically
expressed by the following:

T (A, ϕ) = Ae−jϕ, (35)

where A is the gain margin of the system when ϕ = 0, and ϕ
is the phase margin of the system when A = 1.

The characteristic equation of the closed-loop system
in Fig. 9 can be written as follows:

δT (s) = Ae−jϕKeKe−sTD (Kp + Kd s+ Kas2)

+s2(s+ Ke−sTD ). (36)

Similar to what we did for δ(s) in (17), we define δ∗T (s) as
follows:

δ∗T (s) = ejϕ+sTDδ(s)

= AKeK (Kp+Kd s+Kas2)+s2(sejϕ+sTD + Kejϕ)

= s3ejϕ+sTD+s2(A(ka−K )+Kejϕ)+sAkd + Akp. (37)

By substituting s = jw into (37), we can obtain the real part,
δTr (w), and the imaginary part, δTi(w), of δ∗T (s) as follows:{
δTr (w) = w3sin(ϕ + wTD)− Kw2cos(ϕ)+ Akp,
δTi(w) = −w3cos(ϕ + wTD)− Kw2sin(ϕ)+ Akdw.

(38)

By fixing the value of ka, we compute the RRB of the
system as

kp = 0, (39)

and the CRB as
kd =

1
A

[
w2cos(ϕ + wTD)+ Kwsin(ϕ)

]
,

kp =
1
A

[
−w3sin(ϕ + wTD)+ Kw2cos(ϕ)

]
.

(40)
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By setting A > 0 and ϕ = 0, we can plot the gain margin
boundaries in the kd -kp plane, inside which the altitude con-
trol system has a gain margin that is greater than A. By setting
A = 1 and ϕ > 0, we can plot the phase margin boundaries
in the kd -kp plane, inside which the altitude control system
has a phase margin that is greater than ϕ. The overlap area
of the two regions satisfies both criteria. Therefore, the UAV
altitude control is said to be robust for parameters chosen
inside this region.

In this work, we adopt gain and phase margins based on the
work in [18]. The gain margin is chosen as 2, and the phase
margin is chosen as 45◦. Using ka = 3.6 as our example,
the corresponding stability boundaries, gain margin bound-
aries and phase margin boundaries are shown in Fig. 10.
Inside the shaded area S, the UAV altitude control system has
a gain margin of greater than 2 and a phase margin of greater
than 45◦.

FIGURE 10. Gain-phase margin boundaries for ka = 3.6.

By varying ka from 2.8 to 4.2 with a step size of 0.2 and
repeating the above procedure, a set of region S (stability
regionwith a gainmargin of greater than 2 and a phasemargin
of greater than 45◦) is obtained and is shown in Fig. 11.
From the figure, we can see that region S has the largest
size for ka = 3.6. Therefore, we use ka = 3.6 in the UAV
experiment. After obtaining ka, we then select kd and kp at
the point whereby the gain margin CRB curve intersects the
phase margin CRB curve (the black point in Fig. 10). The
kd and kp are computed as 3.414 and 2.461, respectively, and
their values are also shown in Fig. 10.

V. EXPERIMENTAL RESULTS
Most VTOL UAVs are equipped with electric motors as
discussed in the Introduction section. The structures of
those UAVs are relatively simple, and they are typically
lightweight. Therefore, the UAV experiments are relatively
easy to perform. However, our UAV is equipped with two
turbine engines and weights over 20 kg. A control failure
during the experiment may result in severe consequences to

FIGURE 11. Region S for different ka.

the operating staff and to the UAV itself. For safety con-
siderations, the UAV experiment has to be performed in an
open space outdoors. In addition, the UAV does not take off
from or land onto the ground directly because that requires
a launcher and other auxiliary equipment which can be very
complicated to build and very expensive. Instead, our UAV
is suspended under a gantry crane using a steel cable (as
shown in Fig. 12), and the UAV takes off from the suspended
location. The staff and the UAV are protected by the steel
cable during the flight experiments. The height of the gantry
is 7.2 m, and the width is 6.8 m. When the UAV is suspended,
the tail of the UAV is at a height of approximately 1.5m above
the ground to minimize ground effects influencing the engine
performance.

FIGURE 12. The experimental platform. (a) Gantry crane;
(b) Suspended UAV.

The configuration of the UAV flight experiment system
is shown in Fig. 13. The altitude, vertical acceleration and
engine rotor speed were measured by the laser range finder,
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FIGURE 13. The configuration of the UAV flight experiment system.

the IMU and the Hall sensor, respectively. The noise in the
acceleration measurement was suppressed by the data filtra-
tion method developed in our previous work [16]. A data
fusionmethodwas used to estimate the vertical velocity of the
UAVby fusing the accelerationmeasurementwith the altitude
measurement.

As discussed in the previous section, the following param-
eters of the altitude controller were adopted: ka = 3.6, kd =
3.414 and kp = 2.461. Using these parameters, we back-
calculated the direct control parameters,Ka,Kd andKp, using
the following expressions:

Ka = (ka − K )/KG,
Kd = kd/KG,
Kp = kp/KG.

(41)

In this experiment, the UAV had a mass of 22.5 kg, which
resulted in an equilibrium engine rotor speed of 86700 RPM
(�0 = 86700 RPM). According to (15), KG was computed
as 1.15 × 10−3. By substituting KG into (41), we can obtain
Ka = 4.45× 102, Kd = 2.97× 103 and Kp = 2.14× 103.
As mentioned before, the UAV was suspended under the

gantry crane with a 4 mm stainless steel cable. Initially,
the cable was in a tensed condition because it needed to carry
the weight of the UAV. After the UAV took off, the cable
became loosened because of the elevation change of the UAV.
The loosened cable would exert a force on the UAV body
due to the weight of the cable. The force in the vertical
direction may be neglected compared with the engine thrust
force. In addition, our altitude controller is robust enough
that the altitude of the UAV was barely impacted. However,
the horizontal component of the cable force, in addition to
other external disturbances (such as wind), may influence the
UAV position in the horizontal plane. In this work, we did
not impose horizontal control for our UAV because altitude
control is the focus here.

Because of this practical limitation, the UAV may drift
horizontally during the hover flight. The distance of the UAV
horizontal drifting was constrained by the length of the cable
and the height increase of the UAV. The maximum radius, r ,
for UAV horizontal drifting can be computed as follows:

r =
√
l2 − (l −1h)2, (42)

where l is the length of the cable, and1h represents the height

increase of the UAV under the hover flight condition relative
to the initial condition.

In the experiment, the altitude (height of theUAV tail above
the ground) before takeoff was approximately 1.5 m, and the
altitude command was set to be 1.7 m for the hover flight.
Therefore, the UAV elevation change was 0.2 m. Because the
length of the steel cable was approximately 3.7 m, the max-
imum radius for the UAV horizontal drifting was computed
as 1.2 m according to (42). By increasing 1h (UAV altitude
change), the UAV can have a larger horizontal moving space.
However, this can result in a safety hazard, because the UAV
may hit the crane when a strong engine overshoot occurs.
In addition, we sometimes need to switch off the engines in
the case of unexpected problems occurring. In such situations,
the UAV is more prone to being damaged if it falls from a
higher altitude. Therefore, we used1h = 0.2 m in this work.

At the beginning of the experiment, the engine rotor speed
was controlled manually. The rotor speed command was
increased gradually until it reached a value slightly lower
than the equilibrium rotor speed (�0). Then, the UAV was
switched to automatic control. This process was used to
prevent the engine overshoot that could occur if automatic
control were to be applied immediately after the engines
started.

FIGURE 14. The engine rotor speed during the experiment.

We now present the experimental results. Fig. 14 shows
the engine rotor speed command and the actual engine rotor
speed response during the experiment. Figs. 15-17 show the
UAV vertical acceleration, UAV vertical velocity (estimated
based on acceleration and altitude measurements) and UAV
altitude. Fig. 18 shows the pictures of the UAV status at
different times during the experiment. As mentioned before,
the engines were manually controlled at the beginning until
they reached a rotor speed close to the equilibrium speed.
This corresponds to the blue line from 0 s to 3.36 s, as shown
in Fig. 14. Because the rotor speed was increased gradually,
the rotor speed response (shown in red line in Fig. 14) was
close to the command. During this manual control period,
the UAV remained stationary because the thrust force was not
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FIGURE 15. The UAV vertical acceleration during the experiment.

FIGURE 16. The UAV vertical velocity during the experiment.

sufficient to lift the UAV. Therefore, the IMU measured the
gravitational acceleration, which equals 9.8 m/s2, as shown
in Fig. 15. The noise in the acceleration measurement was
the result of many factors such as the vibration of the tur-
bine engines and the external disturbances. Consequently,
the UAV vertical velocity presented slight fluctuations about
zero (Fig. 16), and the UAV altitude remained at approxi-
mately 1.5 m. This period corresponds to the flight status
shown in Fig. 18A.

After the engines were switched to automatic control
at 3.36 s, there was a sudden increase in the rotor speed com-
mand. The rotor speed response also started to increase but
only gradually. This resulted in a clear discrepancy between
the rotor speed command and the rotor speed response. This
discrepancy is why an integrated controller is needed for
UAVs equipped with this type of engine. At approximately
4.4 s, the rotor speed response exceeded the equilibrium
speed. The UAV started to take off at this time. Thereafter,
an apparent increase began to build in the UAV acceleration,
UAV velocity and UAV altitude, as shown in Figs. 15-17.
Note that a filtration method developed in our previous work

FIGURE 17. The UAV altitude during the experiment.

was applied to suppress the noise in the acceleration measure-
ments after the UAV took off, and it took approximately half
a second to converge [16]. Therefore, the filtration result of
the UAV vertical acceleration (red line in Fig. 15) started at
approximately 4.9 s. The filtration result was the acceleration
actually used by the controller.

The engines quickly reached their highest rotor speed at
approximately 4.8 s and gradually stabilized to very close to
the equilibrium rotor speed at approximately 7.5 s. Although
there were some fluctuations in the rotor speed response
during this period, it quickly converged to the equilibrium
speed. After convergence, the UAV was considered to be
at the hover flight condition. Consequently, the UAV verti-
cal acceleration was close to the gravitational acceleration,
as shown in Fig. 15; the UAV vertical velocity was close to
zero, as shown in Fig. 16; and the UAV altitude was at the
target altitude (1.7 m), as shown in Fig. 17. The flight status
during this period is displayed in Fig. 18B and Fig. 18C.
We can see that the UAV was drifting away from the camera
in the horizontal plane due to the force exerted by the steel
cable and other external disturbances.

Note that at approximately 10 s, the UAV reached its limit
for horizontal drifting. The steel cable became tensed again,
and it applied both a vertical force (pointing upward) and a
horizontal force (pointing toward the camera) to the UAV.
Therefore, the UAV moved closer to the camera at 12.5 s,
as shown in Fig. 18D. In addition, we can see a sudden
increase in the UAV acceleration in Fig. 15. We also observe
an increase in the UAV vertical velocity and UAV altitude
in Figs. 16 and 17, respectively. These were all caused by
the interference of the steel cable. However, the UAV altitude
controller quickly responded to this sudden interference and
reduced the rotor speed slightly to offset the increase in
altitude. Therefore, there was a slight decrease in the rotor
speed response after the disturbance, and the UAV altitude
quickly returned to 1.7 m. The fluctuation in the UAV altitude
was less than ±3 cm after the hover flight condition was
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FIGURE 18. The UAV flight status during the experiment.

reached. This small fluctuation demonstrated the effective-
ness of our integrated controller.

VI. CONCLUSION
In this work, we developed an integrated altitude controller
for a tail-sitter UAV equipped with turbine engines. The
turbine engine dynamics are considered in our control design
because the engines have an apparent time delay. The con-
troller consists of a PD control term and an acceleration feed-
back term. The added acceleration feedback term provides
additional flexibility for the control design. To ensure a robust
altitude control, the controller is also designed to achieve a
gain margin of 2 and a phase margin of 45◦.
We performed the stability analysis for the controller

and determined the stability region in the parameter space.
In addition, a UAV hover flight experiment was conducted
using the new altitude controller. Due to the practical con-
straints, the UAV had to be suspended under a gantry crane
using a steel cable, which limited its moving space and pro-
duced interference with the UAV during flight. The results
of the engine rotor speed, UAV vertical acceleration, UAV
vertical velocity and UAV altitude showed that the UAV
altitude was effectively controlled at the target altitude, with
fluctuations of less than±3 cm, even with the interference of
the steel cable. These results demonstrated the effectiveness
of the new altitude controller.

In our current experiment, the UAV exhibited horizontal
drifting due to the influence of the steel cable and other

external disturbances. This restricted the duration of the flight
experiment. Horizontal position control should be added to
the UAV control system to limit its horizontal movement.
A high-accuracy positioning system is a prerequisite for hor-
izontal position control. This will be considered in our future
work. Eventually, a free-flight experiment will need to be
conducted to fully test the applicability of our UAV.
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