
SPECIAL SECTION ON ADVANCES OF MULTISENSORY SERVICES AND
TECHNOLOGIES FOR HEALTHCARE IN SMART CITIES

Received May 6, 2017, accepted May 13, 2017, date of publication May 25, 2017, date of current version July 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2707439

Mobile Cloud-Based Big Healthcare Data
Processing in Smart Cities
MD. MOFIJUL ISLAM1, MD. ABDUR RAZZAQUE1, (Senior Member, IEEE),
MOHAMMAD MEHEDI HASSAN2, (Member, IEEE), WALAA NAGY ISMAIL2,
AND BIAO SONG2, (Member, IEEE)
1Department of Computer Science and Engineering, University of Dhaka, Dhaka 1000, Bangladesh
2Information Systems Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Md. Abdur Razzaque (razzaque@du.ac.bd)

This work was supported by the Deanship of Scientific Research at King Saud University through the Research Group
under Grant RGP-281.

ABSTRACT In recent years, the Smart City concept has become popular for its promise to improve the
quality of life of urban citizens. The concept involves multiple disciplines, such as Smart health care, Smart
transportation, and Smart community. Most services in Smart Cities, especially in the Smart healthcare
domain, require the real-time sharing, processing, and analyzing of Big Healthcare Data for intelligent
decision making. Therefore, a strong wireless and mobile communication infrastructure is necessary to
connect and access Smart healthcare services, people, and sensors seamlessly, anywhere at any time. In this
scenario, mobile cloud computing (MCC) can play a vital role by offloading Big Healthcare Data related
tasks, such as sharing, processing, and analysis, frommobile applications to cloud resources, ensuring quality
of service demands of end users. Such resource migration, which is also termed virtual machine (VM)
migration, is effective in the Smart healthcare scenario in Smart Cities. In this paper, we propose an ant
colony optimization-based joint VM migration model for a heterogeneous, MCC-based Smart Healthcare
system in Smart City environment. In this model, the user’s mobility and provisioned VM resources in the
cloud address the VM migration problem. We also present a thorough performance evaluation to investigate
the effectiveness of our proposed model compared with the state-of-the-art approaches.

INDEX TERMS Smart health care, smart city, big data, quality of service (QoS), virtual machine migration,
ant colony optimization.

I. INTRODUCTION
Due to recent advancements in Information and Commu-
nication Technology, the Smart City concept has become
an excellent opportunity to improve the quality of everyday
urban life activities [2]. By connecting Smart objects, people,
and sensors various services can be provided, such as Smart
healthcare, Smart transportation, and Smart community [3].
Most Smart City services, especially emerging Smart health-
care services, demand anywhere, anytime real-time com-
putation. Critical patient monitoring, telemedicine, patient
data collection, and personalized medical services [11],
[17], [35], [40] are major applications in this domain.
These healthcare services and applications generate copious
amounts of Big Healthcare Data in real-time, thus requiring
computational resources to be made available nearby [9].
However, without a strong wireless and mobile communi-
cation infrastructure, it is difficult to connect and access

computational resources for processing, sharing, and analyz-
ing of Big Healthcare Data with minimum latency [27], [43].

The emergence of mobile cloud computing (MCC) [10],
[25], [34] facilitates reduction of task-execution time and
real-time communication latency for such Smart Health-
care applications in the Smart City environment [1], [7],
[12], [28], [37]. MCC effectively utilizes distributed cloud
server resources such as CPU, memory, network, and
ports to execute the mobile Smart healthcare applications.
Using MCC, mobile devices (MD) can offload these appli-
cations to a resourceful cloud server for faster execu-
tion [6], [8], [13], [16]. Moreover, MCC allows real-time
query processing in Smart healthcare applications that is vital
for patients life. However, the long distance between cloud
servers and the MDs may increase the response time for
interactive applications, increasing the total execution time.
To alleviate this problem, a cloudlet is proposed in [36],

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11887

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

which is a resourceful local cloud that brings remote cloud
resources closer to the mobile user. By offloading tasks to the
nearest cloudlet, the user can decrease total task execution
time.

Virtualization technology introduces a middle layer
between the hardware and software layers in a cloudlet,
allowing the hardware resources to be shared by means
of VM. Resources (e.g., CPU, memory, network band-
width, etc.) in a cloudlet are provisioned to these VMs.
Resource provisioning in cloud computing is a well-studied
area [4], [30], [39], [41]. However, themobility inMCC intro-
duces several challenges to maintain an acceptable Quality
of Service (QoS) when provisioning cloud resources. Mobile
users may move from one Access Point (AP) to another,
increasing their distances between current locations and the
cloudlet, where the tasks are provisioned. This increases the
task-execution time. To address this issue, we propose a
VM migration technique for a heterogeneous MCC system
following the user’s mobility pattern. That is, when a user
moves from one cloudlet to another cloudlet, the resource or
VMmust bemigrated to the cloudlet that is nearest to the user.

Consider the following scenario: a blind user is executing
an application that takes an image from his surroundings.
Then, the application processes the image in the cloudlet and
gives a response to the user’s local client. That is, the appli-
cation continuously uploads some data and the cloud server
processes this data to provide responses back to the user. Now,
if the blind user moves away from the current cloudlet, then
he or she will experience a delayed response from the mobile
application executing in the cloudlet, degrading the overall
performance of the application. To avoid this performance
degradation, it is necessary for the system to adopt a VM
migration method to choose a cloudlet that is currently closer
to the user to which to migrate the VM.

User mobility is not the only reason forcing a VM to
migrate. Migration can be initiated to minimize the over-
provisioned resources and thus improve the overall system
objectives. For instance, if a VM is required to be migrated
from a cloudlet to any of the candidate cloudlets, the new
cloudlet may not have the same type of VM. In that case,
a VM with more resource than the current one must be
chosen and provisioned in order to migrate the VM and thus
minimize task-execution time. However, in this approach,
the VM migration is provisioned more resources than the
required. Therefore, this over-provisioned resources greatly
decreases the system objectives, as it reduces the number of
provisioned VMs in the cloudlets. Furthermore, the joint VM
migration approach, where a set of VMs is remapped based on
the VM task execution time and over-provisioned resources,
can help to effectively increases the overall system objectives.
In contrast to the joint VM migration approach, single VM
migration can only improve a particular user objectives but
not the system objectives.

In the literature, some researches have been conducted
on VM migration in MCC [14], [31], [38], [42]. However,
these methods are more suited for static task-execution.

Furthermore, most state-of-the-art works have only consid-
ered a single VM migration approach. Though, this can help
to improve a particular user’s objectives, it can negatively
impact not only the cloudlet system but also other users.
Therefore, a joint VM migration model that effectively con-
siders user mobility and the over-provisioned resources of the
cloudlet has yet to be proposed in the literature.

In this work, we propose a VM migration (VMM) model
based not only on user mobility but also on load of cloudlet
resources. The objective is to select the optimal cloud server
for a mobile VM in addition to minimizing the total number
of VM migrations, reducing task-execution time. We use
Ant Colony Optimization (ACO) to identify the optimal tar-
get cloudlet. The main contributions of our work are stated
bellow:

• We develop an Ant Colony Optimization (ACO)-based
VM migration model, in which VM are migrated to
candidate cloud servers so as tomaximize the total utility
of the MCC system.

• Mobility-aware selection of cloudlets for VM provision-
ing in our proposed PRIMIO system helps significantly
to reduce service provisioning time.

• We introduce a joint VMmigration approach to optimize
both the resource utilization and task execution time,
diminishing the shortcomings of a single VM migration
approach.

• The results of performance evaluation, depicted from
test-bed implementation and extensive experiments,
show that the proposed PRIMIO system achieves signif-
icant improvements compared to state-of-the-art works.

The remaining paper is organized as follows.
In Section II, we discuss on the state-of-the-art work on VM
or task migration inMCC. Next, in Section III, we present the
network model and assumptions. After that, in Section IV, we
present the problem formulation of our VMmigration model.
In Section V-B, we present a meta-heuristic ACO-based VM
migration solution for jointly migrating a set of VMs. Sub-
sequently, in Section VI, we present a numerical evaluation
of our proposed model to investigate it’s effectiveness of our
proposed model compared to the state-of-the-art. Finally, we
draw conclusions andmention directions for our future works
in Section VII.

II. RELATED WORK
With the advent of the smart City, smart healthcare ser-
vices are emerging to improve urban citizens’ quality of
life [18]–[23]. However, to connect and access smart health-
care services, people, and sensors, seamlessly, anywhere and
any time, MCC plays a vital role. In MCC services, users can
offload (-part of) a task in cloudlet for faster execution. Exist-
ing literature discusses several methodologies to detect when
a client should offload task in a cloudlet [4], [6], [8], [13],
[30], [39], [41]. However, little works has been conducted
in the field of VM migration in MCC systems. A traffic-
aware, cross-site VM migration model is proposed in [31].

11888 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

In this model, when multiple VMs require migration, an
arbitrary sequence of VM migration congests the bandwidth
of inter-site links, thus reducing the number of successful VM
migrations. Then, the VMmigration problem is formulated as
a Mixed Integer Linear Programming (MILP) problem and
a heuristic algorithm is used to get an approximate optimal
result.

Besides this, a mobility induced service migration for
MCC is proposed in [42]. In this work, a threshold-based
optimal service migration policy is developed, where the
VM migration problem is modeled as a Markov decision
process (MDP). This proposed system considered mobile
users to follow a one-dimensional asymmetric random walk
mobility model. A service is migrated from one micro-cloud
to another when a user is in states bounded by a set of
predefined thresholds.

In addition, three lightweight task-migration models are
developed in [14]:

• Cloud-wide task migration, where the task-migration
decision is made by a central cloud, which maximizes
the objectives of a cloud provider.

• Server-centric task migration, where all migration deci-
sions are made by the server, where the task is currently
executing .

• Task-based migration, where migration is initiated by
the task itself.

In this approach, the migration decision is made after each
decision epoch, based on user’s mobility and remaining task-
execution time. This proposed method considers the increas-
ing data volume transfer time during task migration from one
cloud to another.

Meanwhile, in our previous work, we proposed a mobility-
and load-aware Genetic Algorithm-based VM migration
approach, GAVMM [24], to minimize task-execution time.
However, this approach mainly tries to minimize the pro-
visioned task execution time without considering over-
provisioned resources in the cloudlets. Thus, the GAVMM
fails to minimize resource over-provisioning in the cloudlets.

However, all state-of-the-art works use the single VM
migration approach, where a cloudlet migrates a single VM
to another cloudlet. This approach relaxes the problem for-
mulation but fails to effectively optimize the whole-system
objectives. Instead, we here use a joint VM migration, where
a set of VMs jointly migrates to a set of coudlets, allowing
effective optimization of resource usage and task-execution
time.

In summary, most VM migration methodologies do not
effectively consider user mobility alongside load condi-
tion of cloudlet servers in a heterogeneous MCC sys-
tem. This increases service downtime, especially for those
applications where the user frequently interacts with the
provisioned cloudlet. In addition, when migrating a VM,
over-provisioned resources in the target cloudlet must also be
considered; otherwise, the total number of provisioned VMs
in the target cloudlet will greatly be reduced. To the best of

our knowledge, this work is the first to efficiently utilize ACO
system to develop a VM migration approach for minimizing
the task-execution time and optimizing the cloudlets resource
usage. Moreover, we extend the VM migration model to
jointly migrate a set of VMs to a set of cloudlets in order
to minimize task-execution time and to minimize resource
over-provisioning compared to single VM-based migration
approaches.

III. MOBILE CLOUD SYSTEM ARCHITECTURE
A. SYSTEM ARCHITECTURE
We assume a three-tier Mobile Cloud Computing (MCC)
environment, where a set of M access points (APs) com-
prise the backbone network. Tier one represents the mas-
ter cloud, which consists of several public cloud providers,
such as Google App Engine, and Microsoft Azure Amazon
EC2. A set of high-speed interconnected cloudlets consti-
tute the tier two or the backbone layer of the mobile cloud
architecture. Smartphones, wearable devices or other mobile
devices constitute the tier three or user layer. Users access
the nearest cloud resources using devices from tier three.
Each AP is connected to any of C cloudlets, denoted as
C = {C1,C2,C3.....,CL}. We present a sample network
scenario in Fig. 1. These cloudlets are connected using the
backhaul network where bandwidth between cloudlets i and j
is denoted as Bi,j.

FIGURE 1. Mobile cloud architecture.

A set of cloudlets is controlled and monitored by the
master cloud (MC). All cloudlets route their hypervisor
information to the master clouds and they are connected to
the MC with a high-speed network connection. A cloudlet
server i has fixed processing power Spk and memory Mk .
Each cloudlet provisions N number of VMs, denoted as
V = {V1,V2,V3.....,VN }. Users can offload their tasks to
a dedicated VM. We further assume that each user is mobile
and execute a task in different VMs over the task lifetime.
We assume that there are no inter-dependencies among those
VMs. In the remainder of this paper, we use task and VM
interchangeably.

VOLUME 5, 2017 11889

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

FIGURE 2. Virtual machine migration system.

B. VIRTUAL MACHINE MIGRATION SYSTEM
In Fig. (2), a computation migration system is depicted,
which has two important functionality. First, the computa-
tion migration between resource-constrained mobile devices
and cloudlets; Second, virtual machine migration between
two cloudlets to minimize the task execution time as well
as resource over-provisioning. The application offloading
manager helps a mobile device to decide which part of the
mobile application should be offloaded and where [6], [8],
[26], [30]. The client-request handler in a cloudlet manages
incoming task execution requests from mobile devices and
dispatches to the virtual machine scheduler. The VM sched-
uler uses the information from hypervisor to initiate the VM
scheduling. Moreover, after a specific time epoch, the VM
migration manager interacts with the VM scheduler to select
tasks and to migrate so as to reduce the task-execution time.
In this work, our main concern is to develop an algorithm
for the VM migration manager for selecting a set of tasks
and cloudlets, remapping tasks to minimize execution time.
In the VM migration manager, there are three main
components-VM Selection, Joint VMMigration Engine, and
VM Migration Initiator, which contribute to making optimal
migration decisions. Moreover, the user mobility manager
takes local mobility management information in conjunction
with global mobility prediction manager to decide on a set
of probable cloudlets for a user. Finally, the VM migration
manager initiates migration process for a set of tasks requir-
ing faster execution.

C. ASSUMPTIONS
We assume that a cloudlet’s VM scheduler determines the
amount of resources to allocate to a certain VM during its
creation and that it is allowed to update the VM size dur-
ing scheduling intervals, if deemed necessary in support of
meeting user QoS or increasing resource utilization [5], [33].
We also assume that the pre-copy live VM migration
method [29] is used by the cloudlets, which allows
migration of internal state, memory and application data

TABLE 1. Notations.

associated with a VM from its provisioned cloudlet to a
destination one.

Moreover, in this work, we assume that users will have
walking mobility speeds. We employ a state-of-the-art user
mobility prediction approach, ENDA [30], to determine the
predicted cloudlets set for each provisioned VM. However,
the problem of thrashing might appear for users with high
mobility speeds (e.g., vehicular mobility), which we do not
consider in this work. Notations and their descriptions are
listed in Table 1.

IV. MULTI-OBJECTIVE PROBLEM FORMULATION
Mobile Cloud Computing (MCC), mobile devices offload
the most resource intensive applications such as image pro-
cessing applications, augmented reality applications etc., to
the nearest cloudlet to minimize total task-execution time.
However, when a mobile user moves from one cloudlet to
another, the VM must be migrated and provisioned into
another cloudlet to minimize the interaction time between
the mobile user and the provisioned VM. The resulting total
execution time helps to meet the task deadline. When a VM
is selected for migration, a cloudlet must choose that VM in
such a way to also minimize the resource over-provisioning.
Therefore, a VM must be mapped to another cloudlet VM.
There are several approaches to map and provisioned a VM
to that of new cloudlet. Migrating a single VM based on the
preferences of a particular mobile user can help maximize the
objectives of just one user, but it fails to improve the overall
system objective and also can have negative impact on other
user’s objectives. Therefore, in our proposed approach, we
jointly consider all VMs in a cloudlet remapping those to a
set of cloudlets, if necessary.

11890 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

In the proposed VM-migration problem, both the total task
execution time and amount of over-provisioned resources
in the cloudlets must be minimized. Thus, this is a multi-
objectives problem, where a set of VMs V are remapped to
a set of cloudlets C . The proposed VM-migration problem
has two objectives: (1) to minimize total task-execution time
and (2) to minimize the resources wasted by the cloudlets.
We can formulate our multi-objective VMmigration problem
as follows,

Minimize : Z =
∑
u∈V si

∑
v∈V cj,u

{
α × Tu,v + (1− α)× Ro,iu,v

}
× xu,v (1)

s.t.
∑
v∈V cj,u

xu,v ≤ 1 ∀u ∈ V s
i (2)

∑
u∈V si

xu,v ≥ 0 ∀v ∈ V c
j,u (3)

(
ur ≤ vr

)
∀r ∈ Rui , u ∈ V

s
i , v ∈ V

c
j,u (4)

Tu,v × Tmaxu,v × xu,v ≤ T
d
u ∀u ∈ V s

i , v ∈ V
c
j,u (5)

where the objectives in Eq.(1) represent the minimization of
the total task-execution time of provisioned VMs and the
minimization of resource over-provisioning in the cloudlets.
xu,v is a binary variable which will be 1 when the VM u
in cloudlet i is provisioned to VM v in cloudlet j; α is the
weight parameter of application-types, defining how much
weight each application has in reducing task-completion time
or in optimizing system resources. Tu,v is the normalized
total task-execution time when VM u in cloudlet i was pro-
visioned to VM v in cloudlet j, which can be defined as
follows,

Tu,v =

(
T eu,v + T

t
u,v
)

Tmaxu,v
(6)

Tmaxu,v = max
b∈V cj,u

(
T eu,b + T

t
u,b
)

(7)

where T eu,v is the task execution time if the VM u is migrated
and provisioned to VM v and T ti,j denotes the VM transfer
time from cloudlet i to cloudlet j. T ti,j can be defined as
follows,

T tu,v =
Du
Bu,v
+ T q,du,v (8)

where Du is the data associated with the VM u, which
includes both VM state and application data; Bu,v denotes
the bandwidth of the link between the cloudlets running
VMs u and v. In addition, T q,du,v denotes the VM execution
queuing time for the VM u in VM v. In the proposed VM-
migration approach, the full VM image is not migrated, but
rather only the data which are generated by the provisioned
VM. Because, in our VM-migration approach, the application
in the migrated VM is stopped and later resumed on the
migrated cloudlet upon completion of the migration opera-
tion.

In Eq.(1), Ro,iu,v denotes the normalized over-provisioned
resource, when a VM u of cloudlet i is migrated to a VM v.
It can be defined as follows,

Ro,iu,v =
1
|Rui |

∑
r∈Ru

vr − ur

ur
(9)

where Rui are the resources required by the VM u in the
cloudlet i. In addition ur and vr are the resourcea of type r ,
provided by the VMs u and u, respectively.

Constraint (2) ensures that one VM is provisioned or
migrated to one and only one VM in a particular cloudlet.
In addition, constraint (4) ensures that when the system
migrates a VM u to a new VM v in another cloudlet, the new
VM v has at least the same amount of resources in currently
provisioned VM in the cloudlet i. Furthermore, constraint (5)
ensures that a VM can be migrated to a cloudlet where the
task execution deadline will be met.

V. META-HEURISTIC VIRTUAL MACHINE MIGRATION
Not all VMs in a cloudlet provisioned mobile-device appli-
cations require migration to meet the user task-execution
deadlines or to increase the system objectives. Rather,
migration of a subset of VMs could improve user expe-
riences. Therefore, as a first step, the proposed PRIMIO,
PRioritized meta-heurIstic virtual Machine migratIOn, sys-
tem develops a candidate set of migratable VMs, V s,
that can reduce applications’ overall execution time. Then,
the proposed VM migration policy employs a VM map-
ping procedure to select an appropriate cloudlet for
provisioning VMs.

A. SELECTING CANDIDATE SET OF VMS FOR MIGRATION
For each provisioned VM u ∈ V , our proposed PRIMIO
system calculates an urgency factor Uu that determines the
criticality of migrating VM. Before calculating the urgency
factor, we have to determine the predicted candidate cloudlet
set,V c

j,u for the VM u, from which users can get their services.
There are several algorithms in the literature for predicting
the user location in the upcoming VM schedule; in this
work, we use ENDA [30]. Recall that the key notion of
a VM migration is to minimize the service execution time
and hence to meet the service deadline of the hosted user
application. Therefore, we calculate the urgency factor as
follows,

Uu = T p,ru × γ
u
p,r + T

p,d
u × γ up,d , (10)

where the urgency factor is a linear combination of two
attributes of a task: first is the task-execution time required
penalty T p,ru and second is the task-execution time deadline
penalty T p,du for a VM u. T p,ru is the difference between
the task-execution time, which is required to execute in the
currently provisioned VM, and the required task-execution
time. In the same way, T p,du can be defined as the differ-
ence between the task-execution time and the task-execution
deadline time. These two task-execution time penalties can

VOLUME 5, 2017 11891

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

be calculated in the following way,

T p,ru = T eu − T
r
u (11)

T p,du = T eu − T
d
u (12)

T ru =

∑
i∈Aru,t=u(t)

T i,tr
|Au,r |

(13)

where Au,r is the set of previous task execution time required
by the VM u to execute task type t . T eu ,T

d
u and T ru are

the task-execution time required to execute the task in the
provisioned VM, task-execution time deadline and required
task execution time, respectively. T du is set by user, where
T ru is defined by the system itself. In Eq.(10), γ up,r and γ

u
p,d

are task-execution time penalty coefficients. These coeffi-
cients defined how much weight we have to set to each task
execution time penalties based on the system and the user
preferences. γ up,r and γ

u
p,d can be defined as,

γ up,r =

{
1, T ru ≤ T

e
u

T p,ru × β
u
d,r , otherwise

(14)

γ up,d =

{
0, T eu ≤ T

d
u

T p,du × (1− βud,r), otherwise
(15)

where βud,r is the user application preference. With γ up,r and
γ up,d , β

u
d,r helps the system to determine when the task must

be migrate as well as gives the system a degree of flexibility
to migrate a VM from the cloudlet and provisioned in a new
cloudlet. βud,r can defined as,

βud,r=

1, if d attribute is surely preferred than r
(0.5, 1), if d attribute is partially preferred than r
0.5, if no preference
(0, 0.5), if r attribute is partially preferred than d
0, if r attribute is surely preferred than d .

(16)

After that, VMs are sorted according to urgency factor in
decreasing order. According to this order, candidate-VM
selection algorithm chooses a set of VMs based on the avail-
able resources in cloudlets accessible to each VMs. Neverthe-
less, during this selection the VM migration system does not
map a VM into a cloudlet, but rather just selects a set of pro-
visioned VMs from the cloudlet which need to be migrated.
If the VM type or the required resources of a VM is ful-filled
by any accessible VM, then it will be selected; otherwise,
it must wait for the next scheduling interval. Therefore, the
total VM resources are required by all the selected VMs must
be less than or equal to the VM resources available in the
accessible cloulets. The prioritized VM selection method is
summarized in Algorithm (1).

The proposed VM migration system requires each task
be associated with two task execution deadlines: (1) task-
execution deadline time, T du , which is set by the user appli-
cation; and (2) the required task-execution time, T ru , which is
defined by the system itself. The task execution time, T eu , can

Algorithm 1 Candidate VM Set Selection Algorithm,
at Cloudlet

INPUT: VM set V and accessible cloudlet setCu for each
VM u.
OUTPUT: Candidates VM list for migration.

1: Calculate urgency priority Uu,∀u ∈ V
2: Reorder the urgency priority Uu,∀u ∈ V in following

way,
U1 ≥ U2 ≥ U3 ≥UN

3: V s
= ∅

4: repeat
for each user VM u ∈ V

5: for (for each VM v ∈ V c
j,u) do

6: if
(
ur ≥ vr |r ∈ Rui

)
then

7: Vvc = Vvc \ {v}
8: V s

= V s
∪ u

9: end if
10: end for
11: until all VMs are provisioned or resources are utilized

be greater than the T ru ; however, it must be less than or equal
to T du . These two task-execution times give the VMmigration
system flexibility in initiating VM migration. T ru , especially,
helps the system to initiate the VM migration in order to
minimize the service downtime. For instance, if T eu exceeds
T ru , the system may initiate VM migration for that particular
VM if enough resources are available. However, if the T eu in a
VM does not exceed the T du but does exceed T ru and if avail-
able resources are limited, then the VM migration system
gives more priority to those VMs which have higher need to
be migrated to another cloudlet. Consequently, this approach
has advantages for both the system and the user application,
especially, when a small amount of time is needed to complete
execution while available resources are limited.

B. META-HEURISTIC ANT COLONY-BASED
VM MIGRATION ALGORITHM
In our proposed VMmigration approach, we jointly migrate a
set of VMs to a set of cloudlets. That is, a cloudlet remaps a set
of VMs to a set of cloudlets. This is a bin-packing problem,
where a set of VMs is represented as bins while the cloudlets
represent packs. These VMs must be packed with minimum
number of cloudlets such that the total execution time of tasks
is minimized; also, we have to minimize resouces wasted
during packing. Thus, it becomes an NP-hard problem [44],
i.e., no algorithm can provide a guaranteed optimal solution
in polynomial time. For this reason, we have proposed ameta-
heuristic Ant Colony based VMMigration algorithm to solve
the VM migration problem. We use this meta-heuristic algo-
rithm since it is problem-independent and does not require
the benefit of any specificity of the proposed problem.

As swarm-optimization models are well-suited to building
optimal solutions in very dynamic environments [15], we
employ Ant Colony Optimization (ACO) to incorporate the

11892 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

dynamically changing cloud computing environment in the
selection of optimal VM-cloudlet pair. Also, in a distributed
environment, ACO helps to speedup computation, making it
more suitable for the VMmigration decision process. In addi-
tion, each cloudlet makes VM migration decisions individu-
ally by exploiting the information collected from neighboring
cloudlets, mobile devices, and the master cloud. Furthermore,
the ACO’s learning capability of good solution features leads
to the optimal solution and greatly decreases the selection
probability of poor solutions [32].

The ACO is a meta-heuristic algorithm that uses the behav-
ior of virtual ants to build a heuristic solution. A set of
ants are created, with each ant trying to build a solution by
solving sub-problems using heuristic information. The ants
try to improve their solutions by exchanging information
via pheromones. Each ant uses this pheromone trail and the
local heuristic information to build a local optimal solution.
Finally, all ants combine their local best solutions to infer an
optimal solution.

Algorithm 2 Ant Colony Based VMMigration, at Cloudlet i
INPUT: VM set V and accessible cloudlet setCu for each
VM u. System Parameters
OUTPUT: VM-cloudlet pair.

1: Initialize system tunning parameter α
2: Initialize system migration parameters γl , γg
3: Determine Candidate VM set V s using Algorithm 1
4: Initialize ants set A
5: Generate initial solution using FFVM Algorithm 3
6: Calculate initial pheromone γ0
7: Set maximum iteration MAX_IT
8: while (do iteration ≤MAX_IT)
9: for (Ant a ∈ A) do
10: k = 0
11: repeat
12: Select a VM v in cloudlet j for VM uk ∈ V s

using Eq. 22
13: k = k+1
14: until every VM is provisioned to a cloudlet
15: for (VM k ∈ V s) do
16: Update the local pheromone using Eq. 24
17: end for
18: end for
19: Update the global pheromone using Eq. 25
20: iteration = iteration+1
21: end while
22: Return VM-cloutlet pairs

1) PHEROMONES AND INITIAL PHEROMONE CALCULATION
In ACO algorithm, pheromones represent the desirability of
choosing a solution. In our proposed PRIMIO algorithm, the
pheromones represent the desirability of assigning a VM to
a cloudlet. Each ant starts with an initial pheromone value
for each VM to cloudlet pair. The initial solution is generated

using a greedy First Fit(FF) VM migration approach, which
is listed in Algorithm 3.

Algorithm 3 First Fit VM Migration, at Cloudlet i
INPUT: VM set V and accessible cloudlet setCu for each
VM u.
OUTPUT: VM-cloudlet pair in initial solution.

1: for (VM u ∈ V) do
2: for (VM v in V c

j,u) do
3: if (Tu,v ≤ TDu And ∀r∈Rui R

D,r
u ≤ R

r
v) then

4: Assign VM i to cloudlet k
5: Break
6: end if
7: end for
8: end for

The initial pheromone value is calculated by summing the
total task-execution times and the resources over-provisioned
in each cloudlet and taking the inverse of the amount. Initial
pheromone value for each ant is calculated as follows,

τ0 =
∑
u∈V si

∑
v∈V cj,u

1
Tu,v +

∑
r∈Rui

Ro,ru,v
× yu,v (17)

where yu,v is a binary variable, which is defined as,

yu,v =

{
1, if (u, v) ∈ S0
0, otherwise

(18)

2) CALCULATION OF HEURISTIC VALUE
To build a solution each ant uses the local heuristic value to
select a cloudlet for a VM. This heuristic value defines the
favorability of choosing a cloudlet for a VM to construct the
solution. As PRIMIO tries to jointly optimize the objectives
of total task-execution time and resource over-provisioning
in cloudlets. So, the local heuristic value has to be defined in
such a way that the system can optimize the task execution
time and resource over-provisioning to reflect the system
objectives. Local heuristic is defined as,

ηu,v = α × η
E
u,v + (1− α) η

R
u,v (19)

where α is the system parameter defines the relative weight
between the objectives of total task execution time and
resource over-provisioning of cloutlets. It can be tuned
according to the system environment. ηEi,j and ηRi,j is the
objectives of total task execution time and the resource over-
provisioning respectively, if VM migrates from cloudlet i to
cloudlet j. ηEi,j and η

R
i,j are defined in Eq. (20) and Eq. (21),

respectively.

ηEu,v =

u∑
k=1

∑
v∈V uj,u

1
Tk,v

(20)

ηRu,v =
∑
r∈Rui

u∑
k=1

∑
v∈V cj,u

(
1− Ro,rk,v

)
(21)

VOLUME 5, 2017 11893

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

3) CLOUDLET SELECTION: PSEUDO-RANDOM
PROPORTIONAL RULE
While constructing the solution, each ant selects a cloudlet
for each VM using a pseudo-random proportional rule, which
can be defined as follows,

v =

{
argmaxk∈V cj,u

([
τu,k

]α
×
[
ηu,k

]β)
, if q ≤ q0

s, otherwise
(22)

where q is a random numbers uniformly distribute in [0,1]
and q0 is the system parameter on the range [0,1]. τi,k is
the pheromone value of selecting cloudlet k for VM i. When
q ≤ q0, (i.e., exploitation) ant selects a cloudlet j for a VM i,
where the multiplication of

[
τi,k
]α
×
[
ηi,k

]β gives the highest
value among the all possible choice of cloudlets. Here, α and
β are the system parameters, denoting the relative importance
of pheromone value and the local heuristic value for choosing
a cloudlet j for a VM in the cloudlet i. If the random number q
is greater than q0, i.e. in case of exploration, an ant z choose a
cloudlet j using the probability pzi,j, which can be defined as,

pzu,v =

(
[τu,k]α×[ηu,k]β

)
∑

k∈Vcj,u

(
[τu,k]α×[ηu,k]β

) , if q ≤ q0

0, otherwise

(23)

4) LOCAL PHEROMONE UPDATE
When an ant chooses a VM pair to construct a solution, it
immediately updates the local pheromone value in relation to
the initial pheromone value. Local pheromones are updated
by each ant using the following relation,

τu,v(t + 1) = (1− γl)× τu,v(t)+ γlτ0 (24)

where γl is the system parameters, denoting the relative
importance of current pheromone value at time t , τu, v(t).

5) GLOBAL PHEROMONE UPDATE
Global pheromone values are updated for each pair of VM
and cloudlet onlywhen all ants constructed their local optimal
solutions and updated the global optimal solution. The global
pheromone values are updated using the following relation,

τu,v(t + 1) = (1− γg)× τu,v(t)+ γg1τu,v (25)

where the γg is the global pheromone system parameter, this
parameters can be tuned according to the system objectives.
1τu,v is the global pheromone value for the updated global
solution, which is defined as

1τu,v =

{
τu,v, if (u, v) ∈ PGS
0, otherwise

(26)

where PGS is the global solution set of the selected VM u for
migration and the target VM v where the migration will be
occurred.

6) VM MIGRATION INITIATOR
Ant colony optimization optimally selects a cloudlet for a
VM. After each VM is mapped to a particular cloudlet, the
VMmigration initiator is invoked, which determines whether
the PRIMIO algorithm selects the current cloudlet for the VM
as a target cloudlet. If the target and current cloudlets for a
VM are different then the VM migration manager initiates
a VM migration event. Otherwise, the VM is provisioned to
the current cloudlet and no VM migration event initiation is
required.

VI. PERFORMANCE EVALUATION
In this section, we assess the performance of our proposed
PRIMIO method through test-bed experimentation. We com-
pare the performance of proposed PRIMIO method with
‘No Migration,’ ‘Task-centric migration’ [14], GAVMM [24]
and mobility-based ‘greedy migration’ methods. In imple-
menting the ‘No Migration’ method, VMs are not migrated
even though a cloudlet is overloaded or the user moves to
cloudlets; the cloudlet, where the VM is provisioned, exe-
cutes the task and forwards the result to the destination
cloudlet. In implementing ‘Task-centric migration,’ an indi-
vidual task is migrated to another cloudlet, following the
task’s mobility pattern and cloudlet’s computational load, in
order to improve task execution time. ‘GAVMM’, employs a
genetic algorithm to select a target cloudlet based on the user
mobility and cloudlet sever load. On the other hand, Greedy
VM Migration method migrates a VM to a cloudlet from
which the user is receiving the highest WiFi signal strength,
without considering the load of that cloudlet initiating
VM migration.

A. EXPERIMENTAL ENVIRONMENT
As test bed to evaluate performance of PRIMIO, we
used ten cloudlets, each with the following computational
resources [1.5-3.0]GHz processor, [8-16]GB memory and
[250-350GB] SATA hard disk. All cloudlets were intercon-
nected with [2-20]Mbps Ethernet links. Users access the
cloudlets using mobile devices with varying computation
capacity. Each user device is connected with cloudlet APs
through a WiFi IEEE 802.11g interface. In this experiment,
we used two Galaxy Grand 2, two Sony Xperia Z, and six
Symphony Android location-enabled devices.

Tasks in the mobile devices are generated by following
a Poisson distribution. The tasks are text, a document, or
an image which is uploaded to cloudlet for analysis. After
that, the result will be pushed back to the user’s mobile
device. Here, α is a system parameter, the value of which
is determined based on the user task. In our experiment, we
set the system parameter to 0.65 through rigorous simulation
and also because the goal of task is to reduce the task-
completion time. Based on rigorous numerical simulation and
task type, we set other experiment parameters ω0, γl and γg.
The parameters used in testbed experiments are enlisted
in Table 2.

11894 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

TABLE 2. Simulation parameters.

B. PERFORMANCE METRICS
To evaluate the performance of the proposed PRIMIO
approach to VM migration compared to state-of-the-art VM
migration methodologies, we consider the following metrics:
• Average Task-Completion Time: calculated by averag-
ing task execution time for a set of tasks executing in
the cloudlets using different VMmigration mechanisms.
A VM migration method with decreasing average task-
completion time increases the quality of user experience
(QoE) by executing the task in the cloudlets rather than
executing in the mobile devices.

• Resources Over-Provisioned (%): measured by calcu-
lating the amount of extra resources are provisioned
compared to the resources required. We measure the
percentage of over-provisioned resources using Eq. 9.
If the percentage of over-provisioned resources
increases for a VM migration method, that degrades the
overall system performance.

• Successful Task Completion (%): calculated as the per-
centage of tasks, which are provisioned to cloudlets and
which successfully completed their executions within
the predefined task execution deadline. Thismetric helps
to evaluate the probability that a VMmigration approach
will finish the execution of a task within deadline.

• VMMigration Overhead: is the ratio of the total number
of migrations are required to execute a set of tasks and
the total number of tasks finishing execution within the
predefined deadline. This metric indicates the perfor-
mance of VM migration method in terms of utilization
of provisioned resources.

C. EXPERIMENTAL RESULTS
We studied the performance of our proposedPRIMIOmethod
by varying user mobility, task lifetime, and data footprint.
In simulation, we only considered a pedestrian walking
model.

1) IMPACTS OF USER MOBILITY
We gauge the impact of user mobility on average task-
execution lifetime in cloudlets, over-provisioned resources,
task-executions completed within deadline and the VM
migration overhead. To study the impact of user mobility, we
vary user speed from [4.5 ∼ 7.0]Km/hr, which follows the
pedestrian walking model.

Fig. 3 (a) shows that the average task lifetime increases
with increased mobility speed, because it causes frequent
migration of VMs, increasing the service downtime. More-
over, the communication latency between the user and the
cloudlet is also increased. Hence, the graph indicates that No
Migration policy experiences higher average task-execution
time. However, our proposed VMmigration policy, PRIMIO,
reduces the average task-execution lifetime as it migrates
VMs based not only on the user mobility pattern but also it
considers computational load of cloudlets. On the otherhand,
other VMMigration approaches do not effectively utilize the
user mobility to initiate the VM migration decision.

Fig. 3 (b) depicts that the percentage of over-provisioned
resources increases with the higher mobility speeds. As user
mobility speed increases, the tasks in the cloudlets also
migrate more frequently, thus migrating to VMs with greater
capacity than the required. The No VM migration approach,
for example, does not increase the percentage of resource
over-provision, as it does not migrate any VM. Even though,
all the VM migration approaches increase the resource over-
provision, our proposed PRIMIO approach does not sig-
nificantly increase the over-provisioned resources, because
it considers a joint VM-migration approach. This helps
the cloudlet system to minimize over-provisioned resources
across the system as a whole. By contrast, the task-based and
greedy VM migration approaches utilize a single VM migra-
tion approach, making migration decisions without consider-
ing the other provisioned VMs. Therefore, these VM migra-
tion approaches increase the over-provisioned resource as
user mobility increases.

Fig. 3 (c) shows that the percentage of successful task exe-
cution within deadline degrades with increased user mobil-
ity speed. One possible explanation is that increased user
mobility also increases communication delay with the VM
provisioned in a cloudlet and increase the task lifetime which
in turns miss the task execution deadline. For this reason,
the No VM migration approach has a lower percentage of
tasks executed within deadline. The PRIMIO VM migration
approach migrates the VM to a cloudlet by following user
mobility and cloudlet load. However, greedy and task-centric
VM migration approaches can not effectively utilize user
mobility. Moreover, the greedy VMmigration approach does
not consider the load of the provisioned cloudlet.

Fig. 3 (d) depicts that increased user mobility speed also
increases VM migration overhead. We do not study the No
VM migration approach here, as it migrates no VM and
thus incurs no migration overhead. Although, our proposed
VM migration approach PRIMIO increases VM migration
overhead with the increased user mobility speed, it does
not increase significantly compared to others. This is for
two main reasons. First, PRIMIO uses user mobility infor-
mation in initiating VM migration decisions, thus decreas-
ing task execution lifetime and increases the percentage of
successful completed of task execution within the execution
deadline. Secondly, PRIMIO considers cloudlet load in the
VM migration decision process, which effectively reduces

VOLUME 5, 2017 11895

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

FIGURE 3. Impacts of mobility speed. (a) Average task completion time. (b) Resource over-provisioned. (c) Successful task
completion. (d) VM migration overhead.

FIGURE 4. Impacts of average task completion time. (a) Resource over-provisioned. (b) VM migration overhead.

the total number of VM migrations across the whole task
lifetime. Even though greedy and task-centric VM migration
approaches consider the user mobility and thus reduce the
total number of VM migration, neither could significantly
increase the percentage of successful task execution within
deadline, therefore failing to reduce VMmigration overhead.

2) IMPACTS OF TASK LIFETIME
We measure the impacts of task lifetime on the percentage
of over-provisioned resources and VM migration overhead

by varying the task lifetime on the cloudlets from [6 ∼ 14]
minutes. During this simulation, we set user mobility speed
to approximately 5.5 Km/h.

Fig. 4 (a) indicates that the percentage of over-provisioned
resources increases with average task lifetime. Neverthe-
less, the over-provisioned resources do not increase signif-
icantly in PRIMIO, because, it employs a joint VM migra-
tion approach that effectively utilizes the system resources.
On the other hand, the Greedy VM migration approach
increases over-provisioned resources more rapidly as it only

11896 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

FIGURE 5. Impacts of data footprints. (a) Average task completion time. (b) Successful task completion.

considers the user mobility without looking at cloudlet
resources.Meanwhile, the task-centric VMmigrationmethod
takes a single VM migration approach, which fails to
effectively utilize cloudlet resources. Finally, the No VM
migration approach, eventhough it does not increase the
over-provisioned resources, but it negatively impacts on other
aspects.

Fig. 4 (b) depicts that increased task execution lifetime in
the cloudlets also increases VM migration overhead. Obvi-
ously, a task that executes for a longer period of time would
incur more VM migration overhead. However, if migration
increases rapidly with regard to task lifetime, it degrades both
system performance and user application’s quality of service.
This graph indicates that, compared to our proposed PRIMIO
VMmigration approach, other methodsmore greatly increase
VM migration overhead. Moreover, VM migration overhead
in thePRIMIO approach reaches a steady state when task exe-
cution lifetime is close to 10 minutes. Because, PRIMIO uti-
lizes both the joint-VMmigration approach and user mobility
to initiate VM migration decisions.

3) IMPACTS OF DATA FOOTPRINTS
We studied impacts of data footprint, which is the data asso-
ciated with the VM, on average task lifetime, successful task
execution within deadline and VM migration overhead of
different VMmigration approaches. During this study, we set
the usermobility speed to approximately 5.5Km/h.We varied
the data footprint size from [0.5 ∼ 10]× 106.
Fig. 5 (a) shows that average task execution lifetime

increase as data footprint increases. Nonetheless, compared
to the other VM migration approaches, PRIMIO does not
significantly increase the average task lifetime, because it
considers a data-transfer penalty in the VM migration deci-
sion process. Moreover, in the graph we can see that the
average task lifetime reaches a steady state when the data
footprint size is greater than approximately 4 × 106. Larger
than this footprint, the PRIMIO method refrains from trans-
ferring a VM closer to the user in order to reduce the total
task execution time. On the other hand, other VM migration

approaches only consider user mobility when imitating VM
migration and, thus they increase the average task lifetime.

Fig. 5 (b) depicts that increased data footprint invresely
affects the percentage of task completion within the deadline.
However, the task completion percentage does not decrease
in our proposed PRIMIO compared to the other approaches.
As previously stated PRIMIO considers the data transfer
time before initiating any VM migration decision. On the
other hand, the percentage of task completion in the No VM
migration approach decreases significantly, as users move
from one access point to another, the communication delay
increases, and thus it increases transfer time of final task
result. Therefore, No VM migration approach significantly
reduces the percentage of tasks completed within deadline.

FIGURE 6. Impacts of data footprints: VM migration overhead.

Fig. 6 shows that increased data footprints also increase
VM migration overhead. The greedy and task-centric VM
migration policies that do not effectively consider migra-
tion time, increase not only total number of VM migra-
tions but also decrease number of tasks completed within
deadline. Nonetheless, our proposed method PRIMIO does
not increase the VM migration overhead compared to other
polices, mainly because PRIMIO decreases the total number

VOLUME 5, 2017 11897

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

of VM migrations as the data footprints size increases and
also increases the total number of tasks completed within
deadline. Thus, the proposed algorithm demonstrated its
superiority over existing algorithms.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a mobility- and resource-
aware joint virtual-machine migration model for hetero-
geneous mobile cloud computing systems to improve the
performance of mobile Smart health care applications in a
Smart City environment. Here, we address research chal-
lenges to reduce task-completion times as well as to reduce
resource over-provisioning in mobile cloud computing that
executes both computationally and BigData-intensive health-
care tasks. The proposed PRIMIOmodel initiates VMmigra-
tion by considering user mobility and computational load of a
cloudlet. As PRIMIO exploits users’ mobility in achieving an
optimal solution, it effectively brings cloud resources closer
to the user. At the same time, PRIMIO considers the load
of the cloudlet to which the system wants to migrate the
VM, thereby reducing total number of migrations across
the entire task-execution time. Furthermore, we considered
rates of resource over-provisioning during VM migration,
allowing the overall system to utilize computing resources
optimally. Left for our future work is how to further optimize
the task-computation time and data-access latency through
considering the presence of fog clouds and crowd sourcing.
In this aspect, we will explore the emerging edge computing
technology to further optimize the task execution time while
considering mobility and context-awareness.

REFERENCES
[1] J. H. Abawajy and M. M. Hassan, ‘‘Federated Internet of Things and cloud

computing pervasive patient health monitoring system,’’ IEEE Commun.
Mag., vol. 55, no. 1, pp. 48–53, Jan. 2017.

[2] E. Ahmed et al., ‘‘Enabling mobile and wireless technologies for smart
cities,’’ IEEE Commun. Mag., vol. 55, no. 1, pp. 74–75, May 2017.

[3] M. Basiri, A. Z. Azim, and M. Farrokhi, ‘‘Smart city solution for sustain-
able urban development,’’Eur. J. Sustain. Develop., vol. 6, no. 1, pp. 71–84,
2017.

[4] N. Bobroff, A. Kochut, and K. Beaty, ‘‘Dynamic placement of virtual
machines for managing SLA violations,’’ in Proc. 10th IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM), May 2007, pp. 119–128.

[5] R. Buyya, C. S. Yeo, and S. Venugopal, ‘‘Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as comput-
ing utilities,’’ in Proc. 10th IEEE Int. Conf. High Perform. Comput.
Commun. (HPCC), Sep. 2008, pp. 5–13.

[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, ‘‘Clonecloud:
Elastic execution between mobile device and cloud,’’ in Proc. 6th Conf.
Comput. Syst., 2011, pp. 301–314.

[7] R. Cimler, J. Matyska, and V. Sobeslav, ‘‘Cloud based solution for mobile
healthcare application,’’ in Proc. 18th Int. Database Eng. Appl. Symp.,
2014, pp. 298–301.

[8] E. Cuervo et al., ‘‘Maui: Making smartphones last longer with code
offload,’’ in Proc. 8th Int. Conf. Mobile Syst., Appl., Services, 2010,
pp. 49–62.

[9] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, ‘‘A survey of mobile
cloud computing: Architecture, applications, and approaches,’’ Wire-
less Commun. Mobile Comput., vol. 13, no. 18, pp. 1587–1611,
Dec. 2013.

[11] C. Doukas, T. Pliakas, and I. Maglogiannis, ‘‘Mobile healthcare informa-
tion management utilizing cloud computing and Android OS,’’ in Proc.
Annu. Int. Conf. IEEE Eng. Med. Biol., Aug. 2010, pp. 1037–1040.

[12] E.-M. Fong and W.-Y. Chung, ‘‘Mobile cloud-computing-based health-
care service by noncontact ecg monitoring,’’ Sensors, vol. 13, no. 12,
pp. 16451–16473, 2013.

[13] L. Gkatzikis and I. Koutsopoulos, ‘‘Migrate or not? Exploiting dynamic
task migration in mobile cloud computing systems,’’ IEEE Wireless
Commun., vol. 20, no. 3, pp. 24–32, Jun. 2013.

[14] L. Gkatzikis and I. Koutsopoulos, ‘‘Mobiles on cloud nine: Efficient task
migration policies for cloud computing systems,’’ in Proc. IEEE 3rd Int.
Conf. Cloud Netw. (CloudNet), Oct. 2014, pp. 204–210.

[15] M. Guntsch, M. Middendorf, and H. Schmeck, ‘‘An ant colony optimiza-
tion approach to dynamic TSP,’’ in Proc. 3rd Annu. Conf. Genetic Evol.
Comput., 2001, pp. 860–867.

[16] M. M. Hassan, ‘‘Cost-effective resource provisioning for multimedia
cloud-based e-health systems,’’ Multimedia Tools Appl., vol. 74, no. 14,
pp. 5225–5241, 2015.

[17] M. M. Hassan, H. S. Albakr, and H. Al-Dossari, ‘‘A cloud-assisted Internet
of Things framework for pervasive healthcare in smart city environment,’’
in Proc. 1st Int. Workshop Emerg. Multimedia Appl. Services Smart Cities,
2014, pp. 9–13.

[18] M. M. Hassan, K. Lin, X. Yue, and J. Wan, ‘‘A multimedia healthcare
data sharing approach through cloud-based body area network,’’ Future
Generat. Comput. Syst., vol. 66, pp. 48–58, Jan. 2017.

[19] M. S. Hossain, M. Moniruzzaman, G. Muhammad, A. Ghoneim, and
A. Alamri, ‘‘Big data-driven service composition using parallel clustered
particle swarm optimization in mobile environment,’’ IEEE Trans. Service
Comput., vol. 9, no. 5, pp. 806–817, May 2016.

[20] M. S. Hossain, S. A. Hossain, A. Alamri, and M. A. Hossain, ‘‘Ant-based
service selection framework for a smart home monitoring environment,’’
Multimedia Tools Appl., vol. 67, no. 2, pp. 433–453, 2013.

[21] M. S. Hossain, ‘‘Patient state recognition system for healthcare using
speech and facial expressions,’’ J. Med. Syst., vol. 40, no. 12, p. 272, 2016.

[22] M. S. Hossain and G. Muhammad, ‘‘Cloud-assisted industrial Internet
of Things (IIoT)—Enabled framework for health monitoring,’’ Comput.
Netw., vol. 101, pp. 192–202, Jun. 2016.

[23] M. S. Hossain and G. Muhammad, ‘‘Healthcare big data voice pathology
assessment framework,’’ IEEE Access, vol. 4, pp. 7806–7815, 2016.

[24] M. Islam, A. Razzaque, and J. Islam, ‘‘A genetic algorithm for virtual
machine migration in heterogeneous mobile cloud computing,’’ in Proc.
Int. Conf. Netw. Syst. Security (NSysS), Jan. 2016, pp. 1–6.

[25] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, ‘‘A survey of
mobile cloud computing application models,’’ IEEE Commun. Surveys
Tuts., vol. 16, no. 1, pp. 393–413, Feb. 2014.

[26] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, ‘‘ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for mobile
code offloading,’’ in Proc. IEEE INFOCOM, Mar. 2012, pp. 945–953.

[27] P. Kulkarni and T. Farnham, ‘‘Smart city wireless connectivity consider-
ations and cost analysis: Lessons learnt from smart water case studies,’’
IEEE Access, vol. 4, pp. 660–672, 2016.

[28] R. Kumari et al., ‘‘Application offloading using data aggregation in mobile
cloud computing environment,’’ in Leadership, Innovation Entrepreneur-
ship as Driving Forces Global Economy. Switzerland: Springer, 2017,
pp. 17–29.

[29] P. G. J. Leelipushpam and J. Sharmila, ‘‘Live VM migration techniques
in cloud environment : A survey,’’ in Proc. IEEE Conf. Inf. Commun.
Technol. (ICT), Apr. 2013, pp. 408–413.

[30] J. Li, K. Bu, X. Liu, and B. Xiao, ‘‘Enda: Embracing network inconsistency
for dynamic application offloading in mobile cloud computing,’’ in Proc.
2nd ACM SIGCOMMWorkshop Mobile Cloud Comput., 2013, pp. 39–44.

[31] J. Liu, Y. Li, D. Jin, L. Su, and L. Zeng, ‘‘Traffic aware cross-site virtual
machinemigration in futuremobile cloud computing,’’Mobile Netw. Appl.,
vol. 20, no. 1, pp. 62–71, Feb. 2015.

[32] J. Montgomery, M. Randall, and T. Hendtlass, ‘‘Structural advantages for
ant colony optimisation inherent in permutation scheduling problems,’’ in
Proc. 18th Int. Conf. Innov. Appl. Artif. Intell., 2005, pp. 218–228.

[33] Z. L. Phyo and T. Thein, ‘‘Correlation based vms placement resource
provision,’’ Int. J. Comput. Sci. Inf. Technol., vol. 5, no. 1, p. 95, 2013.

[34] M. Rahimi, J. Ren, C. Liu, A. Vasilakos, and N. Venkatasubramanian,
‘‘Mobile cloud computing: A survey, state of art and future directions,’’
Mobile Netw. Appl., vol. 19, no. 2, pp. 133–143, 2014.

11898 VOLUME 5, 2017

Md. M. Islam et al.: Mobile Cloud-Based Big Healthcare Data Processing in Smart Cities

[35] C. C. Sasan Adibi and N.Wickramasinghe, ‘‘CCmH: The cloud computing
paradigm for mobile health (mHealth),’’ Int. J. Soft Comput. Softw. Eng.,
vol. 3, no. 3, pp. 403–410, 2013.

[36] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, ‘‘The case for VM-
based cloudlets in mobile computing,’’ IEEEPervas. Comput., vol. 8, no. 4,
pp. 14–23, Oct. 2009.

[37] M. Sneps-Sneppe and D. Namiot. (2016). ‘‘On mobile cloud for smart city
applications.’’ [Online]. Available: https://arxiv.org/abs/1605.02886

[38] T. Taleb and A. Ksentini, ‘‘An analytical model for follow me cloud,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2013,
pp. 1291–1296.

[39] H. N. Van, F. Tran, and J.-M. Menaud, ‘‘Sla-aware virtual resource man-
agement for cloud infrastructures,’’ in Proc. 9th IEEE Int. Conf. Comput.
Inf. Technol. (CIT), vol. 1, Oct. 2009, pp. 357–362.

[40] U. Varshney, Pervasive Computing and Healthcare. Boston, MA, USA:
Springer, 2009, pp. 39–62.

[41] L. Wang, F. Zhang, A. V. Vasilakos, C. Hou, and Z. Liu, ‘‘Joint virtual
machine assignment and traffic engineering for green data center net-
works,’’ SIGMETRICS Perform. Eval. Rev., vol. 41, no. 3, pp. 107–112,
Jan. 2014.

[42] S. Wang, R. Urgaonkar, T. He, M. Zafer, K. Chan, and K. Leung,
‘‘Mobility-induced service migration in mobile micro-clouds,’’ in Proc.
IEEE Military Commun. Conf. (MILCOM), Oct. 2014, pp. 835–840.

[43] I. Yaqoob, I. A. T. Hashem, Y. Mehmood, A. Gani, S. Mokhtar, and
S. Guizani, ‘‘Enabling communication technologies for smart cities,’’ IEEE
Commun. Mag., vol. 55, no. 1, pp. 112–120, Jan. 2017.

[44] Q. Zhang, L. Cheng, and R. Boutaba, ‘‘Cloud computing: State-of-the-art
and research challenges,’’ J. Internet Services Appl., vol. 1, no. 1, pp. 7–18,
2010.

MD. MOFIJUL ISLAM received the B.S. and
M.S. degrees in computer science and engineering
from the Department of Computer Science and
Engineering, University of Dhaka, Banglabesh. He
was a Software Engineer with Tiger It Ltd. He is
currently a Lecturer (part-time) with the Depart-
ment of Computer Science and Engineering, Uni-
versity of Dhaka. He is involved in programming
training, mobile apps, and different software con-
test team-building activities. His research inter-

ests include cloud computing and mobile cloud computing, human com-
puter interaction, human-centered computing, data science and information
retrieval, big data and visualization, and user experience design.

MD. ABDUR RAZZAQUE (SM’12) received
the B.S. and M.S. degrees from the University
of Dhaka, Bangladesh, and the Ph.D. degree in
wireless networking from Kyung Hee University,
SouthKorea, in 2009. Hewas a Research Professor
with the College of Electronics and Information,
Kyung Hee University, from 2010 to 2011. He is
a Professor with the Department of Computer Sci-
ence and Engineering, University of Dhaka, where
he is also the Group Leader of the Green Network-

ing Research Group. He has published a number of research papers in the
IEEE/ACM/Springer conferences, journals, and books. His research interests
are in the areas of modeling, analysis, and optimization of wireless net-
working protocols and architectures, wireless sensor networks, body sensor
networks, cooperative communications, sensor data clouds, and cognitive
radio networks. He is a TPC Member of the IEEE HPCC, ICOIN, ADM,
ICUFN, and NSyS. He is a senior member of the IEEE Communica-
tions Society, the IEEE Computer Society, the Internet Society, the Pacific
Telecommunications Council, and KIPS.

MOHAMMAD MEHEDI HASSAN (M’12)
received the Ph.D. degree in computer engineering
fromKyung Hee University, South Korea, in 2011.
He is an Associate Professor with the Information
Systems Department, College of Computer and
Information Sciences (CCIS), King Saud Univer-
sity (KSU), Riyadh, Saudi Arabia. He has authored
more than 100 research papers in international
journals and conferences. His research areas of
interest are cloud federation, multimedia cloud,

sensor-cloud, Internet of Things, big data, mobile cloud, cloud security,
IPTV, sensor network, 5G network, social network, publish/subscribe sys-
tem, and recommender system. He received the Best Paper Award from the
CloudComp Conference in China in 2014. He also received the Excellence
in Research Award from CCIS, KSU, in 2015 and 2016, respectively.
He has served as the Chair and a Technical Program Committee Member in
numerous international conferences/workshops, such as the IEEEHPCC, the
ACMBodyNets, the IEEE ICME, the IEEE ScalCom, the ACMMultimedia,
ICA3PP, the IEEE ICC, TPMC, and IDCS. He was the Guest Editor of
several international ISI-indexed journals.

WALAA NAGY ISMAIL is currently pursuing the Ph.D. degree with the
Information Systems Department, College of Computer and Information
Sciences, King SaudUniversity, Riyadh, Saudi Arabia. Her research interests
include pervasive health care, anomaly detection, cloud computing, mobile
health care, and data mining.

BIAO SONG (M’12) received the Ph.D. degree
in computer engineering from Kyung Hee Uni-
versity, South Korea, in 2012. He is currently an
Assistant Professor with the College of Computer
and Information Science, King Saud University,
Saudi Arabia. His current research interests are
cloud computing, remote display technologies,
and dynamic VM resource allocation.

VOLUME 5, 2017 11899

