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ABSTRACT In this paper, we propose a fully ear-worn long-term blood pressure (BP) and heart rate (HR)
monitor to achieve a higher wearability. Moreover, to enable practical application scenarios, we present a
machine learning framework to deal with severe motion artifacts induced by head movements. We suggest
situating all electrocardiogram (ECG) and photoplethysmography (PPG) sensors behind two ears to achieve
a super wearability, and successfully acquire weak ear-ECG/PPG signals using a semi-customized platform.
After introducing head motions toward real-world application scenarios, we apply a support vector machine
classifier to learn and identify raw heartbeats from motion artifacts-impacted signals. Furthermore, we
propose an unsupervised learning algorithm to automatically filter out residual distorted/faking heartbeats,
for ECG-to-PPG pulse transit time (PTT) and HR estimation. Specifically, we introduce a dynamic time
warping-based learning approach to quantify distortion conditions of raw heartbeats referring to a high-
quality heartbeat pattern, which are then compared with a threshold to perform purification. The heartbeat
pattern and the distortion threshold are learned by a K-medoids clustering approach and a histogram triangle
method, respectively. Afterward, we perform a comparative analysis on ten PTT or PTT&HR-based BP
learning models. Based on an acquired data set, the BP and HR estimation using the proposed algorithm
has an error of −1.4±5.2 mmHg and 0.8±2.7 beats/min, respectively, both much lower than the state-of-
the-art approaches. These results demonstrate the capability of the proposed machine learning-empowered
system in ear-ECG/PPG acquisition and motion-tolerant BP/HR estimation. This proof-of-concept system
is expected to illustrate the feasibility of ear-ECG/PPG-based motion-tolerant BP/HR monitoring.

INDEX TERMS Wearable computers, blood pressure, heart rate, photoplethysmogram, electrocardiography,
pulse transit time, fitness, signal processing, machine learning.

I. INTRODUCTION
High blood pressure (BP), also called hypertension, is a com-
mon but dangerous condition, impacting over 35 percent of
people, relating to many cardiovascular, circulatory and cere-
brovascular diseases, and causing 12.8 percent of total deaths
worldwide [1]. Long-term BP monitoring is a key factor in
hypertension control for several reasons. Firstly, hypertension
is often associated with few or no symptoms which makes
timely early diagnosis and treatment highly challenging with-
out daily BP tracking. Moreover, a frequent BP measure-
ment is significant to check up how well the treatment of
hypertension is going on. Besides, BP always fluctuates over

time, making the measurement at specified times and circum-
stances insufficient for effective BP monitoring and analysis.
However, the traditional BP measurement methods usually
cannot well fit the needs of long-term application scenarios,
such as the invasive catheterization method sacrificing the
comfortableness and the noninvasive cuff-based oscillometry
approach lacking of a good wearability [2].

Wearable computers are paving a promising way for per-
vasive smart health wearables for people around the world,
especially for developing worlds where major problems
include lack of health infrastructure and limited health cov-
erage. Wearable computers can provide health management
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in a more affordable manner than traditional health services,
especially when long-term continuous health data collection
is needed for effective diagnosis/treatment of chronic diseases
like hypertension. Many investigations in wearable BP moni-
toring have been reported and summarized in several recently
published surveys [2], [3]. The most popular BP estimation
theories are based on the fact that BP is often reversely cor-
related with the pulse transit time (PTT), i.e., the blood wave
propagation time between two arterial sites [2]. In the arterial
vessel, a higher BP usually generates a higher velocity of
propagation, which results in a smaller time (i.e. PTT) for the
wave to travel along the vessel, and vice versa. Tomeasure the
PTT start and end time, the electrocardiography (ECG) and
photoplethysmogram (PPG) signals are the most widely used
ones. The ECG heartbeat peak corresponds to the pressure
wave occurrence time on the proximal site, i.e., the thoracic
aorta, and thus can represent the PTT start time. The PPG
heartbeat foot corresponds to when the pulse arrives the distal
site, i.e., the location where the PPG sensor is placed, and
thus can reflect the PTT end time. In these works, the most
frequently applied ECG/PPG sensors placement methods
are two-wrists/finger, chest/finger, and chest/chest. However,
these placement approaches may impact the wearability and
comfortableness, considering the former two require extra
connection overhead or wearing more than one devices, and
the last one may need a chest strap to fix the sensors and
suffer from sweating. Some works [4], [5] proposed an in-
ear PPG signal monitor to measure HR and other information,
but they did not acquire ECG signal and measure BP. Another
work [6] proposed placing the PPG sensor behind the left ear
and placing two ECG electrodes behind the left ear and neck,
respectively. However, the signal quality may be impacted if
the collar coat touches the electrode on the neck in long-term
daily applications. Moreover, this work did not evaluate the
BP estimation performance after obtaining the PTT measure-
ments, and did not consider daily movements-inducedmotion
artifacts.

Another significant concern lacking of enough attention
and study is whether BP estimation systems can tolerate to
large amounts of motion artifacts [7], [8], since the body
movements in long-term daily applications inevitably induce
time varying skin-sensor contact variations which usually
impact or even corrupt the ECG and PPG signals acquired.
The accelerometers can be applied to track the motion infor-
mation, which can be used as a reference for motion artifacts
removal, such as discarding signal periods or adaptive filter-
based motion artifact cancellation [9]. However, the accelera-
tion information and sensor-electrode contact condition may
not be well correlated, considering that the sensor-electrode
contact is highly complicated and lack of effective modeling
methods [10]. Moreover, there are diverse BP modeling the-
ories and strategies being studied, to deal with the underlying
complicated blood pressure wave generation and propagation
mechanisms, nevertheless, the comparative analysis of major
BP models is rather limited [2], [3]. One thing worth not-
ing is that, we have previously reported a single-arm-worn

ECG&PPG-based blood pressure monitor [11] which can
provide a super wearability, but in this study we focus on
another novel easy-wearing blood pressure monitor with
novel sensor placement methods. Besides, body movements
during blood pressure estimation were not considered in our
previous work, however, in this study, we have made lots of
efforts to deal with motion artifacts towards all-day applica-
tion scenarios.

In this paper, focusing on above-mentioned challenges, we
propose a novel fully ear-worn ECG&PPG-based BP and HR
monitor to provide a much higher wearability, and we further
present a machine learning framework to deal with many
severe and random motion artifacts induced in daily applica-
tions. Firstly, to meet critical requirements on the wearability
and comfortableness in long-term daily applications, a highly
convenient sensors placement method is suggested which
allows situating the ECG and PPG sensors all behind two ears
and the possibility to integrate them into glasses or ear head-
sets. To the best of our knowledge, it is the first time to place
ECG sensors behind two ears, which is a highly challenging
non-standard single lead configuration for a super wearability
purpose. Using our semi-customized hardware prototype, the
weak ECG and PPG signals are successfully acquired with
good morphologies.

Secondly, a machine learning-based framework is pro-
posed for heartbeat identification from weak ear signals
with large amounts of motion artifacts induced by breathing,
blood vessels movements and especially, head movements
(the participants were asked to perform head movements
towards practical application scenarios). In the proposed
machine learning-based framework, we firstly try to identify
the raw heartbeats using our previously reported support
vector machine (SVM)-based approach [12]. Afterwards, to
filter out many residual distorted or faking raw heartbeats,
we further propose an unsupervised learning approach to
automatically label the heartbeat quality levels and purify
the raw heartbeats. Specifically, we introduce a dynamic
timewarping (DTW)-based learning approach [13]which can
perform non-linear mapping of two time-varying sequences,
to measure the dissimilarity between each raw heartbeat and
a high quality heartbeat pattern. The measured DTW dissim-
ilarity values are used to quantify the degree of distortion of
raw heartbeats and are compared with a distortion threshold,
to generate the heartbeat-specific signal quality indices and
perform ECG/PPG heartbeats purification. The high quality
heartbeat pattern is learned using a K-medoids clustering
method [14], and the distortion threshold is learned by a
histogram triangle-based method [15].

The purified heartbeats are used for HR and PTT esti-
mation. Afterwards, ten PTT-BP and PTT&HR-BP learning
models [2], [3], [16]–[20] are taken into account to thor-
oughly compare their difference and determine an effec-
tive one for the ear application scenario. In this study, we
take special interest in systolic BP (SBP) estimation. Our
proof-of-concept system is validated on an acquired ear signal
dataset. The proposed machine learning framework is also
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compared to state-of-the-art approaches and shows a superior
motion-tolerant ability, which is expected to contribute to
pervasive long-term hypertension, heart health and fitness
management.

II. MATERIAL AND METHOD
A. SYSTEM OVERVIEW
The proposed machine learning-enabled system is illustrated
in Fig. 1. The top part (Fig. 1a) gives the customized hardware
prototype and the sensors placement method for ear-ECG and
PPG signals acquistion. The bottom part (Fig. 1b) shows the
flow of the signal processing and HB/SBP estimation algo-
rtihm including three stages, i.e., stage I – supervised learn-
ing of heartbeat (HB) identification, stage II – unsupervised
learning of signal quality labelling and signal purification,
and stage III – HR estimation and supervised learning of
SBP estimation. The proposed algorithms can be run on the
mobile devices such as cellphones. Therefore, no computa-
tion resources will be introduced to the wearables and the
form factor will not be increased. One thing worth noting is
that the ML-based algorithms are expected to deal with large
amounts of motions artifacts in daily applications, which is
very challenging but necessary to enable 24-hour continuous
blood pressure/heart rate tracking.

B. CUSTOMIZED HARDWARE PLATFORM
AND SENSORS PLACEMENT
The customized hardware platform [11] shown in Fig. 1a
includes two parts, i.e., the ECG [12] and PPG subsys-
tems. In the former one, the ECG signal is acquired by an
ADS1299 24-bit analog-to-digital (ADC) with a sampling
rate of 500 Hz on a TI ADS1299EEG-FE evaluation board
(green one) [21] and is then sent via the SPI port to a
TI TivaTM C series LaunchPad (red one) [22], which is
equipped with an ARM Cortex M4 microcontroller to con-
figure the ADC and relay the signal to a PC via the USB port.
In the latter one, the PPG signal is acquired by a 22-bit ADC
with a sampling rate of 128 Hz on a TI AFE4490SPO2 eval-
uation board [23], which also owns an MSP430F5529IPN
microcontroller to configure the ADC and relay the data to
the PC. A higher sampling rate for ECG is based on the con-
sideration that it is used for both HR and PTT estimation. This
prototype can be conveniently used in long-term applications
after removing evaluation-specific components and adding a
wireless module.

The sensors placement method proposed is illustrated in
the top right part of Fig. 1a, where the R/B/S correspond to the
reference/bias/signal electrodes for single-lead ECG acqui-
sition, and P represents the sensor for PPG measurement.
All the sensors can be integrated into glasses or ear headsets
to achieve a much higher wearability and comfortableness,
compared with the chest or wrists placement.

C. DATASET RECORDING
The customized platform was applied to acquire an ear
ECG/PPG dataset from fourteen subjects, to evaluate the

effectiveness of the proposed proof-of-concept system. The
data collection was approved by the university IRB office and
the informed consent was obtained from all participants. The
data collection comprises a thirty-minute training session and
a thirty-minute testing session for each subject. Each session
can be further split to fifteen two-minute trials. During the
first seven trials, the subject stayed still to get low SBP con-
ditions, and during each of the other eight trails, the subject
rode a recumbent exercise bike in the first minute and stayed
still in the second minute, to perturb the SBP to a larger range
similar to the methods used in many studies [2], [3]. The
reference SBP, denoted as SBPcuff, was measured on the left
arm in the second minute of each trial, using an ambulatory
BP monitor CONTEC ABPM50 [24]. Correspondingly, the
ear signals in the second minute of each trial are used for
HR and SBP estimation. The chest-ECG signal was also
collected to obtain the ground truth of heartbeat occurrence
time.

One thing worth noting is that deleting time periods with
distortions may over-discard signal periods which are still
of an acceptable signal quality. It means that there may still
be a portion of good heartbeats during a signal period with
distortions. So, it may be helpful to provide a high tem-
poral resolution of BP estimates (we aim to report minute-
level BP), if the good heartbeats can be extracted from all
signal periods based on beat-specific quantitative distortion
values.

We notice that the ear signals are frequently impacted by
motion artifacts, even the users take a sitting or standing posi-
tion, there are still lots of motion artifacts, such as continuous
background motion artifacts due to uncontrolled neck muscle
and blood vessels movements, and motion artifacts induced
by little head movements such as slightly looking around
or up and down. Taking practical scenarios into account,
we further introduced much severer motion artifacts by per-
forming head movements including shaking the head and
nodding for one third of each signal period. Specifically, in
the second minute of each trial, the subject was asked to
shake the head during the first ten seconds and nod during
the fourth ten seconds. These head movements corrupt a large
portion of signals and make heartbeat identification much
more challenging. Therefore, it is necessary to utilize lots of
signal periods even distorted by motion artifacts to guarantee
the high-resolution BP tracking.

D. SUPERVISED LEARNING OF HB IDENTIFICATION
The stage I of the proposed algorithm in Fig. 1b performs raw
heartbeat identification from both pre-processed ear-ECG
and PPG signals. Considering the ECG signal is of relatively
richer signal characteristics (especially the QRS complex)
than the PPG signal (detailed visualizationwill be given in the
results section), we firstly introduce an advanced supervised
machine learning approach for raw ECG heartbeats identifi-
cation, based on which the raw PPG heartbeat pairs are then
determined by a minima searching method [2].
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FIGURE 1. The proposed machine learning-enabled system for wearable cuff-less SBP and HR monitoring from motion artifacts-sensitive ear-ECG/PPG
signals. Algorithm block coloring in b): white colored blocks are active in both training and testing phases; each blue colored block include both a
supervised model learning process and a model using process, which are active in the training phase and the testing phase, respectively; each gray
colored block includes an unsupervised model learning process and is active only in the training phase. Abbreviations: R/B/S represent the
reference/bias/signal electrodes used for single-lead ECG signal measurement, respectively; P corresponds to the reflective PPG sensor; SVM, support
vector machine; HB, heartbeat; DTW, dynamic time warping; SQI, signal quality index; PTT, pulse transit time; HR, heart rate; SBP, systolic blood pressure.
Definitions of the Greek letters: refer to section II material and method => unsupervised learning of signal quality labelling and purification =>

algorithm 1.

1) SIGNAL PRE-PROCESSING
The raw ear-ECG and PPG signals are both processed by a
six-order Butterworth bandpass filter (2-30 Hz and 0.5-8 Hz,
respectively). Then PPG is resampled to 500 Hz to obtain a
same time resolution as ECG. An example of acquired ear-
ECG and PPG signals with only background motion artifacts
is given in Fig. 2, where clear signal morphologies can be
observed. More analysis about the signal quality with delib-
erately introduced severe motion artifacts will be given later.

2) ECG-BASED AND PPG-BASED
HEARTBEAT IDENTIFICATION
To identify raw heartbeats from weak ear-ECG signal
impacted or corrupted by large amounts of background
and deliberately introduced motion artifacts, our previously
reported SVM-based approach is applied [12]. Specifically,
after segmenting the ECG stream to heartbeat candidates
by an adaptive threshold-based auto-segmentation approach,
ten critical multi-domain features are extracted from each
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FIGURE 2. Ear-ECG/PPG Signals, with the amplitude both scaled to be
between 0 and 1 for good readability (further analysis on the signal
quality such as the signal strength and morphology will be given in the
results section).

candidate and fed into the SVM classifier for raw heartbeat
identification. The SVM model is learned based on the ear-
ECG training data and tested on the ear-ECG testing data
for each subject. The heartbeat locations from the chest-
ECG stream collected at the same time are used as reference
to label whether the ear-ECG heartbeat candidates are real
heartbeats or motion artifacts-induced interferential spikes, to
enable a supervised learning process.

The SVM decision function is presented by (1), where x
is the ten-dimensional input vector, xi is the i − th support
vector in m support vectors learned and yi is its class label, αi
is the weight learned, b is the bias learned, and k is the kernel
which is chosen as a linear one to lower computation load
in wearable applications. Based on the raw ECG heartbeats,
the raw PPG heartbeats (PPG feet) can be determined by
searching the minimum points between each two adjacent R
peaks [2].

f (x) = sign(
∑m

i=1
αiyi · k (x, xi)+ b) (1)

E. UNSUPERVISED LEARNING OF SIGNAL QUALITY
LABELLING AND SIGNAL PURIFICATION (SQLSP)
Considering that large amounts of back ground and head
movements-induced motion artifacts usually severely corrupt
a large portion of weak ear signals, many highly distorted
or faking heartbeats in some signal segments need to be
suppressed. Therefore, an unsupervised learning approach is
proposed to automatically purify the raw heartbeats, as shown
in stage II of the proposed algorithm in Fig. 1b. It can self-
learn behaviors of raw PPG heartbeats, automatically gener-
ate heartbeat-specific signal quality indices and then purify
the raw ECG/PPG heartbeat pairs identified by the stage I of
the algorithm. Two major considerations made here include:
1) choosing an unsupervised learning strategy not a super-
vised one, and 2) further learning motion artifacts-sensitive
behaviors of raw PPG heartbeats not ECG heartbeats.

The former one is based on the finding that it is hard to
generate ground truth signal quality labels for raw heartbeats
(e.g., labelled as a good or poor quality level when using a
binary labelling method) which are necessary for supervised
signal quality learning. Firstly, the background motion arti-
facts induced by uncontrolled neck muscle and blood vessels
movements, especially with exercise stress, usually occur

randomly making it difficult to manually label the signal
quality for raw heartbeats. Moreover, the head movements
deliberately introduced (shaking and nodding) to generate
more critical motion artifacts cannot be strictly controlled,
because: 1) it is usually difficult to precisely control the
start and end time of head movements according to the data
recording protocol due to the subject-dependent command
response delay [25]; 2) the non-linear distortion behaviors of
the raw heartbeats cannot be easily quantified, resulting from
both high inter-subject and intra-subject variabilities in the
swing and speed of head movements. Therefore, we propose
an unsupervised learning approach to automatically label the
signal quality after self-learning the diverse behaviors of raw
heartbeats corrupted by motion artifacts.

Further learning motion artifacts-impacted behaviors of
raw PPG heartbeats is based on the observation that the
PPG signal is of less signal characteristics and thus more
sensitive to motion artifacts than the ECG signal, which will
be visualized in the results section. Therefore, the difference
between high quality and low quality raw PPG heartbeats is
more learnable for an unsupervised learner.

The detailed learning process is given in Algorithm 1.
Firstly, the PPG stream is split to raw PPG heart-
beat segments (s1-segmentation), which are then fed to
a K-medoids clustering-based learner to determine a high
quality heartbeat template (s2-template learning). After-
wards, the learned template is used to screen the raw PPG
heartbeats to quantify the degree of distortion based on the
DTW approach (s3-HB distortion), which can effectively
measure the dissimilarity between raw heartbeats owning
time varying length/morphology and the learned template
using a dynamic programming strategy. The distortion values
measured are used to learn by a histogram triangle-based
method a distortion threshold (s4-threshold learning), which
can be applied to generate binary heartbeat-specific signal
quality indices for heartbeat purification purpose (s5-s8).

One thing worth noting is that the step 2) ‘PPG template
learning’ and the step 4) ‘distortion threshold learning’ are
only active in the training phase, and all the other steps are
active in both training and testing phases. Moreover, in the
testing phase, the algorithm can be performed in real time,
since two ‘for loops’ in Algorithm 1 can be merged such that
the algorithm can be executed trail by trail.

1) PPG SEGMENTATION
The PPG stream is segmented based on the raw PPG heartbeat
locations identified in stage I. In the second minute of each
2-minute trial, the foot-to-foot PPG segments2t are obtained
as shown in step 1) ‘segmentation’ in Algorithm 1.

2) K-MEDOIDS CLUSTERING-BASED TEMPLATE LEARNING
As mentioned above, a PPG heartbeat template with a good
morphology is needed by the DTW algorithm, to screen
the raw PPG heartbeats to calculate their distortion values
used in signal quality labelling. However, there is no pre-
labeled signal quality information to directly perform PPG
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Algorithm 1 Unsupervised Learning of SQLSP
Input:
raw PPG HB locations in T trials 3t ,∀t ∈ [1,T ]
raw ECG HB locations in T trials Ht ,∀t ∈ [1,T ]
number of centroids in K-medoids clustering K
number of points used in distortion smoothing S
shrinkage factor used in distortion threshold learning δ
lower limit of percentage of HBs to be protected ρ
step size in percentage to adaptively adjust the threshold η
Output:
heartbeat signal quality indices in T trials Qt ,∀t ∈ [1,T ]
valid PPG HB locations 3t

valid ,∀t ∈ [1,T ]
valid ECG HB locations H t

valid ,∀t ∈ [1,T ]
quality indicator for the t − th BP estimate BPQI t , ∀t ∈
[1,T ]
Procedure:
for t = 1 to T do F sweep trials

2t
← PPG segments split by 3t

F s1-segmentation
if t = 1 then F s2-template learning
L← averaged length of segments in 2t

2̂t←all segments in 2t resampled to a length of L
0← K_medoids_clustering(2̂t ,K )

end if
8t
← {φtj |φ

t
j = DTW (0, θ tj ),∀θ

t
j ∈ 2

t
} F s3-HB

distortion
end for
9 ← 81

∪82
∪ . . . ∪8T

Thhis← HIS_TRI (9, δ) F s4-threshold learning
for t = 1 to T do F sweep trials

�t
← smooth(8t , S) F s5-distortion smoothing

Qt ,BPQI t ← SQI (8t , �t ,Thhis, ρ, η) F s6-SQI
generation

3t
valid ← PPG HBs validated by Qt F s7-HB

purification
Ht
valid ← ECG HBs validated by Qt F s7-HB

purification
end for

template selection, otherwise, it is unnecessary to perform
the unsupervised learning of signal labelling in the proposed
system.

It is known that when there are more motion artifacts,
there is also more morphological randomness in the raw
heartbeats [12], which results in a decreasing consistency
among them. If we partition the raw heartbeats into different
groups according to beat-to-beat consistency, the high quality
heartbeats are more likely to be clustered together benefitting
a better inter-beat consistency, and the low quality heartbeats
tend to be partitioned into multiple clusters due to much more
diverse motion artifacts-induced morphologies. Based on this
consideration, a K-medoids clustering approach is introduced
to learn a good PPG template from the raw heartbeats.
K-medoids clustering is a classical unsupervised machine
learning algorithm which breaks the objects (raw heartbeats)

up into clusters and attempt to minimize the distance (con-
sistency) between objects belonging to a cluster and the
representative object designated as the center (medoid) of
that cluster [14]. Therefore, the medoid that represents a
highest number of objects is selected as the high quality PPG
heartbeat template.

Since the K-medoids clustering method usually applies an
iterative strategy to search the finalK representative medoids,
to lower the computation load the PPG template is only
learned from 21, i.e., the raw PPG heartbeat segments in
the second minute of the first trial in the training session.
Moreover, also to lower the computation load, the Euclidean
distance is chosen to measure inter-object distance. Since the
time-varying raw heartbeats are usually of different lengths,
they are all resampled to own a length of L, which is the
averaged length of all raw heartbeats in 21, to enable the
Euclidean distance calculation. The template learning process
is given in step 2) ‘template learning’ in Algorithm 1.

A K-means++ algorithm [26] is applied for choosing
initial cluster medoid seeds, as shown in (2-3), where cj is the

j−th seed to be selected from all resampled heartbeats ˆθ1j ε2̂
1

with probability w ˆθ1j
, d2

(
ˆθ1j , cp

)
is the Euclidean distance

between ˆθ1j and its closest pre-selected medoid cp, p < j,

Dp is the set of all objects closest to medoid cp, and ˆθ1h εDp.
That is, each subsequent medoid seed is selected with a prob-
ability proportional to its distance to the closest pre-selected
closest seed. The number of medoid seeds K , is set as 20,
considering that a smaller one may not be able to effectively
separate diverse signal morphologies of raw heartbeats, and a
larger one may over partition the raw heartbeats which makes
multiple medoids respresent similar numbers of objects and
lower the robustness of the selected template.

To solve the K-medoids problem, a partitioning around
medoids (PAM) method is chosen [27], which uses a greedy
search to iteratively evaluate whether the swapping of each
medoid cj and each non-medoid ˆθ1j can decrease the total
object-to-medoid dissimilarity ξ as (4). If yes, then update
the medoid until no dissimilarity reduction can be achieved.

cj = Select( ˆθ1j |w ˆθ1j
,∀ ˆθ1j ε2̂

1) (2)

w ˆθ1j
=

d2
(
ˆθ1j , cp

)
∑
{h| ˆθ1h εDp}

d2
(
ˆθ1h , cp

) , ∀ ˆθ1j ε2̂1 (3)

ξ =
∑
{cp|p=1,...,K }

∑
{h| ˆθ1h εDp}

d2
(
ˆθ1h , cp

)
(4)

3) DTW-BASED SIGNAL DISTORTION EVALUATION
The DTW approach is introduced to screen all raw PPG
heartbeats by the self-learned high quality PPG template to
calculate the raw heartbeat-specific distortion value. DTW
is a popular pattern learning technique firstly used in
speech recognition applications and is seen as a branch of
machine learning techniques. Compared with the Euclidean
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distance-based method, DTW can more effectively measure
the dissimilarity between two time series with time-varying
morphologies and lengths [13], which is always the case
when processing dynamic signals such as PPG heartbeats.
DTW has an ability to warp the testing sequence in a non-
linear approach to measure its distance from a pre-defined
template sequence. In our study, we use this DTW distance
to quantify the degree of distortion for raw PPG heartbeats,
as shown in step 3) ‘HB distortion’ in Algorithm 1.

To measure the dissimilarity between a PPG heartbeat
template 0 = {yl |l = 0, . . . ,L − 1} and a raw PPG heartbeat
θ tj = {x

t,j
i |i = 0, . . . ,N t

j − 1}, the DTW performs two
steps of operation, i.e., the local distance matrix generation,
and the path distance matrix generation, respectively. In the
former step as (5), a N t

j − by − L local distance table is

created and its each element d t,ji,l (local distance) equals to

the Euclidean distance between sample x t,ji in θ tj and sam-
ple yl in 0. This table gives all possible sample-to-sample
dissimilarities between θ tj and 0. In the latter step as (6),
a path distance table is created by a dynamic programming
strategy, with the element Dt,ji,l (accumulated path distance)

equaling to the current local distance d t,ji,l plus the minima of
three preceding accumulated path distances. In such a way,
many warping paths are generated which all try to minimize
the accumulated path distance, i.e., to find an optimal path to
match the testing sequence to the template. Therefore, the last
element Dt,jN t

j ,L
can effectively represent the minimum accu-

mulated sequence-to-sequence distance, i.e., the sequence
level dissimilarity value, which is used as the raw heartbeat-
specific distortion level as (7). Consequently, we can get
quantified distortion values for raw heartbeats in each trail,
denoted as 8t , and for all trials, denoted as 9, as shown in
step 3) ‘HB distortion’ in Algorithm 1.

d t,ji,l =
∣∣∣x t,ji − yl ∣∣∣ , ∀i, ∀l (5)

Dt,ji,l =


d t,ji,l +min


Dt,ji−1,l
Dt,ji−1,l−1
Dt,ji,l−1

∀i > 0&∀l > 0

d t,ji,l i = 0&l = 0
inf otherwise

(6)

φtj = Dt,jN t
j ,L

(7)

4) HISTOGRAM TRIANGLE-BASED DISTORTION
THRESHOLD LEARNING
Based on quantified distortion evaluation of the raw PPG
heartbeats, the next is to learn an appropriate distortion
threshold to differentiate heartbeats with a good or a
poor quality. The same consideration used in K-medoids
clustering-based template learning is applied here, i.e., low
quality raw heartbeats owning much more diverse distorted
morphologies due to random motion artifacts. Therefore,
statistically, in a distortion histogram, the raw heartbeats
with a relatively good quality should concentrate in the low

distortion area (the left side of the x-axis), while the ones with
gradually worse signal quality conditions usually spread over
the higher distortion area (the middle and right side of the
x-axis), due to poor consistency induced by random motion
artifacts. Leveraging this interesting left-skewed histogram,
we use an unsupervised learning approach called histogram
triangle method [15] to learn the distortion threshold.
Based on a normalized density histogram of the distor-

tion values, the maximum point (bmax , his(bmax)) is firstly
determined, which corresponds to the distortion bin most
frequently hit by good quality PPG heartbeats in the low
distortion area, where bmax is the histogram bin and his(·)
is a function returning the density value for a given bin.
Then a histogram hypotenuse is constructed by connecting
the maximum point (bmax , his(bmax)) and the right boundary
of the histogram envelope (bright , his(bright )), and denote this
hypotenuse as bmax ∼ bright . A threshold Thhis01 is learned as
the bin corresponding to a maximum perpendicular distance
from this bin to the hypotenuse as (8). After de-normalization
based on the maxima and minima of 9 (a set of distortion
values in all trials in the training session), we get the threshold
in the original scale Thhisori as (9), and after shrinking it by a
factor of δ (50%) to enhance the robustness, we obtain the
final threshold Thhis (10).

Thhis01 = argmax
bmax≤b≤bright

Dis
{
((b, his(b)), bmax ∼ bright

}
(8)

Thhisori = Thhis01 (max (9)−min (9))+min (9) (9)

Thhis = δThhisori (10)

5) DISTORTION CURVE SMOOTHING
To further enhance the robustness before separating the raw
PPG heartbeats to binary groups with a good or poor signal
quality levels, the raw PPG heartbeats distortion values are
smoothed by a 10th order moving average method (S = 10
in Algorithm 1). This is based on the consideration that
when some raw PPG heartbeats own high distortion values,
they are either real heartbeats highly corrupted by severe
motion artifacts, or motion artifacts-induced interferential
spikes. Therefore, their neighboring raw PPG heartbeats
with lower distortion values may also have a high possi-
bility to be impacted by motion artifacts. The smoothing
operation can elevate the low distortion values for these
neighboring heartbeats, and help cluster raw heartbeats in
suspicious time periods to the low signal quality group more
strictly.

6) SQI GENERATION
Based on the learned distortion threshold and the smoothed
distortion curve, the raw PPG heartbeats can now be clustered
to binary groups with a good or poor quality level. The
proposed SQI generation algorithm is shown in Algorithm 2,
where two prudential considerations are made to further
enhance the robustness. Firstly, although the smoothed dis-
tortion curve �t in the t−th trial can help elevate low dis-
tortion values when they are close to high distortion values
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(i.e., suspicious time periods), the smoothing operation usu-
ally lowers the high distortion values at the same time.
It means that the unsmoothed distortion curve 8t can still
contribute to highlight the heartbeats with high distortion
values. Therefore, we compare not only the smoothed dis-
tortion curve but also the unsmoothed one to the learned
distortion threshold Thhis for the SQI set generation (step 2 in
Algorithm 2).

Algorithm 2 SQI Generation

Qt ,BPQI t ← SQI (8t , �t ,Thhis, ρ, η)
Input:
unsmoothed distortion values in the t−th trial8t

= {φtj |∀j}
smoothed distortion values in the t − th trial �t

= {π tj |∀j}
learned distortion threshold Thhis

lower limit of percentage of HBs to be protected ρ
step size in percentage to adaptively adjust the distortion
threshold η
Output:
heartbeat signal quality indices in the t − th trial Qt =
{qtj |∀j}
quality indicator for the t − th BP estimate BPQI t

Procedure:
Step 1 – initialize the parameters
P← ρ‖8t

‖ F # raw heartbeats protected
γ t ← Thhis F initialize the adaptive threshold

1← ηmax
(
max
∀j
φtj ,max

∀j
π tj

)
F step size for threshold

adjusting
Step 2 – generate the SQI set
c← 0
for j = 1to

∥∥8t
∥∥ do F sweep raw heartbeats

if φtj ≥ γ
t and π tj ≥ γ

t then F check two conditions
qtj ← 1 F a good quality heartbeat
c← c+ 1

else
qtj ← 0 F a poor quality heartbeat

end if
end for
BPQI t ← c/‖8t

‖ F BP quality indicator
Step 3 – adaptively adjust the threshold to protect the
best P heartbeats if necessary
if c < P then F need to protect the best P heartbeats
γ t = γ t +1 F increase the threshold
go to Step 2 F re-generate the SQI set

else
stop

end if

Secondly, the motion artifacts due to time-varying
electrode-skin contact variations are so random that it is
impractical to cover all motion artifacts scenarios in the
training session. If there happen to be some severe motion
artifacts resulting in very high distortion values in the testing
session, they may over-elevate many low distortion values

in the corresponding suspicious time periods. Consequently,
this strict SQI generation procedure may filter out too many
raw heartbeats in some trials. However, based on our obser-
vation, even after aggressively introducing twenty-second
head movements-induced motion artifacts in each trial (the
subjects are usually asked to stay during estimation, but we
aggressively asked them to perform movements for one third
of each trail time) , the heartbeats corrupted are still lower
than fifty percent. Leveraging this observation, we introduce
a heartbeats protection strategy to protect the best ρ (20%)
heartbeats in each trail, by adaptively increasing the learned
threshold Thhis with a step size of η (1%) until at least ρ
heartbeats are labeled with a good quality level (step 3 in
Algorithm 2). To guarantee the consistency of the proposed
SQI generation algorithm, this protection operation is also
applied to the training session.

The BP estimate quality indicator is also reported to reflect
the percentage of raw heartbeats left after step 2 but before
heartbeat protection. The indicator can be used to select out
high confident BP estimates according to specific application
requirements.

After strictly labelling low quality raw PPG heartbeats and
performing necessary heartbeats protection operations, the
generated SQI set based on raw PPG heartbeats can now be
used for heartbeats purification.

7) PPG AND ECG HEARTBEATS PURIFICATION
Considering there are still many residual highly corrupted
and faking heartbeats, both raw ECG and PPG heartbeats are
purified according to the SQI information, i.e., filtering raw
heartbeats with an SQI of 0 and keeping those with an SQI
of 1. The purified heartbeats are then sent to the stage III of
the proposed HR and SBP estimation algorithm.

F. HR ESTIMATION AND SUPERVISED LEARNING
OF SBP ESTIMATION
Based on the purified ECG heartbeats, the HR estimates can
now be achieved, and together with purified PPG heartbeats,
the PTT can also be measured. Afterwards, the SBP model
can be firstly calibrated in the training session by a supervised
learning process referring to the left arm cuff-based ground
truth SBP, and then used for SBP estimation on the unseen
data in the testing session.

1) HEART RATE ESTIMATION
As mentioned above, the ECG signal is of a relatively better
motion artifacts-tolerant ability than the PPG signal, there-
fore, the purified ECG heartbeats are used for instantaneous
heart rate estimation. Then the windowed heart rate (denoted
as HR, with a unit of beats-per-minute, denoted as BPM)
estimates can be achieved, where the window corresponds to
the second minute in each two-minute trial during which the
SBPcuff is measured. The performance of the estimated HR
will be evaluated in terms of mean error± standard deviation
(ME ± STD), mean absolute error (MAE) and root mean
absolute error (RMSE).
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FIGURE 3. Pulse transit time (PTT) measured with ECG and PPG signals
(This illustration of PTT is based on ear-ECG/PPG signals).

2) PULSE TRANSIT TIME CALCULATION
Pulse transit time is the time consumed by the pressure pulse
to flow from the proximal (PTT start time) to the distal
(PTT end time) arterials sites. As shown in Fig. 3, the ECG R
peak represents when the pulse leaves the proximal site, i.e.,
the thoracic aorta, and the PPG foot corresponds to when the
pulse arrives the distal site, i.e., the skin surface where the
PPG sensor is placed on. The measured instantaneous PTT i,
i.e., the PTT value for the i − th ECG/PPG heartbeat pair is
calculated as (11), where PPGfooti is the PPG foot occurrence
time and ECGRpeaki corresponds to the ECG R peak occur-
rence time. Similar to windowed HR, the instantaneous PTT
measured in the second minute of each trial is also averaged
to obtain the windowed PTT estimates.

PTT i = PPGfooti − ECGRpeaki (11)

3) BLOOD PRESSURE MODEL LEARNING AND TESTING
Due to the complicated underlying blood pressure wave gen-
eration and propagation mechanisms, many SBP learning
models have been reported based on diverse assumptions
and strategies. To thoroughly compare them and determine
an appropriate one for ear application scenarios, ten pop-
ular SBP learning models are taken into account in our
study as shown in Table 1, including seven PTT-SBP mod-
els, and three PTT&HR-SBP models with HR information
enhanced.

Among PTT-SBPmodels 1 to 7, various styles of equations
are applied, such as linear, quadratic, exponential ones and so
on, based on different deduction processes. For example, the
model 2 reflects the reverse correlation between PTT and SBP
shown by large amounts of studies, based on the fact that a
high SBPwill reduce the time consumed by the pressure pulse
to propagate from the proximal to the distal sites, and vice
versa [2]. The model 7 is based on the combined action of the
pulse wave and the energy of wave. Among PTT&HR-SBP
models 8-10, the HR information is introduced to model
establishment. They are based on the consideration that when
HR increases, the cardiac output flow usually increased
at the same time which causes a higher SBP, and vice
versa. One thing worth noting is that, for simplicity and

TABLE 1. Ten blood pressure models for comparative analysis.

convenience purpose, the PPT measurement method intro-
duced above actually includes another extra item, i.e., the pre-
ejection period (PEP). PEP corresponds to the aortic valve
opening time and usually significantly increases the PTT
measured. PEP can be measured by adding extra hardware
components, such as the phonocardiogram (PCG) sensor or
the impedance cardiography (ICG) sensor [16]. Here, the PEP
term is ignored for simplification purpose which is a com-
mon strategy used in many previous works [2], [3]. The HR
information has been used to enhance the SBP model [18],
therefore, we also consider PTT&HR-SBP models, for com-
parison purpose. TheHR information is already carried by the
ECG signal and no extra hardware components are needed.
In future, new sensors can be added to measure PEP for
further model enhancement.

The SBP models are learned on the training data and tested
on the unseen testing data to show the generalization ability.
The left-arm cuff-based SBP is used as reference to enable a
supervised learning process. The performance is reported in
terms of ME ± STD, MAE and RMSE.

G. PERFORMANCE COMPARISON
The proposedmotion-tolerant machine learning framework is
also compared with two state-of-the-art approaches, Kalman
filtering (KLMF) [28] and discrete wavelet transforma-
tion (DWT) [29]. For KLMF, the raw ECG heartbeats are
identified by a well-known Pan&Tompkins algorithm, and
then purified by an impulse rejection filter which is designed
to check the beat-to-beat interval changing trend and remove
outliers due to motion artifact. The purified ECG heart-
beats are used to calculate instantaneous HR (IHR) and
identify PPG heartbeats for PPT calculation. Each IHR is
estimated based on a prediction process and a measurement
process, where the noise covariance matrix Q is set as 0.1,
and the measurement noise covariance matrix is defined
as M = M0 · exp

(
1/w2

− 1
)
. w is to weight the current

measurement (w = 1 for non-outliers and w = 10−5 for
outliers) and M0 is learned to minimize the HR error on
the training data. For DWT, the ECG stream is decomposed
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to 8 levels based on the Daubechies6 wavelet. To remove
motion artifacts, only the 3rd/4th/5th detail coefficients are
used to reconstruct the new signal. Then a threshold learned
also by minimizing the HR error is used to detect the ECG
heartbeats, which are then used in next PPG heartbeat identi-
fication, as well as HR and SBP estimation.

III. RESULTS AND DISCUSSION
In this section, both the proposed hardware prototype and
the HR/SBP estimation algorithms are evaluated in detail,
according to the signal processing flow shown in Fig. 1.

FIGURE 4. An example of the signal segments acquired (chest-ECG,
ear-PPG, and ear-ECG), showing that the weak ear-ECG has a
peak-to-peak voltage only around 5% of that of the chest-ECG.

A. SIGNALS ACQUIRED
After situating the ECG electrodes behind two ears and the
PPG sensor behind the left ear, our semi-customized bio-
potential acquisition platform successfully collected the weak
ear-ECG (Fig. 4c-d) and ear-PPG (Fig. 4b) signals, where the
chest-ECG signal (Fig. 4a) is also given for comparison pur-
pose. The acquired ear-ECG signal is only around 5% of the
chest-ECG signal in terms of peak-to-peak voltage, resulting
from a much smaller potential difference between the back
locations of two ears. Although the ear-ECG is highly weak,
it can still show distinguishable heartbeats, especially clear
QRS complex morphologies, even with continuous back-
ground motion artifacts due to uncontrolled neck muscle and
blood vessels movements, indicating the effectiveness of the
proposed non-standard highly convenient single lead ECG
configuration.Meanwhile, the acquired PPG signal also owns
a clear heartbeat morphology leveraging many blood vessels
around the back location of the ear.

When performing head movements, many motion arti-
facts are induced to both ear-ECG and ear-PPG signals
(Fig. 4d and 4b) which make heartbeats identification
highly challenging. Therefore, advanced signal processing
and machine learning algorithms for robust heartbeat recog-
nition are proposed to enable this highly wearable ear signal
acquisition solution.

B. HEARTBEAT IDENTIFICATION
To identify raw heartbeats from motion artifacts-impacted
or even corrupted ear signals, our previously proposed

SVM-based approach is applied on the weak ear-ECG signal.
Two examples of heartbeat identification results in the testing
session of subject 1 are given in Fig. 5, where the raw ECG
heartbeats are firstly identified and then the PPG heartbeats
are determined by a simple minima searching method. There
are several interesting observations as follows to support why
we firstly identify the raw heartbeats from the ECG signal,
and why we need to learn signal quality labelling based on
the PPG signal in an unsupervised manner and purify both
ECG/PPG heartbeats.

FIGURE 5. Two examples of heartbeat identification results in the testing
session of the subject 1. Blue dots: identified raw ECG heartbeat
locations; red dots: identified raw PPG heartbeat locations; wide orange
rectangles: signal periods with deliberately introduced motion artifacts
due to head movements; narrow orange rectangle: signal period with
missing or fake heartbeats due to severe background motion artifacts; all
the weak ECG signal is continuously impacted by background motion
artifacts.

Firstly, the ECG signal acquired with the non-standard
signal lead configuration is so weak that it is continuously
impacted by the background motion artifacts due to uncon-
trolled neck muscle and blood vessels movements, as shown
in Fig. 5. Specially, in the signal periods not covered by the
wide orange rectangles, the PPG signal owns a better signal
morphology compared with the ECG signal, which is even
highly corrupted by the background motion artifacts such
as the segment in the narrow orange rectangle in Fig. 5a).
However, as shown in the wide rectangle (corresponding
to deliberately introduced head movements) in Fig. 5a, the
ECG signal actually owns a relatively better motion artifacts
tolerant ability than the PPG signal levering sharply changing
QRS complexes, although the ECG signal is weaker than
the PPG signal. Therefore, we firstly perform raw heartbeat
identification from the ECG signal.

Secondly, the PPG signal is highly distorted in the wide
orange rectangles due to deliberately introduced motion arti-
facts by head movements, as shown in wide rectangles in
Fig. 5a-b. Since PPG heartbeat morphological characteristics
(PPG feet) during these signal periods cannot reflect the
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heartbeat occurrence time for PTT calculation, we need to
filter out these signal segments according to the signal quality
of these raw PPG heartbeats.

However, learning how to label the signal quality of the raw
PPG heartbeats is not trivial since it is hard to generate ground
truth signal quality labels as reference in the training session
to enable a supervised learning. This is because (using the
testing data in Fig. 5 as an example here): 1) the background
motion artifacts are highly random; 2) the start and end
time of head movements cannot be precisely controlled due
to subject-dependent command response delay as shown in
the wide rectangle in segment 2 (Fig. 5b); 3) the non-linear
distortion behaviors of raw PPG heartbeats is so random that
it is difficult to manually generate signal quality labels. Based
on these considerations, we choose an unsupervised learning
approach to learn how to generate the SQI information for
each raw PPG heartbeat. One thing worth noting is that the
SQI information is also used to purify the ECG heartbeats
which may also be corrupted at the same time when the
PPG heartbeats are severely corrupted as shown in the wide
rectangle in Fig. 5b.

C. PPG SEGMENTATION AND TEMPLATE LEARNING
To perform unsupervised learning of signal quality labelling,
we apply a DTW method to quantify the degree of distortion
for each raw PPG heartbeat. The PPG template for the DTW
method is learned by the K-medoids clustering approach on
the segmented raw PPG heartbeats. The clustering results are
given in Fig. 6, where raw heartbeats with a relatively good
quality concentrate in theM1 cluster, and raw heartbeats with
a poor quality are grouped into many other clusters due to the
high randomness induced by motion artifacts. Consequently,
the medoid in cluster 12 which represents a highest number of
instances (#=65%, i.e., 65% of raw heartbeats in the second
minute in the first trial are grouped into cluster 12) is selected
as the high quality PPG heartbeat template. One interesting
observation is that some slightly distorted heartbeats are also
grouped into this cluster since the other clusters correspond
to raw heartbeats so randomly corrupted by severe motion
artifacts due to head movements. The high quality PPG tem-
plate can still be well leaned, because the K-medoids clus-
tering algorithm makes each medoid represent the majority
of instances in each cluster, i.e., minimizing the object-to-
medoid dissimilarity ξ as (4).

D. PPG DISTORTION EVALUATION AND
THRESHOLD LEARNING
After quantifying the degree of distortion for all raw PPG
heartbeats using the DTW method, the histogram triangle-
based approach is proposed for PPG distortion threshold
learning which will be used to generate the SQI information.
An example is given in Fig. 7, where a skewed intensity
histogram of the DTWdistances is constructed. The relatively
good quality heartbeats concentrate in the low distortion area
(the left side of the x-axis) and poor quality heartbeats spread
over a larger range resulting from high and diverse distortion

FIGURE 6. K-medoids clustering-based PPG template learning in the first
trial in the training session of subject 1, with K equals to 20 (only top 9
clusters are visualized here). Pink curve: medoid of each cluster; green
curves: instances represented by the medoids; #=: percentage of
instances in current cluster.

FIGURE 7. PPG distortion threshold learning in the first trial in the
training session of subject 1. Blue line: the histogram hypotenuse; red
curve: the histogram envelope; green line: the maximum perpendicular
distance; green dot: the learned normalized (0-1 range) threshold.

values due to random and severe motion artifacts. The global
searching process effectively captures the transition point of
the histogram and determines the normalized threshold Thhis01
in this example as 0.07, which is then de-normalized and
multiplied by a shrinkage factor to get the final distortion
threshold Thhis which is 11.9 in this example.

E. SQI GENERATION AND HEARTBEATS PURIFICATION
Based on the DTW distance-based distortion values and the
learned distortion threshold, we now can generate the SQI
information for all PPG raw heartbeats in the training or the
testing session. An example of the whole SQI generation
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FIGURE 8. The whole SQI generation process in the testing session of
subject 1, including the signals acquired, quantified degree of distortion
for raw PPG heartbeats, the adaptive distortion threshold and the SQI
sequence generated.

process in the testing session of subject 1 is given in Fig. 8.
The acquired thirty-minute ear-ECG and ear-PPG streams
are shown in Fig. 8a and 8b, where fifteen pink segments
in each stream corresponding to the second minute in each
of fifteen trials. In each pink segment, there is head shaking
movement during the first ten seconds and nodding move-
ment during the fourth ten seconds, resulting in many severe
motion artifacts which increase the peak-to-peak voltage.
In the last eight black segments, there are exercise-induced
signal variations (riding the bike), especially in the ear-PPG
stream. In the first seven black segments, there are also
some signal variations due to normal head movements. The
calculated unsmoothed DTW distance and the smoothed one
are given in Fig. 8c, which shows diverse degree of distor-
tion caused by both background and deliberately introduced
motion artifacts. Based on SQI algorithm proposed, the dis-
tortion threshold is adaptively elevated if the best ρ heartbeats
need to be protected. Finally, the raw PPG heartbeat-specific
SQI information is generated as Fig. 8d.

Two same segments as those in Fig. 5 are used here to
further illustrate the details of the SQI generation process,

FIGURE 9. Bland-Altman plot for estimated HR (HRest) and reference
HR (HRref).

TABLE 2. HR estimation performance comparison in the testing session.

as shown in Fig. 8e and 8f. During deliberately intro-
duced head movements (wide orange rectangles), the DTW
distance-based distortion values (black bars) are much higher
than those in other time periods. The smoothing operation
of the distortion values can make the low distortion values
above the distortion threshold and thus pose a more critical
distortion evaluation during these highly suspicious periods
(wide orange rectangles). On the other hand, the unsmoothed
distortion values can still highlight the heartbeats with a
high distortion condition (around minute 13.37). Besides,
the motion artifacts are so random that it is difficult to
include all motion artifacts scenarios in the training session.
If there happen to be some highly random motion artifacts
shown as in Fig. 8f, the corrupted PPG morphologies may
induce dramatically high distortion values which generate a
large range of suspicious period. This shows the necessity to
introduce a protection mechanism to adaptively elevate the
distortion threshold for some trials to protect the best ρ (20%)
heartbeats (e.g., threshold γ 9

= 15.8 in trial 9 is adaptively
adjusted to be higher than threshold γ 7

= Thhis = 11.9 in
trial 7). Based on the proposed SQI generation algorithm, the
raw heartbeats are labelled as accepted (SQI = 1) or rejected
(SQI= 0), which helps filter out many signal segments highly
corrupted by severe motion artifacts such that the remaining
purified heartbeats can be used in HR and PTT estimation
later.

F. HEART RATE ESTIMATION
The windowed heart rate estimates are achieved based on
the ECG heartbeats. A Bland-Altman plot for estimated and
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TABLE 3. SBP estimation performance comparison in the testing session.

reference HR is given in Fig. 9 to illustrate the HR estimation
performance. It shows that most of the HR estimates concen-
trate in the low error area, indicating the potential of using
ear-ECG for robust long-term HR monitorting applications.
Averaged over the acquired ear signal dataset, the ME±STD,
MAE and RMSE of HR estimation are 0.8±2.7, 1.8 and
2.8 BPM, respectively.

In table 2, the HR estimation performance using our
approach greatly outperforms KLMF and DWT. For KLMF,
a smoothing operation is applied to suppress the abnormal
measurements based on the outlier indicators generated by
the impulse rejection filter. However, the robustness of the
outlier indicators is still very low due to the fact that the beat-
to-beat checking rules used in this filter cannot effectively
cover highly random cases due to large amounts of motion
artifacts. For DWT, the low performance mainly suffers from
the fact that the motion artifacts usually own a frequency
spectrum highly overlapping that of the ECG signal. There-
fore, there are still many residual motion artifacts in the
reconstructed signal which lower the HR estimation perfor-
mance.

G. BLOOD PRESSURE ESTIMATION
Based on HR and PTT estimates, ten diverse SBP modles
including seven PTT-SBP models (1-7) and three PTT&HR-
SBP models (8-10) are thoroughly compared to explore their
abilities in SBP estimation. According to the Advancement
of Medical Instrumentation (AAMI) standard [30], the BP
estimation error should be less than 5.0± 8.0 mmHg in terms
of mean error (ME)± standard deviation (SD). To thoroughly
evaluate the SBP estimation performance, we consider four
different criteria including ME, STD, MAE and RMSE.
Moreover, although many wearable BP estimation studies
only reported the performance on the training data [2], [3],
we test the proposed algorithm on the unseen testing data
to emphasize the generalization ability of the learned SBP
models.

The performance comparison of ten SBP models and
three signal processign approaches on the unseen testing
data is summarized in Table 3. Using the proposed frame-
work, model 8-10 effectively outperformmodel 1-7 leveraing
the additionally introduced robust HR information, with
the ME±STD, MAE and RMSE no more than −1.4±5.2,
4.2 and 5.4 mmHg, respectively. Compared with our frame-
work, MLMF and DWT both show a worse performance due
to the reason mentioned above, i.e., many residual motion
artifacts. One thingworth noting is that model 8-10 for KLMF
and DTWmay even own worse performance than model 1-7,
due to the introduction of low robust HR information into the
BP models.

FIGURE 10. Bland-Altman plots for SBP model 1 and 10 based on our
framework.

To further illustrate the performance difference between
the PTT-SBP models and the PTT&HR-SBP models, the
Bland-Altman plots for model 1 and 10 based on the proposed
machine learning framework are given in Fig. 10. The latter
one owns a smaller mean error and amore concentrated distri-
bution (a smaller standard deviation) compared to the former
one, indicating that the PTT-SBP model can be enhanced by
the HR information, yielding a more robust PTT&HR-SBP
model. On thing worth noting is that we have introduced
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exercise to perturb the BP to make the trained SBP model
be able to cover a large range of BP (similar to many stud-
ies [2], [3]), and we did found strong correlations between
heart rate and SBP (similar to the previous study [18]), but
more data acquisition protocols are also necessary consider-
ing that the relation between heart rate and SBP may need to
be further explored.

IV. CONCLUSION
In this paper, we propose a fully ear-worn system to provide
a high wearability for long-term cuff-less blood pressure
and heart rate monitoring, and further present a machine
learning-based signal processing framework which owns a
high motion-tolerant ability to enable daily applications.
Firstly, we proposed a sensor placement approach to meet the
critical requirements on the wearability and comfortableness,
which allows for situating all sensors behind two ears and
the possibility to integrate them into glasses or ear headsets.
We successfully acquired the weak ear-ECG and ear-PPG
signals with our semi-customized bio-potential acquisi-
tion platform, and explored diverse background and head
movements-induced motion artifacts towards practical appli-
cation scenarios. Secondly, to deal with many severe motion
artifacts, the raw heartbeats are identified using the SVM
classifier, and then distorted or faking raw heartbeats are auto-
matically purified by an unsupervised learning algorithm.
The DTW approach is introduced to quantify the degree
of distortion for raw heartbeats, referring to a high quality
heartbeat template, which are then compared with a dis-
tortion threshold to generate SQI information for heartbeat
purification. The high quality heartbeat template and the
distortion threshold are learned using the K-medoids clus-
tering approach and the histogram triangle method, respec-
tively. The purified ECG and PPG heartbeats are used for
HR and PTT estimation, which are then applied for robust
SBP estimation.

Applying the proposed machine learning-based signal pro-
cessing framework to an acquired ear signal dataset, the
ME±STD, MAE and RMSE for HR estimation are 0.8±2.7,
1.8 and 2.8 BPM, respectively, and for PTT&HR-SBP mod-
els, they are no more than −1.4±5.2, 4.2 and 5.4 mmHg,
respectively. The performance greatly outperforms state-of-
the-art works. This study is expected to demonstrate the
feasibility of the proof-of-concept system in wearable ear-
ECG/PPG acquisition and motion-tolerant BP/HR estima-
tion, to enable pervasive hypertension, heart health and fitness
management. In future, we will acquire data from more sub-
jects, and also further introduce motion artifacts from more
scenarios, such as walking, running, sleeping, eating, etc.
Another interesting work is to enhance the power efficiency
of this easy-wearing blood pressure system for long-term
wearable application scenarios [31]–[33].
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