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ABSTRACT In this paper, we address the problem of energy-efficient power allocation in MIMO systems.
In fact, the widely adopted water-filling power allocation does not ensure the maximization of the energy
efficiency (EE). Since the EEmaximization is a non-convex problem, numerical methods based on fractional
programming were introduced to find the optimal power solutions. In this paper, we present a novel
and simple power allocation scheme based on the explicit expressions of the optimal power. We also
present a low-complexity algorithm that complements the proposed scheme for low circuit-power regime.
Furthermore, we analyze power-constrained and rate-constrained systems and present the corresponding
optimal power control. In the numerical results, we show that the presented analytical expressions are
accurate and that the algorithm converges within two iterations. We also show that as the number of antennas
increases, the system becomes more energy-efficient. Also, a saturation of the EE is observed at high-power
budget and low minimal rate regimes.

INDEX TERMS Energy-efficiency, MIMO systems, minimal rate constrained, optimal power allocation,
power budget constraint.

I. INTRODUCTION
The energy consumption in wireless communication sys-
tems (WCS) has become a crucial concern in order to meet
the requirements of the 5G [1]. In particular, this concern
is important when designing battery-powered nodes such as
mobile stations and sensor networks to enhance the operation
lifetime [2]. In addition, the urge to adapt green wireless
systems is imposed by environmental considerations. In fact,
the CO2 footprint of the information and communications
technology (ICT) is around 2% of the global CO2 emissions
with 0.2−0.4% produced by the wireless networks [3]. Also,
given the fact that the 5G data rate is required to increase
1000 times [4] and that the number of connectedWCS is esti-
mated to reach 50 billions in 2020 [5], the power consumption
is expected to increase 1000 times or even more, unless new
energy-efficient approaches and techniques are considered.

During the last years, while designing the WCSs the aim
was to maximize the performances related to the spectral
efficiency (SE) [6]. Another design paradigm hat emerged
recently consists of maximizing the energy efficiency (EE)
describing the transmission efficiency of the given frequency
bandwidth [7]. Consequently, new WCS are designed to be

efficient in terms of power consumption which means that
the EE metric could be the main performance yardstick [8]
instead of the SE [9].

In the literature, the EE started to attract the attention
from an information theoretical point of view through the
minimum energy per information bit (J/bit) [10]. Afterward,
the focus was on the EE metric defined as the energy cost of
the achievable rate [11]. In addition, some studies focused on
the modeling of the power consumed by the RF circuit called
the circuit-power [12], [13]. In the single-input and single-
output (SISO) context, the EE maximization was performed,
in many works, using the numerical fractional programming
not resulting in explicit power expressions [13], [14]. In [15],
an explicit expression of the power maximizing the EE was
introduced for SISO orthogonal frequency-division multi-
ple access (OFDMA) systems without considering multiple
antenna transmission.

In more advanced systems, multiple-input and multiple-
output (MIMO) transmission is considered to be a promising
technology for the next generation cellular networks. In par-
ticular, the beamforming technique, or theMIMO-SVDbased
on the singular value decomposition (SVD) is widely used to
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achieve higher performance [16]. This technique transforms
theMIMO channel into independent parallel channels to send
multiple data streams offering significant improvement in
terms of spectral efficiency. Therefore, studying the energy
efficiency of the MIMO-SVD is also important. However,
maximizing the EE in the MIMO context is not straightfor-
ward due to the non-convexity of the optimization problem.
Therefore, numerical algorithms were presented to solve this
type of problems. In previous works, the EE was optimized
using numerical fractional programming methods that trans-
forms the fractional objective function into a subtractive
one [17]–[22]. In [19], for instance, the EE was maximized
in a broadcast MIMO context using an iterative water-filling
algorithm.While thismethod solves the problem numerically,
it does not provide explicit expression of the optimal power
profile since it fails to provide explicit expressions of the
power [23].

To the best of our knowledge, an explicit expressions of
the optimal power for MIMO-SVD systems were not pre-
sented before. Although in [24] the authors give the power
of MIMO-SVD systems, the energy-per-bit was maximized
which gives a different power control than the EE. In addition,
the presented power control is based on the water filling
which is used to maximize the spectral efficiency. From
another side, in [25] and [26], the power allocation scheme
that maximizes the energy efficiency a point to point scenario
with a single antenna at each terminal is presented. When
scaling up the number of antennas at each terminal, the power
allocation scheme in [25] and [26] is no longer valid and can-
not be used to extend to the case of multiple antennas. How-
ever, in [27], this scheme was used in MIMO CR framework
by considering the sum energy efficiency of single parallel
channels of theMIMO link. In our current work, we presented
a more general power scheme involving multiple antennas at
the terminals and maximizing the global energy efficiency
defined as the total rate over the total consumed power.

In this paper, we compute the MIMO-SVD power
expression that maximizes the EE and the corresponding
maximum EE. Then, we present a simple algorithm that
complements our results at low circuit-power regime.We also
present the optimal power control when the system is limited
by a certain power budget or required to achieve a certain
minimal rate.

Specifically, our key contributions are summarized as
follows:
• we derive novel explicit expression of the power that
maximizes the non-convex EE of MIMO systems,

• we propose a simple iterative algorithm that comple-
ments the analytical power solutions at low values of
circuit-power,

• we extend our analysis to power-constrained systems
with power budget and minimal rate constraints and
provide the corresponding optimal power allocation.

The rest of this paper is organized as follows. In Section II,
the system model is presented. In Section III, the EE
power allocation of unconstrained systems is computed.

In Section IV, the EE power of constrained system is derived.
Numerical results are presented in Section V. Finally, the
conclusion of this paper is in Section VI.

II. SYSTEM MODEL
We consider a point-to-point MIMO communication link
with Nt and Nr antennas at the transmitter and the receiver
sides, respectively. The complex channel gain matrix is
denoted by H ∈ CNr×Nt and the received signal is

y = Hx+ n, (1)

where y ∈ CNr×1, x ∈ CNt×1 is the complex Gaussian
transmitted signal and n ∈ CNt×1 is a circularly symmetric
white Gaussian noise with covariance IE[nnH ] = INt , where
IE[·] and ·H are the expectation and the Hermitian operators,
respectively. We denote by P = IE[xxH ], the transmit signal
covariance matrix.

We also denote byPc the circuit-power of each antenna and
its corresponding RF chain. Pc includes the consumption of
the RF chain components that are independent of the transmit
power, i.e., analog to digital converters (ADC), filters, mixers,
amplifiers, etc [26], [28]. The circuit-power Pc can be mod-
eled in several ways as described in [29]. In our framework,
we assume that Pc and the transmit power are decoupled so
that Pc is constant. Without loss of generality, we assume that
the circuit-powers of the RF chains are all equal to Pc.

We denote by Ppeak the available power budget. When the
transmit power is limitedwe introduce the constraint Tr (P) ≤
Ppeak where Tr (A) =

∑
j A(j, j) is the trace of the matrix A.

In addition, we denote by Rmin, the minimal acceptable rate
need for the transmission [20].

In a MIMO transmission with transmit channel side infor-
mation, the SVD decomposes the MIMO channel into inde-
pendent parallel SISO channels that are equivalent to real
channels. When the number of antennas at the transmitter
and at the receiver are different, the SVD produces N parallel
channels where N = min{Nt ,Nr }. Each parallel channel is
characterized by a singular value denoted λi where the sin-
gular values are in descending order. Each λi has a particular
distribution that depends on its order among the other singular
values and on their total number [30]. For a given singular
value λi, we denote by γi = λ2i . In the case of MIMO-SVD,
the power matrix P is diagonal with values denoted as Pi,
i ∈ 1, . . . ,N .
The instantaneous MIMO-SVD spectral efficiency (SE) is

defined as the sum of the partial spectral efficiencies corre-
sponding to the different parallel channels, i.e.,

SE =
N∑
i=1

log2 (1+ γiPi) (bps/Hz). (2)

The energy efficiency is defined to measure the cost of this
achievable rate in terms of energy. In the multi-dimensional
problems in general, there are three definitions of the EE as
shown in [31]. The first is the global EE (GEE) defined as
the global achievable rate over the total consumed power,
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characterizing the system as a single unit [15]. The second
is the weighted sum of the partial EE’s denoted by Sum-EE
that aims to give priority to certain parts of the system [27].
The third is the product of the partial EE’s denoted Prod-EE
and aims to ensure fairness among all system’s components.

In the MIMO framework, the Sum-EE and Prod-EE are
not widely adopted since, in general, in the power allocation
procedure, there is no priority or fairness among the antennas.
Hence, we focus on the GEE that we denote by EE in rest of
the paper, for simplicity. The expression of the EE is given by

EE =

N∑
i=1

log2 (1+ γiPi)

N∑
i=1

(Pc + Pi)

(bits/J/Hz). (3)

Our objective is to provide an energy-efficient power allo-
cation (EEPA) scheme that maximizes the EE of power
budget and rate constrained systems. We aim to explic-
itly find expressions of the optimal power of this problem,
instead of the numerical fractional programming methods.
However, due to the non-convexity of the problem, we first
start, in Section III, by solving the unconstrained problem,
i.e., Ppeak → ∞ and Rmin → 0. Then, in Section IV,
we present the solution of the power budget and minimal rate
constrained systems, i.e., Ppeak <∞ and Rmin > 0.

III. UNCONSTRAINED SYSTEMS EE POWER ALLOCATION
The objective of maximizing the unconstrained EE is to find
explicit expression of the power as a preliminarily result.
Next, this expression is used to determine the power alloca-
tion for constrained systems in Section IV.

We first note that, for i ∈ 1, . . . ,N , the EE is a positive
function of Pi and is not multimodal since it is a fraction of a
logarithmic function over a linear function of Pi. In addition,
we have lim

Pi→0
EE = lim

Pi→∞
EE = 0 ∀i. Hence, lim

P→0
EE =

lim
P→∞

EE = 0, where lim
P→0

is defined as the limit to zero of all

P components. Consequently, EE(P) has a global and unique
maxima [21].

Our objective is to find an explicit expression of the optimal
power that maximizes the EE based on finding the root of
its derivative which yields the unique and global maxima.
For a given parallel channel i, the EE is a continuous and
differentiable function for all values of Pi ≥ 0. Also, since
it has a global maxima, this maxima corresponds necessarily
to a root of the first-order derivative which is computed as

∂EE
∂Pi
=

γi

log(2)(1+ γiPi)
N∑
j=1

(Pc + Pj)

−

N∑
j=1

log(1+ γjPj)

log(2)

(
N∑
j=1

(Pc + Pj)

)2 . (4)

By equating this derivative to zero, the optimal power solu-
tions denoted by P∗i needs to satisfy the following condition

γi

1+ γiP∗i
=

N∑
j=1

log(1+ γjP∗j )

N∑
j=1

(Pc + P∗j )

. (5)

In order to find these solutions, we introduce the following
lemma.
Lemma: For the non-negative real numbers a, b and c, a solu-
tion of the equation

a
1+ ax

=
log(1+ ax)+ b

c+ x
, (6)

is given by

x =
1
a

(
exp

(
1− b+W

(
ac− 1

exp(1− b)

))
− 1

)
, (7)

where W (·) is the main branch of the W-Lambert function
defined on [− 1

e ,∞] [32].
Proof: The proof of the lemma is in Appendix A.

Note that the condition ac−1
exp(1−b) > −

1
e i.e., ac+ e−b > 1

needs to be verified for the solution in (7) to be valid.
We use this lemma to solve (5) and find a preliminary

expression of the optimal power in the following theorem.

Theorem 1: The power maximizing EE =

N∑
i=1

log2(1+γiPi)

N∑
i=1

(Pc+Pi)
,

is given, for i ∈ 1, . . . ,N , by

PEE,i =
[
1
γi

(
exp

(
1− SRi +W

(
γiSPi − 1
e1−SRi

))
− 1

)]+
,

(8)

where [·]+ = max{·, 0} and SRi and SPi are the sum rate and
sum power excluding the i-th channel defined by

SRi=
N∑

j=1,j 6=i

log
(
1+γjPEE,j

)
and SPi=NPc+

N∑
j=1,j 6=i

PEE,j.

(9)

Proof: It follows by applying the Lemma to solve (5),
for x = PEE,i, a = γi, b = SRi and c = SPi.
Since, a unique root of first-order derivative is found

for each i-th channel, the maxima of the EE corresponds
necessarily to these roots. However, the powers PEE,i’s are
interdependent since SRi and SPi include the PEE,j’s, for
j 6= i. In other words, to allocate a power to the i-th parallel
channel, we need to know the allocated powers of all the other
parallel channels that depend also the i-th parallel channel’s
power. Hence, we present an analytical approach to solve this
interdependence.
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E (N )
γ1
= exp

1−
1
N

N∑
j=1

log(
γj

γ1
)+W


γ1(Pc + 1

N

N∑
j=1

( 1
γ1
−

1
γj
))− 1

e
1− 1

N

N∑
j=1

log(
γj
γ1

)


− 1 (15)

A. ANALYTICAL APPROACH
In order to avoid the interdependence, we rewrite the N
optimality conditions from (5). We then present a new equa-
tion relating the powers Pi and Pj, i, j = 1, . . . ,N , i 6= j,
as follows,

γ1

1+ γ1P1
=

γ2

1+ γ2P2
= · · · =

γN

1+ γNPN
. (10)

Hence, ∀ i, j ∈ 1, . . . ,N , and i 6= j, we obtain

Pj = Pi +
1
γi
−

1
γj
, (11)

⇒ log(1+ γjPj) = log(1+ γiPi)+ log(
γj

γi
). (12)

Note that even for j = i, the previous expressions are still
valid. Hence, for i ∈ 1, . . . ,N , the optimality condition can
be written as

γi

1+ γiPi
=

log(1+ γiPi)+ 1
N

N∑
j=1

log( γj
γi
)

Pc + Pi + 1
N

N∑
j=1,

( 1
γi
−

1
γj
)

. (13)

From (13) and (5), we obtain new expressions of SRi and SPi
as following

SRi =
1
N

N∑
j=1

log(
γj

γi
) and SPi = Pc +

1
N

N∑
j=1

(
1
γi
−

1
γj
).

(14)

These new expressions of SPi and SRi are different from (9)
and are independent from the power solutions of the other
parallel channels. By implementing these expressions in (8),
we can directly determine the explicit expressions of the opti-
mal power solutions that maximize the EE. First, we compute
P∗1 such as P∗1 =

1
γ1
[E (N )
γ1 ]+, where E (N )

γ1 is given by (15) at
the top of this page. Then, we compute the rest of the power
solutions using (11).

In summary, the explicit expressions of the optimal power
solutions and the corresponding EE are given by

P∗1 =
1
γ1

[E (N )
γ1

]+ and P∗j = [P∗1 +
1
γ1
−

1
γj
]+,

for 2 ≤ j ≤ N (16)

EE∗ =
γ1

log(2)(1+ [E (N )
γ1 ]+)

(17)

Note that these expressions are simple to derive. In particular,
the value of P∗1 is directly computed using the available
channel gains without the need of the powers allocated to

other parallel channels. The rest of the power solutions, P∗j ,
j = 2, · · · ,N are straightforward computed using the value
of P∗1.

B. ANALYTICAL APPROACH LIMITATION
Although the expressions in (14) present non-dependent
expressions of the power solutions, the condition
ac + e−b > 1 in (7) might not be satisfied, especially for
low values of Pc. In fact, with the expressions of SRi and SPi
in (14), the condition ac+e−b>1 means that

γi(Pc +
1
N

N∑
j=1

(
1
γi
−

1
γj
))+ exp(−

1
N

N∑
j=1

log(
γj

γi
)) > 1.

In Appendix B, we showed that this condition is only verified
when PC > AM−GM where AM and GM are the arithmetic
and geometric means of the inverse of the channel gains,
respectively, and are given by

AM =
1
N

N∑
j=1

1
γj

and GM = N

√√√√√ N∏
j=1

1
γj
. (18)

Due to the inequality of arithmetic and geometric means
that states the AM ≥ GM [33], there are cases where Pc will
be belowAM−GM and the expressions of SRi and SPi in (14)
are not valid. In that case, the expressions in (9) need to be
used instead. In the latter case, even with no transmission, i.e.,
PEE,i = 0 ∀i, the term e−b = e0 = 1. Hence, the condition
ac+ e−b > 1 is always true. Hence, in order to complement
our analytical results when PC < AM − GM , we propose a
low-complexity algorithm (Algorithm 1 below) to solve the
EE maximization using the expressions in (9).

C. NUMERICAL APPROACH: ITERATIVE ALGORITHM
In the algorithm, we start by giving initial values to the pow-
ers. Then, we update the values of SPi, SRi with respect to (9).
Afterwards, we, iteratively, compute the Pi’s then SPi and SRi
i ∈ 1, . . . ,N , till reaching the maximum EE. We present
the steps of our algorithm in Algorithm 1. The advantage
ofAlgorithm 1 is the use of the expressions in (9) that, as we
will show in the numerical results, converges to the maximum
EE within two iterations.

Consequently, our proposed EEPA is given by the analyt-
ical expression if ac+ e−b > 1 and Algorithm 1 otherwise.
To conclude, we present in Fig. 1, our proposed power allo-
cation scheme for the unconstrained MIMO-SVD systems.
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Algorithm 1 Iterative Algorithm for MIMO Power
Allocation
1: t=0.
2: Initialize P(0)EE,i, i = 1, . . . ,N .
3: Find the initial EE(0) using (3).
4: repeat
5: t ← t + 1.
6: For i=1 to N.
7: Compute SP(t)i , SR(t)i using (9).
8: Compute P(t)EE,i using (8).
9: End
10: Compute the updated EE(t) using (3).
11: until |EE (t)

− EE (t−1)
|
2
≤ ε where ε > 0.

12: The optimal solutions of the optimization problem are
P(t)EE,i,∀i = 1, · · · ,N .

FIGURE 1. Illustration of the energy-efficient power allocation for the
unconstrained MIMO-SVD systems.

IV. CONSTRAINED SYSTEMS EE POWER ALLOCATION
In the constrained problem, we consider two types of con-
straints: power budget and minimal rate constraints. In order
to present the corresponding power solutions, we start by
solving two sub-problems involving the EE as objective func-
tion and each constraint separately. Then, we present the
solution of the EE maximization considering both constraints
simultaneously.

A. POWER BUDGET CONSTRAINT
When the MIMO-SVD WCS’s power is only constrained
by power budget, Ppeak , the optimization problem is

given by

max
Pi≥0

EE =

N∑
i=1

log2 (1+ γiPi)

N∑
i=1

(Pc + Pi)

, (19)

subject to
N∑
i=1

Pi ≤ Ppeak . (20)

In order to solve the problem (19)-(20), we denote by PEE6,N
the sum of the optimal power solutions of the unconstrained
problem derived in the previous Section, i.e., PEE6,N =

N∑
i=1

PEE,i. Depending on the value of PEE6,N , we distinguish

two cases:

1) CASE 2: Ppeak ≥ PEE
6,N

In this region, the EEPA scheme presents feasible solution
of the problem (19)-(20). Given the fact that the EEPA is
the solution of the unconstrained problem, it represents the
solution of this problem as well.

2) CASE 1: Ppeak < PEE
6,N

In this region, at each parallel channel the power is either
equal or lower than PEE,i and the Theorem 1 cannot be
used. Since EE(Pi) has a global and unique maxima at
PEE,i, the function EE(Pi) is a strictly increasing function for
0 ≤ Pi ≤ PEE,i ∀i. Hence, to maximize the EE, that the
power solutions need to be as close as possible to the PEE,i’s.

Meanwhile, since
N∑
i=1

Pi is either equal or below Ppeak and

Ppeak ≤ PEE6,N , then we need to have
N∑
i=1

Pi = Ppeak , since

having lower sum of the power solutions will further decrease
the EE. Consequently, the objective function in (19) can be
written in this case as follows

EE =

N∑
i=1

log2 (1+ γiPi)

NPc + Ppeak
=

SE
NPc + Ppeak

. (21)

The solution of this objective function is the same that max-
imizes the SE which is given by the classical water-filling
power allocation (WPA) [34]. We denote by PSE the corre-
sponding power solution which is given by

PSE,i =

[
1

log(2)µ
−

1

λ2i

]+
∀i, (22)

where µ is the Lagrange multiplier associated with the power
budget constraint in (20) and computed such that

N∑
i=1

PSE,i =
N∑
i=1

[
1

log(2)µ
−

1

λ2i

]+
= Ppeak . (23)
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In summary, the constrained case optimal power is given by

P∗i =

 PEE,i if Ppeak ≥
N∑
i=1

PEE,i,

PSE,i otherwise.
(24)

B. MINIMAL RATE CONSTRAINT
Maximizing the EE given only a power budget constraint
may not be adequate for systems requiring a certain data rate,
it is of interest to include a minimal data rate constraint in
order to guarantee conveying a decent rate as the optimal
solution may always be geared toward ‘‘not transmit’’ case.
Recall that the minimal data rate is denoted by Rmin. Hence,
the EE maximization problem with minimal rate constraint is
given by

max
Pi≥0

EE =

N∑
i=1

log2 (1+ γiPi)

N∑
i=1

(Pc + Pi)

, (25)

subject to
N∑
i=1

log2 (1+ γiPi) ≥ Rmin. (26)

Before solving this problem, we first start by denoting by
REE6,N the sum of the rates of the EEPA solutions, i.e.,

REE6,N
1
=

N∑
i=1

log2
(
1+ γiPEE,i

)
. (27)

The value of REE6,N is important to perform the analysis of the
power allocation scheme. In fact, depending on the value of
REE6,N compared to Rmin, we distinguish two cases

1) CASE 1: REE
6,N ≥ Rmin

In this case, the EEPA solutions derived in the unconstrained
part satisfy the rate constraint. Consequently, the EEPA
scheme represents the solution of the problem in this case.

2) CASE 2 : REE
6,N < Rmin

In this case, the EE power solutions are no longer feasible
as the rate constraint is not respected. However, the solu-
tion of the problem should necessary satisfy the constraint
with equality, i.e.,

∑N
i=1 log2 (1+ γiPi) = Rmin. The reason

behind this condition, similarly to the power budget con-
strained case, is that having higher power solutions than
the EEPA will further decrease the EE. Consequently, the
objective function in (25) can be rewritten as follows

EE =
Rmin

Pc +
N∑
i=1

Pi

. (28)

Given this new expression, maximizing the EE is equiva-
lent to minimizing the denominator of (28). In other words,

the new problem is given by

min
Pi≥0

N∑
i=1

Pi, (29)

subject to
N∑
i=1

log2 (1+ γiPi) ≥ Rmin. (30)

In this case, the objective function and the constraint are
convex. Hence, we use the Lagrangian method [35], to solve
this problem. We derive the Lagrangian function as follows

L =
N∑
i=1

Pi − ν
(

N∑
i=1

log2 (1+ γiPi)− Rmin

)
(31)

where ν is the Lagrange multiplier associated with the rate
constraint (30). We compute the derivative of L with respect
toPi, ∀i, andwe obtain the following necessary and sufficient
condition, ∀i,

1− ν
γi

log(2)(1+ γiPi)
= 0. (32)

Hence, the corresponding power solution, denoted as power
minimization (PM) scheme, is given by

PPM ,i =
[

ν

log(2)
−

1
γi

]+
∀n, (33)

where ν is computed such that
N∑
i=1

log2
(
1+ γiPPM ,i

)
= Rmin. (34)

In summary, the solution of the problem (25)-(26) is given by

P∗i =

{
PEE,i if Rmin ≤ REE6,N ,
PPM ,i otherwise.

(35)

C. POWER BUDGET AND MINIMAL RATE CONSTRAINTS
We aim in this part to solve the complete EE maximization
problem involving both power a budget and minimal rate
constraints. The EE maximization problem is given by

max
Pi≥0

EE =

N∑
i=1

log2 (1+ γiPi)

N∑
i=1

(Pc + Pi)

, (36)

subject to
N∑
i=1

Pi ≤ Ppeak . (37)

and
N∑
i=1

log2 (1+ γiPi) ≥ Rmin. (38)

We start by computing PEE6,N and REE6,N , then depending on
the values of Ppeak and Rmin, we distinguish four cases

1) CASE 1: Rmin ≤ REE
6,N and Ppeak ≥ PEE

6,N
Since the EEPA solutions satisfy both constraints, the solu-
tion of the problem is given by the EEPA scheme described
in Section III.
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TABLE 1. Energy-efficient optimal power for MIMO systems with power budget and minimal rate constraints.

FIGURE 2. Comparison between energy-efficient and water-filling power allocations with Pc = 1 W and Ppeak = 6 dB.

2) CASE 2: Rmin > REE
6,N and Ppeak < PEE

6,N
In this case, both constraints are not respected by the EEPA
and a different power allocation scheme should be adopted.
However, if the power solutions are higher than the EEPA, to
meet the rate constraint, or lower than the EEPA, to meet the
power budget constraint, there will be always one constraint
that is not respected. Consequently, this problem does not
have a solution and an outage is declared.

3) CASE 3: Rmin ≤ REE
6,N and Ppeak < PEE

6,N
In this case, the EEPA scheme respects the rate constraint but
not the power budget constraint. Hence, the WPA solution
should be adopted to satisfy the power budget constraint.
However, the WPA solution does not necessarily respect the
rate constraint. For this reason, we denote by RSE6,N the sum
of the rates of the WPA scheme, i.e.,

RSE6,N
1
=

N∑
i=1

log2
(
1+ γiPSE,i

)
. (39)

Hence, if the WPA scheme satisfies the rate constant, i.e.,
RSE6,N ≥ Rmin then the optimal power is the SE. Otherwise,
an outage is declared.

4) CASE 4: Rmin > REE
6,N and Ppeak ≥ PEE

6,N
In this case, the EEPA scheme respects the power budget
constraint but not the rate constraint. Hence, the PM scheme
in (33) should be adopted to satisfy the rate constraint.

However, the PM solution does not necessarily respect the
rate constraint. For this reason, we denote by PPM6,N the sum
of the PM power solutions, i.e.,

PPM6,N
1
=

N∑
i=1

PPM ,i. (40)

Hence, if PPM6,N ≤ Ppeak , then the solution is given by the
PM scheme. Otherwise we declare an outage.

The previous four cases cover the solutions of the EEmaxi-
mization problems when both power budget and minimal rate
constraints are considered. These solutions are summarized in
Table 1 with respect to all the cases discussed in this Section.

V. NUMERICAL RESULTS
We present the performance of the proposed power allocation
scheme under Rayleigh fading channel, i.e., the elements
of the channel matrix H are circularly symmetric complex
Gaussian random variables with zero mean and unit variance.
The performances are plotted by averaging 103 channels
realizations.

A. UNCONSTRAINED EE RESULTS
In order to characterize the proposed energy-efficient power
allocation against the classical water-filling power allocation,
we compare in Fig. 2, the EEPA and the WPA schemes in
terms of power and performance variations with the channel
realization for one parallel channel denoted by γ . In Fig. 2.a,
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FIGURE 3. Unconstrained EE as a function of the number of iterations of
Algorithm 1 with different values of N and Pc = 1W.

we show that variation of the EEPA with respect to γ is
remarkably different from the variation of the WPA. In fact,
the WPA allocates high power to high channel realizations
to obtain a high global SE. However, the EEPA allocates low
power to high channel realizations since by dividing the SE by
low power will give high EE.

In Fig. 2.b, we plot the corresponding SE and EE as a
function of γ . We show that for low channel gain, the EEPA
performances in terms of SE and EE is higher than the WPA.
However, as the channel realization values increase, the SE
of the WPA outperforms the SE of EEPA which gives high
global SE but low EE.

In Fig. 3, we aim to study the convergence speed of
Algorithm 1 by displaying the number of iteration needed
to reach the maximal EE. We plot the EE resulted from
the numerical simulations using MATLAB in comparison
with the proposed algorithm for Pc = 1W which uses the
expressions of SPi and SRi in (9). We show that the pro-
posed iterative algorithm is accurate and converges rapidly
as it needs only two iterations. In addition, regardless of the
complexity of increasing the number of antennas from 2 to
64, the required number of iterations is at most two.

In Fig. 4, we highlight the effect of the circuit-power by
plotting the EE as a function of Pc with a different number
of antennas. From (3), we notice that the EE is a rational
function with respect to Pc meaning that the curve of the
EE is dictated by a hyperbola. Hence, as Pc increases, the EE
decreases steeply for Pc < 0.2. However, for Pc > 0.2, the
variation of EE is limited which shows that at relatively high
values of Pc, the EE converges slowly to zero for Pc→∞.

In Fig. 5, we highlight the effect of multi-antennas on the
EE. As can be seen in Fig. 5, the EE is increasing logarithmi-
cally as N increases. Although this result cannot be general-
ized to all cases, it gives insights that adopting an EEPA can
result in an increasing EE as N increases. However, the EE
gain with MIMO transmissions is relatively high compared

FIGURE 4. Unconstrained EE as a function of Pc different values of N .

FIGURE 5. Unconstrained EE as a function of N for different Pc .

to the SISO transmission. For example, the EE gain from 1 to
16 antennas is 179% for Pc = 2W and 286% for Pc = 0.5W.
We also observe that having MIMO transmissions enhances
the energy-efficiency of the WCS. In addition, for a given
circuit-power per RF chain, Pc, having MIMO transmissions
enhances the energy-efficiency of the WCS compared to a
transmission with a single antenna. These results hold in
the case of a pilot contamination free channel acquisition as
shown in [36].

B. CONSTRAINED EE RESULTS
In Fig. 6, we plot the constrained EE performances as func-
tion of the power budget Ppeak . We show that there are two
regimes of the EE. The first regime is the ‘‘power limited’’
regime in which the EE varies with Ppeak meaning that the
power budget constraint is active. Clearly, this is the regime
in which we have PEE6,N ≥ Ppeak , in our analysis. In fact, by
studying the limits of the EE with respect to Ppeak , we find
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FIGURE 6. Constrained EE as a function of Ppeak for different values of
Pc with N = 4 with no minimal rate constraint.

FIGURE 7. Constrained EE as a function of Rmin for different values of Pc
with N = 4 with no power budget constraint.

that when Ppeak → 0, the sum of the power solutions is
smaller than the sum of the EEPA solutions. Hence, the EE
varies and increases with Ppeak . The second regime is the
‘‘saturated" regime in which the EE stagnates at a certain
maximum level as a function of Ppeak . This stagnation level
corresponds to the optimal EE in the unconstrained case given
by (17) and to the case in which we have PEE6,N ≤ Ppeak
meaning that the EE reaches its maximum and cannot further
increase and that the power budget constraint is no longer
active. Hence, the cases wherePpeak = PEE6,N present the limit
between the two regimes and are easy to spot from the figure
when the EEPA and the WPA schemes give different values
of the EE. In addition, there is no need to transmit above PEE6,N
since the EE will not increase and the power is wasted.

In Fig. 7, we plot the EE as a function of the minimal
rate Rmin with both EEPA and PM schemes with no power
budget constraint. We show that, for the EEPA scheme, there

FIGURE 8. Illustration of the constrained EE as a function of Ppeak and
Rmin for different values of Pc = 1 W with N= 4.

is also two regimes in which the EE is either saturated or
variable with Rmin. The saturated regime characterizes the
regime of low values of Rmin. In fact, in this regime, the rate
constraint is not active as the EEPA solutions achieve rates
higher than Rmin. When Rmin is high, given that there is no
power limitation, the allocated power is high to meet the rate
requirement which causes the drop of the EE for both EEPA
and PM schemes. We also note that there are values of Rmin
that separate the two regimes and can be easily noted when
the performances of the EEPA and the PMare different. These
values vary between 6 to 9 bits/s depending on the values
of Pc.

In Fig. 8, we present the variations of the EE as a function
of both Ppeak and Rmin. We show that the EE stagnation
region is clearly defined by a rectangle shape limited by high
values of Ppeak and low values of Rmin. In addition, we clearly
highlight the outage region in which the EE is equal to zero.

VI. CONCLUSION
In this paper, we studied the optimal power allocation that
maximizes the energy efficiency. Unlike previous works that
adopted numerical methods such as fractional programming,
we presented explicit expressions of the optimal power and
a corresponding iterative algorithm. We extended our results
to power budget constrained systems. We showed that the
proposed algorithm is accurate and converges to the optimal
solution within two iterations. Furthermore, we show that
the EE is improved when the number of antennas increases.
We also distinguish a saturation regime of the EE when the
system is power budget constrained.

APPENDIX A: PROOF OF THE LEMMA
The equality (6) can be written as

ax + ac = (1+ ax) (log(1+ ax)+ b)

⇒ ac− 1 = (1+ ax) (log(1+ ax)+ b− 1)

⇒ (ac− 1)eb−1 = (1+ ax)eb−1 log
(
(1+ ax)eb−1

)
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⇒ (ac− 1)eb−1 = elog(X ) log(X )

(where X = (1+ ax)eb−1)

⇒ X = exp
(
W
(
ac− 1
e1−b

))
⇒ x =

1
a

(
exp

(
1− b+W

(
ac− 1
e1−b

))
− 1

)
APPENDIX B : OBTAINING THE LOWER BOUND OF Pc
When the expressions of SRi and SPi in (14) are adopted, for a
given i ∈ 1, . . . ,N , the condition ac+ e−b > 1 is written as

γi(Pc +
1
N

N∑
j=1

(
1
γi
−

1
γj
))+ exp(−

1
N

N∑
j=1

log(
γj

γi
)) > 1

⇒ γiPc + 1−
γi

N

N∑
j=1

1
γj
+ exp(

1
N

log(
N∏
j=1

γi

γj
)) > 1

⇒ γiPc >
γi

N

N∑
j=1

1
γj
− γi

N

√√√√√ N∏
j=1

1
γj

⇒ Pc >
1
N

N∑
j=1

1
γj
−

N

√√√√√ N∏
j=1

1
γj

⇒ Pc > AM − GM

where AM = 1
N

N∑
j=1

1
γj
and GM = N

√
N∏
j=1

1
γj
.
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