
Received February 7, 2017, accepted April 18, 2017, date of publication May 24, 2017, date of current version June 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2705434

Evaluation of FPGA Hardware as a New
Approach for Accelerating the Numerical
Solution of CFD Problems
ABBAS EBRAHIMI1 AND MOHAMMAD ZANDSALIMY2
1Department of Aerospace Engineering, Sharif University of Technology, Tehran 11155-1639, Iran
2Sharif University of Technology, Tehran 11365/8639, Iran

Corresponding author: Abbas Ebrahimi (ebrahimi_a@sharif.ir)

ABSTRACT The main purpose of this paper is to investigate the feasibility of using field programmable gate
arrays (FPGAs) chips as alternatives for the conventional CPUs to accelerate the numerical solution of the
fluid dynamics differential equations. FPGA is an integrated circuit that contains an array of logic blocks,
and its architecture can be reprogrammed and reconfigured after manufacturing. Complex circuits for various
applications can be designed and implemented using FPGA hardware. The reconfigurable hardware used in
this paper is a system on a chip FPGA type that integrates both microprocessor and FPGA architectures into
a single device. In this paper, typical computational fluid dynamics problems, such as the Laplace and 1-D
Euler equations, are implemented and solved numerically on both reconfigurable hardware and CPU. The
precision of results and speedups of the calculations is compared together. In some cases, the computational
process on FPGA is up to 20 times faster than a conventional CPU, with the same data precision. Several
numerical and analytical solutions are used to validate the results.

INDEX TERMS FPGA, CFD, reconfigurable hardware, numerical solutions, hardware definition language,
accelerating numerical solutions.

I. INTRODUCTION
There are three approaches for predicting and analyzing
fluid flow problems in various applications; analyti-
cal methods, experimental tests and computational fluid
dynamics (CFD) [1]. Due to the nonlinearity of Navier-
Stokes equations and also very complex configurations
in aerospace industry, the analytical methods have never
been widely implemented by aerodynamicists. Tradition-
ally design process and optimization in the different fluid
dynamics applications are performed via experimental tests
which typically are expensive and time-consuming. In recent
decades, by the emergence of high-speed processors, CFD
has become an auxiliary tool to the experimental tests,
by providing a far detailed investigation on the flow field
and decreasing the risk of design failure [2]. CFD perfectly
complements the empirical methods in a way that has made
great contributions in the development of recent commercial
transporters such as Boeing 787 and Airbus 380 [3], [4];
however, it is still far from the point to be employed as the
unique tool of aerodynamic assessment tool in the foresee-
able future [5]. CFD has been known as a technique with
massive floating point operations [6], which is due to the

fact that most of the aeronautical problems require a fine
computational mesh with a good distribution of grid points as
well as a sufficient number of iterations to yield an accurate
solution. As a result, even by employing the highly advanced
Cray computers, the solution time of a typical aerodynamic
problem will still be significantly high [7].

Several techniques and ideas have been suggested and
implemented for reducing the solution time of differen-
tial equations that governs the fluid flow. In general, these
methods are categorized into software and hardware meth-
ods. Optimization of the computer program and the use
of new numerical algorithms are examples of software
methods [8], While the use of more powerful CPUs, or
employing alternative hardware such as GPUs or HPC (High-
Performance Computing) systems are examples of hardware
methods [9], [10].

Numerous studies have been performed within the last
decade which demonstrates the promising future of using
FPGA (Field Programmable Gate Array) for speeding up
the CFD computations [6], [11]–[22]. Also, it was shown
by [17] that by coupling FPGA logic with high bandwidth
external memory achieving a computational performance of

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9717



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

several GFLOPs is possible. Furthermore, typical numerical
methods implemented to solve the governing equations of
the flow field, usually include simple arithmetic operations
that in most cases, the calculations should be repeated over
and over again for each one of computational nodes of the
numerical mesh in order to reach the desired accuracy. This
makes FPGA-based flow solvers ideal for computational
purposes. This is due to the high efficiency of FPGA-based
computers in parallelizing at the hardware level for simple
arithmetic or iterative numerical solutions, see [15]–[17].
More important, since parallel processing can be conducted
at two levels i.e., system level (using multiple hardware units)
and hardware level (configuring a single hardware unit archi-
tecture); a device like FPGA logic capable of employing both
levels would be of great benefit.

The primary goal of manufacturing FPGAs was for proto-
typing hardware or being used as a connection bridge between
separate hardware units [23]. There are several studies in the
literature reporting on different digital applications of FPGAs
such as signal and image processing [24]–[28]. Further,
the effect of data precision on the numerical solution obtained
by using FPGA [29]–[31], the impact of data throughput of
this chip via I/O pins with the outside world [32], [33] and
FPGA logic area usage for different applications have been
studied [34].

Although FPGA has been widely used for digital applica-
tions, it has been far less employed in computational sciences.
However, by the significant increment of clock frequency
as well as logic block density, FPGAs can now be imple-
mented as highly flexible standalone computational proces-
sors [21], [35], [36]. In the following, some of the most
relevant researches on the later applications of FPGAs are
mentioned.

In order to construct a CFD accelerator,
Smith and Schnore [11] implemented a reconfigurable
hardware for three of the most computationally expen-
sive functions including Euler, Viscous, and Smoothing
algorithms and showed that dramatic improvement in
sustained computational speed can be achieved through
reconfigurable computing. In 2007, Nunez et al. [13]
proposed and fully discussed three levels of parallelism
that can be applied to reconfigurable hardware systems
including fine-grained, coarse-grained, and algorithm-level
parallelism.

In 2008, Dongarra et al. studied the feasibility of inte-
grating both FPGA and CPU logics in a single device as a
hybrid architecture to accelerate CFD solutions and achieved
20 times faster calculations than a Pentium4 CPU imple-
menting dense and sparse linear algebra computational ker-
nels [15]. Andrés et al. [19] presented a brief study on the
feasibility of using FPGAs to accelerate CFD simulations.
In 2011, Sanchez-Roman et al. [20] exhibited an FPGA-based
accelerator to implement a cell-vertex finite volume algo-
rithm for solving the Euler equations. Liu et al. [22] published
a framework based on reconfigurable logic to implement
a 1-D CFD model of a diesel fuel system.

In the present research, the hardware structure and the
configuration methods of an FPGA are represented at first.
Then, typical CFD cases such as Laplace equation and
1-D Euler equation are solved numerically via implementing
different mesh sizes and numerical schemes. The results were
compared with corresponding data obtained from a CPU in
terms of run time and precision. By this study, the compu-
tational advantages of employing FPGA over a conventional
CPU were studied and represented.

II. RECONFIGURABLE HARDWARE
Generally, reconfigurable hardware is built of an array of
reprogrammable logic blocks that are linked to each other
with communication wires. The function of each logic block,
as well as the connections between them are reconfigurable
after being manufactured. The concept of reconfigurable
computing emerged in the 1960s when Estrin proposed the
idea of designing and building a computer consisting of a
standard processor and an array of reconfigurable hardware
blocks [37]. In this architecture, the main processor is sup-
posed to act as the main unit to control the performance of
the reconfigurable hardware. Besides, the reprogrammable
logic could be programmed to perform a user defined task.
Being reconfigurable allows the hardware to be readjusted
to perform new tasks that were not desired at first. Such
configuration yielded in a hybrid computer structure that
combines the flexibility of reconfigurable hardware and the
speed of traditional CPUs. Later, Casselman presented a field
programmable logic device architecture in 1987 which was
aimed to create a computer chip that was able to be com-
pletely programmed using software [23].

Recently developed reconfigurable hardware fabric are
consist of a number of various electronic components such
as memory cells and connection switch blocks. Memory
cells are used as lookup tables to implement the universal
gates and also to control the configuration of the switches in
the interconnection network. A configuration is a software
program that defines the function of each logical gate and
the switch state. The main difference between reconfigurable
hardware and conventional microprocessors is the ability to
change data paths and having control over data transmission
process. The most common type of reconfigurable hardware
device is an FPGA which its architecture can be reconfigured
through Hardware Description Languages (HDLs) such as
‘‘VHDL’’ and ‘‘Verilog’’.

A. FPGA-CPU CONNECTION
Reconfigurable logic has shown to be inefficient at conduct-
ing some specific operations like logical loops or branch con-
trol [38]. In order to get the fastest solution of a reconfigurable
computing system, these operations need to be executed on a
host microprocessor. On the other hand, reconfigurable logic
can be used to perform the processes with a high density of
computation load, rapidly and smoothly. Different types of
FPGA-CPU connection architectures have been developed
to be used in reconfigurable computing applications. One of

9718 VOLUME 5, 2017



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

FIGURE 1. Different levels of coupling in a reconfigurable
system (Reconfigurable logic is shaded) [38].

the fundamental parameters that characterize a connection
architecture is the level of coupling (assuming any) with a
host microprocessor. For a hybrid system that integrates both
microprocessor and reconfigurable logic, there are several
ways to couple these hardware components. The main con-
cept is illustrated in Fig. 1 schematically.

1) Reconfigurable logic can be incorporated inside a host
processor. This type provides a customary program-
ming environment with the added reconfigurable hard-
ware that can be modified to execute some custom
operations. In this case, the reconfigurable unit acts as
an auxiliary subsystem of the primary processor and
cannot take action independently.

2) A reconfigurable unit might be employed as a
coprocessor. In this concept, the coprocessor which is
typically larger than a functional unit of Type 1, can
perform calculations independent from the non-stop
supervision of the host processor. Even now, the pro-
cessor triggers the reconfigurable unit and sends the ini-
tial data to commence a function on the reconfigurable
hardware or gives data about where this information
may be found in memory.

3) A joint reconfigurable processing unit acts as an extra
processor in a multiprocessor framework. There is,
accordingly, a higher delay in correspondence between
the host processor and the reconfigurable hardware.
For example, when setup information or input and
output data are transformed. This type of communica-
tion architecture provides a high bandwidth connection
between CPU and FPGA.

4) A standalone reconfigurable hardware unit can be
coupled to a host processor via their peripheral
connections. In this sort of connection architecture,
the standalone FPGA-based unit will occasionally have
interactions with CPU. This model acts analogous to
the workstations of a network in which data processing
takes most of the time with the least need to have
continuous communication with CPU.

All of the discussed architectures have their own advan-
tages and disadvantages. Another parameter that can be influ-
ential in an architecture is the distance between FPGA and
CPU. Shorter distance means less communication overhead

and accordingly less time required for interactions. On the
other hand, a more independent FPGA-based processing unit
enables a broader variety of tools for hardware parallelism
in program execution, though it may have a higher com-
munication overhead as mentioned before. Communication
latency can be the most deteriorating disadvantage for appli-
cations with a high number of transaction, where in special
circumstances, it may reduce or completely disappear the
acceleration benefits that is desired to be achieved through
using this type of reconfigurable hardware. The present study
considers an FPGA and a CPU as two separate units that are
connected to each other with very high-speed lines (second
integration type).

III. THE HARDWARE IN USE
In the present study, an SoC FPGA is used as the computing
hardware for numerical calculations. An SoC FPGA is made
of both programmable logic (FPGA hardware) and process-
ing system (microprocessor hardware) on the same chip.
Herein, a Zynq-7020 SoC FPGA from Zynq-7000 family
chips byXilinxCo. is employed. The Zynq-7000 family prod-
ucts integrate a feature-rich dual-core or single-core ARM
Cortex-A9 based processing system (PS) and 28 nm Xilinx
programmable logic (PL) in a single device. Zynq-7020 chip
is optimized for massive computations with low power con-
sumption. The SoC FPGA chip employed in the present study
will be usable only if the I/O pins being connected to the
standard external connections on an electronic board. More-
over, the implemented board is a z-turn board manufactured
by MYiR Co. There are various external connections on this
board, such as USB, LAN, JTAG and micro SD as is shown
in Fig. 2.

FIGURE 2. z-turn board by MYiR Co.

An intel Core i7 Q-740 processor was used to compare
the solution time of various tests with the results obtained
from FPGA. This CPU owns 4 physical processing cores
each capable of two threads at the same time with a maxi-
mum frequency performance of 1.73 GHz per core. In other
words, it can perform 13.84 billion floating point operations

VOLUME 5, 2017 9719



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

per second (13.84 GFLOPS of calculation power). This is the
maximum nominal calculation performance of this chip that
cannot be achieved in a practical application.

IV. THE CONFIGURATION METHOD
In spite of several performance benefits of reconfigurable
hardware in program execution, it may be ignored by pro-
grammers if incorporating a reconfigurable hardware into a
system cannot be done easily. This requires a user-friendly
software design environment that helps in creating the hard-
ware configurations. This environment can be extended any-
where between a software assist for manual circuit design,
to a complete automated circuit configuration system. Man-
ual circuit description (using HDLs) is a powerful method
for designing high-quality circuit configurations [39]. How-
ever, this process takes a lot of time and also requires a
full knowledge about the particular reconfigurable hardware
employed. On the other hand, an automatic design procedure
provides a quick and easy way to program reconfigurable
systems and therefore makes using this kind of hardware
easier for general application programmers. One of these
automated design tools is implementing high-level hardware
description languages (HLLs) which are based on codes writ-
ten in C/C++ programming language. Though using HLLs
reduces the time spent on developing hardware architecture,
they need a manual optimization to operate at the best per-
formance. New series of FPGAs make using floating point
numbers and mathematical operations much easier, so they
look very promising for applications with floating point
calculations [40].

Digital circuit description is the process of describing the
user specified functions that are intended to be implemented
in the reconfigurable hardware. Performing this procedure
can be as complex as specifying the inputs, outputs, and
operation signals of each basic function block in the recon-
figurable system (manual technique). Besides, it can be as
simple as writing a code in C programming language that rep-
resents the functionality of the entire algorithm to be imple-
mented in hardware (automatic technique). This process can
also be somewhere in the middle of these two techniques;
such as the method of specification of the circuit by using
prebuilt operational components (e.g. adders and multipliers)
which will be mapped to the actual hardware later in the
design procedure.

The implemented method for circuit design in the present
study is an automated design process for Zynq-7000 FPGA
family recommended by Xilinx Co. Three software are used
in this method, all of them optimized for the task, including;
Vivado, Vivado HLS, and Xilinx SDK. Using Vivado HLS
and starting with a code in C++, some IP (Intellectual Prop-
erty) blocks were produced and then packaged. An IP block is
a logical hardware description layout that includes a number
of inputs and outputs. These IP blocks are then transferred
to Vivado and connected together to form a fully func-
tional electronic circuit. An example of hardware design in
Viavdo for solving the Laplace equation and the used IPs are

FIGURE 3. Block diagram of hardware designed to solve the Laplace
equation on Zynq-7020.

demonstrated in Fig. 3. Each one of the blocks has a special
role and function in the main architecture.

Laplace Solver IP core is the solver of the Laplace equa-
tion that has been developed via Vivado HLS and from a
program written in C++, particularly for the present study.
This IP receives the initial conditions for the Laplace equa-
tion and then after completing the solution, sends out the
results through the output port. The AXI Timer block is an
IP provided by Xilinx Co. to calculate the exact clock rate
of the chip during the running time of a program. The main
purpose of this block is to calculate the correct solution time
of each problem. Also, ZYNQ7 Processing System block
can initiate and control the ARM processors available in
the Zynq-7020 chip. By means of this IP, it is possible to
communicate with the Laplace Solver block through the high
bandwidth AXI Interconnect connection block and control
the data flow into and from the reconfigurable unit. For the
interested readers, a full discussion about IP blocks can be
found in [41]. The final circuit design is then applied to the
actual hardware and debugged using Xilinx SDK.

The configuration method of the hardware for each prob-
lem in question can vary in details (e.g. utilizing vari-
ous directives to lower the latency, changing the memory
addresses for more rapid connections with the memory and
so on). Despite these minimal differences, the overall design
procedure can be divided into distinguished steps. A simple
representation of the configuration method is proposed in
Algorithm 1. The procedure starts off with the IP core design
inside Vivado HLS (steps 1 through 5) and continues with
assembling these IP blocks inside Vivado (steps 6 through 8).
After performance analysis and verification, the final design
is applied to the actual hardware using Xilinx SDK (steps 9
through 11).

V. RESULTS AND DISCUSSION
The main purpose of this study is to reduce the solution
time required for solving CFD problems by using FPGA.
In this regard, various CFD problems that are solved by
implementing different numerical methods are chosen. Each
problem has its own computational load and therefore a more
general study can be made. However, every problem with a

9720 VOLUME 5, 2017



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

Algorithm 1AGeneralMethod for High Level Hardware
Configuration
Input : A code in C/C++ programming language

1 C code verification
2 Design synthesis
3 Design analysis and optimization
4 RTL verification
5 IP core packageing and export
6 Assembling IP cores
7 Design synthesis and verification
8 Hardware packaging and export
9 Design a software to run the configuration
10 Construct Boot file
11 Apply the bitstream to the actual hardware

Output: The results of the solution

FIGURE 4. Diagram of a simple pendulum.

high computational load may not be fully implemented on
a specific FPGA because the number of logic blocks and
its components are limited. To tackle this issue, such prob-
lems would be partially implemented on both reconfigurable
hardware and CPU, and then the results will be compared.
Three differential equations have been studied in the present
research which are:

1) An ordinary 2nd order differential equation
2) The Laplace equation
3) The quasi-one-dimensional inviscid flow governing

equation

A. ORDINARY 2ND ORDER DIFFERENTIAL EQUATION
In physics and engineering, the use of Newton’s second
law of motion leads to a system of second-order differential
equations that are implemented for modeling some of the
most important physical phenomena of nature. High-order
equations can be studied either directly or through equiva-
lent systems of first-order equations [42]. An example of an
ordinary second order differential equation is the equation
governing the motion of a simple pendulum. An illustration
of this pendulum is shown in Fig. 4. Neglecting the friction
forces, the equation of motion about its center of rotation can
be written as:

d2θ (t)
dt2

= −
g
l
sin(θ (t)) (1)

Where θ is the angle in radians and l is the pendulum length
in meters. By defining following parameters:

Y1(t) = θ (t), Y2(t) = θ ′(t) (2)

Where the θ ′(t) is the time dericative of θ (t). Equation 1
can be rewritten to get the system of first order differential
equations 3 and initial conditions 4.{

Y ′1(t) = Y2(t)

Y ′2(t) = −
g
l
sin(Y1(t))

(3)

Y1(0) = θ(0), Y2(0) = θ ′(0) (4)

Using Euler discretization method [42], one can change the
equations 3 into the algebraic system of equations 5 that are
solvable using a simple computer program. Herein, h is the
step size and y1,n and y2,n are the discrete values of Y1 and Y2
at the time step n, respectively.y1,n+1 = hy2,n + y1,n

y2,n+1 = −
gh
l
sin(y1,n)+ y2,n

(5)

Initial conditions 6 are used in the solution of these equations.

θ (0) =
π

20
, θ ′(0) = 0 (6)

The results of the solution of Eq. 5 from [43] for a pen-
dulum of different lengths are given in Table 1. In this table,
the relative error of the numerical solution of Eq. 5 for using
CPU and FPGA hardware in single precision is also reported.
The hardware configuration is designed so that the results of
FPGA and CPU become identical with any data precision.

The solution time results of pendulum equation for single
and double precision floating points, at different times with
h = 10−4 are given in Table 2. In Fig. 5, the graph of solution
time (the left vertical axis) by using CPU and FPGA versus
different times with h = 10−4 is plotted. The amount of solu-
tion speed increment is shown for different data precisions
on the right vertical axis. The solution speed of Eq. 5 for
employing FPGA is up to 3.8 times faster than the solution
of CPU.

B. THE LAPLACE EQUATION
One of the important cases that has been frequently studied in
the context of accelerating numerical computations is solving
the Laplace equation by taking advantage of FPGAs [13],
[21]. The governing equation of an incompressible, inviscid
flow (potential flow) and also the governing equation of a
simple steady state heat transfer problem without any source
terms, is the Laplace equation. In a potential flow by solving
the Laplace equation for the stream function (ψ) in a two-
dimensional flow and then by calculating its derivatives,
velocity field can be yielded. But in the case of a simple
steady state heat transfer problem, after solving the Laplace
equation the temperature contour is achieved directly. Con-
sider the Laplace equation in 2D Cartesian form (Eq. 7) with
the boundary conditions of Fig. 6. In this figure, ψx denotes

VOLUME 5, 2017 9721



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

TABLE 1. The results of the solution of Eq. 5 from [43] and the difference with solutions on FPGA and CPU.

TABLE 2. The solution time results of Eq. 5 using FPGA and CPU.

the partial derivative of ψ over x i.e
∂ψ

∂x
. According to [44],

using the method of separation of variables, its analytical
solution is expressed as Eq. 8. For the numerical solution of
this problem, the Point Jacobi method has been implemented.
According to [45], the discretization of Eq. 7 with explicit
Jacobi method yields the Eq. 9. In this equation, β is the ratio
of mesh size in x and y directions, i.e. β = 1x/1y.

∇
2ψ =

∂2ψ

∂x2
+
∂2ψ

∂y2
=0 (7)

ψ(x, y)=
1
2
(π−y)+

∞∑
n=1

2 ((−1)n−1)
πn2

sinh(n(π−y))
sinh(nπ )

cos(nx)

(8)

ψk+1
i,j =

1
2(1+β2)

(
ψk
i−1,j+ψ

k
i+1,j+β

2(ψk
i,j−1+ψ

k
i,j+1)

)
(9)

The numerical solution of the Laplace equation with apply-
ing the boundary conditions of Fig. 6 and for two numerical
grids of 51 × 51 and 101 × 101 was performed. Stream
function contours obtained from the numerical solution by
employing FPGA and CPU for double precision accuracy and
for the grid size of 1x = 1y = π/100, are shown in Fig. 7
for 10,000 iterations. Furthermore, in Figure 8 the stream

FIGURE 5. Solution time of Eq. 5 using FPGA and CPU and the speed up.

FIGURE 6. Initial conditions of the Laplace equation.

function contours of the analytical solution are sketched. This
analytical solution was calculated from Eq. 8 with n = 100.
In Table 3, the L2-norm of error between the data of numerical

9722 VOLUME 5, 2017



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

FIGURE 7. Stream function contours obtained from the numerical
solution by using FPGA and CPU.

FIGURE 8. Stream function contours of the analytical solution of the
Laplace equation (Eq. 8).

solution (Fig. 7) and the analytical solution (Fig. 8) are given
for different mesh sizes and time steps. The maximum norm
of the difference between these two solutions is 0.0073 that
demonstrates the accuracy of the numerical solution. Con-
sider two dummy matrices A and B with the same size of
m × n. The L2-norm of error between these two matrices is
calculated using the Eq. 10. In the numerical solution of this
problem, the hardware was designed such that the solution
accuracy of both FPGA and CPU being equal to each other
for any data precision used.

L2-norm =

 1
m · n

m∑
i=1

n∑
j=1

(
Ai,j − Bi,j

)20.5

(10)

The results of solution time of the Laplace equation for
single and double precision floating point, different mesh
sizes, and for one iteration is reported in Table 4. Moreover,

TABLE 3. The L2-Norm of error between numerical and analytical
solution of the laplace equation.

FIGURE 9. Solution time of the Laplace equation vs. grid size using FPGA
and CPU and the speed up.

the amount of time solution decrease for using of FPGA is
given in this table. The time solution decrease varies between
72% to 95% for different cases.

Fig. 9 illustrates the graph of solution time of the prob-
lem (left vertical axis), using CPU and FPGA with different
data precisions. Also in this figure, the amount of solution
speed increment is shown on the right vertical axis. The
plot of numerical solution time of Laplace problem by using
FPGA is shown in Fig. 10 against the number of grid points.
This figure demonstrates a linear relation between solution
time and the grid size. This conclusion is achieved due to the
linearity of Laplace equation.

In [13] and [21], the solution of one node of the numerical
grid for Laplace equation has been conducted via imple-
menting both CPU and FPGA. The solution time results of
each node of the numerical grid with a single precision data
format for one iteration of Laplace solution, in the present
study and those of [13] and [21] are given in Table 5. Since
the hardware and their maximum processing frequency used
by [13] and [21] are different from the one exploited in
this work (first and second columns of Table 5), therefore
solution time cannot be an appropriate criterion to compare
the processing powers. For this reason, the nondimensional
parameter of Clock cycles has been chosen to make such
comparisons. Clock cycles can determine the computational
power of a processing hardware irrespective of the employed

VOLUME 5, 2017 9723



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

TABLE 4. Solution time of the laplace equation using FPGA and CPU.

FIGURE 10. Solution time of the Laplace equation using FPGA vs. grid
size.

hardware and in this regard, it takes the advantage over
other dimensional variables such as the required time for the
solution to finish. It is seen that the required Clock cycles for
completing a solution by using FPGA are nearly equal for the
three studies, while this parameter is different for a solution
employing CPU.

C. QUASI-ONE-DIMENSIONAL INVISCID
COMPRESSIBLE FLOW
The purpose of this section is to compute the flow properties
such as velocity, density, temperature, and pressure in a quasi-
one-dimensional inviscid compressible flow through a Shu-
bin nozzle [46]. In this problem, only the velocity component
in the longitudinal direction of the nozzle is considered and
other directions are neglected. The cross section area, A(x),
of the Shubin nozzle varies according to the relation 11,
in which nozzle length is considered to be 10 (xmax = 10).
Accordingly, the shape of the nozzle is as shown in Fig. 11.

A(x)=1.398+0.347 tanh(0.8x−4), 0<x<xmax (11)

The governing equation of an inviscid compressible flow
are Euler equations that have been taken from [47] and
are represented in matrix and nondimensional form as rela-
tion 12. In this equation, ρ, u, P and γ are the gas density,
longitudinal component of the velocity vector (in the nozzle),

FIGURE 11. The Geometry of the Shubin nozzle.

thermodynamic pressure and heat capacity ratio, respectively.

∂U
∂t
+
∂F
∂x
= H ,

U = A


ρ

ρu
P

γ − 1
+

1
2
ρu2

 , F = A


ρu

ρu2 + P
γP
γ − 1

+
1
2
ρu2

 ,

H =

 0

P
dA
dx
0

 (12)

Flux vector splitting method with a first-order explicit
formulation has been implemented for the numerical solution.
In this method, flux vector F is split into two flux vec-
tors; right-running vector (F+) and left-running vector (F−).
Then, the governing equations (the nondimensional Eq. 12)
are discretized with a backward difference in time and first
order one-sided difference in space. This process consists of
the following steps:

∂U
∂t
+
∂F
∂x
= H

H⇒
∂U
∂t
+
∂F+

∂x
+
∂F−

∂x
= H

H⇒
Un+1
i − Un

i

1t
+

(F+i )
n
− (F+i−1)

n

1x
+

(F−i+1)
n
− (F+i )

n

1x
= Hn

i

H⇒ Un+1
i = Un

i −1t
(F+i )

n
− (F+i−1)

n

1x

−1t
(F−i+1)

n
− (F+i )

n

1x
+1tHn

i (13)

9724 VOLUME 5, 2017



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

TABLE 5. Solution time and clock duration of one iteration of one grid point.

According to [48], right-running and left-running flux vectors
are written as below:

F+ = A
ρ

2γ


2γ u+ c− u

2(γ − 1)u2 + (u+ c)2

(γ − 1)u3
(u+ c)3

2
+

(3− γ )(u+ c)c2

2(γ − 1)


(14)

F− = A
ρ

2γ


u− c

(u− c)2

(u− c)3

2
+

(3− γ )(u− c)c2

2(γ − 1)

 (15)

Where c is the speed of sound. The numerical solution of
the nozzle flow has been performed for two different series
of boundary conditions as is explained in the following:

1) Supersonic inlet and outlet flow (an isentropic flow
without shock wave)

2) Supersonic inlet flow and subsonic outlet (shock wave
inside the nozzle)

Inlet conditions are considered as below for both cases:

ρin = 0.5008261, Pin = 0.27129

uin = 1.099184, Mach Number = 1.262214 (16)

The supersonic outlet conditions are determined as following:

Pout = 0.5156 (17)

Also, the subsonic outlet conditions are determined as
following:

ρout = 0.7511383, uout = 0.4416178 (18)

For the case in which the outlet boundary is subsonic, a shock
wave appears inside the nozzle. Capturing the discontinuity
in the flow correctly would be a challenge for our numerical
solution method.

A one-sided scheme has been used to apply the boundary
conditions to the flow field. The L2-norm difference (See
Eq. 10) of two consecutive solutions is considered as the con-
vergence criterion. The convergence history of the problem
is illustrated in Fig. 12. The comparison between the results
of the exact solution and numerical solution with double
precision data format is given in Fig. 13 for the grid size
of 1x = 0.1 and time step of 1t = 0.01 (CFL=0.2). The
exact solution of this problem was obtained using isentropic
flow and normal shock wave relations from [49]. Acceptable
agreement between the two solutions of Fig. 13 indicates the
credibility of the numerical solution.

FIGURE 12. Convergence history of velocity magnitude in the solution
of Eq. 12.

FIGURE 13. The numerical solution of Eq. 12 and the exact solution.

In Table 6 the results of solution time for different iterations
of the problem, for the case that a shockwave forms inside the
nozzle andwith different floating point data precisions (single
and double) with the grid size of 1x = 0.1 and time step of
1t = 0.01 are given. The graph of solution time of the prob-
lem (left vertical axis), using CPU and FPGA and for different
floating point and data precisions is plotted in Fig. 14 against
different iterations. Furthermore, in this figure, the amount of
solution speed increment is displayed over the right vertical

VOLUME 5, 2017 9725



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

TABLE 6. Solution time of the Eq. 12.

FIGURE 14. Solution time of Eq. 12 and the speed up.

axis which shows that the solution by FPGA has achieved a
speed increment up to 9 times than the CPU case.

VI. CONCLUSION
The main purpose of the present study was to improve the
solution speed of different problems by employing a config-
urable FPGA hardware. The hardware used for the numerical
calculations in this study was a Zynq-7020 that its reconfig-
urable unit can operate at a maximum processing frequency
of 250 MHz. To construct the FPGA architecture, some IP
blocks were built using codes written in C++ programming
language and then by arranging these IPs besides each other,
the final configuration for performing the calculations were
established. This is a high-level hardware design process
which is a simpler method in comparison with program-
ming via hardware description languages. Three numerical
problems were chosen to be solved using this hardware
that includes an ordinary second order differential equation,
the Laplace equation and quasi-one-dimensional inviscid
compressible flow (one-dimensional Euler equation). For all
cases, the results revealed that using FPGA improves the
solution speed in comparison with using CPU (up to 20 times
faster in the case of the Laplace equation). Moreover, in the
case of employing more powerful reconfigurable hardware
for conducting the computations, a better improvement of
computational speed will be obtained. In the present work,
the effect of programming methods and also the use of lower

precision data formats on reducing the solution time have not
been studied. Moreover, further improvement of numerical
solution speed can be achieved by paralleling several FPGAs
and exploiting them as one unit to performing computations.

REFERENCES
[1] J. D. Anderson, Computational Fluid Dynamics. New York, NY, USA:

McGraw-Hill, 1995.
[2] N. Kroll and J. K. Fassbender, Eds., MEGAFLOW—Numerical

Flow Simulation for Aircraft Design (Notes on Numerical Fluid
Mechanics and Multidisciplinary Design). Berlin, Germany: Springer,
2006.

[3] F. T. Johnson, E. N. Tinoco, and N. J. Yu, ‘‘Thirty years of development and
application of CFD at Boeing Commercial Airplanes, Seattle,’’ Comput.
Fluids, vol. 34, no. 10, pp. 1115–1151, 2005.

[4] D. Ball, ‘‘Recent applications of CFD to the design of Boeing commer-
cial transports,’’ in Proc. HPC User Forum, Roanoke, VA, USA, 2009,
pp. 1–27.

[5] E. M. Kraft, ‘‘After 40 years why hasn’t the computer replaced the wind
tunnel?’’ ITEA J. Test Eval., vol. 31, pp. 329–346, Sep. 2010.

[6] H. Morishita, Y. Osana, N. Fujita, and H. Amano, ‘‘Exploiting mem-
ory hierarchy for a computational fluid dynamics accelerator on
FPGAs,’’ in Proc. Int. Conf. ICECE Technol. (FPT), Dec. 2008,
pp. 193–200.

[7] D. Caughey and M. Hafez, Frontiers of Computational Fluid Dynamics
(Computational Fluid Dynamics). Singapore: World Scientific, 2005.

[8] B. T. Polyak, ‘‘Some methods of speeding up the convergence of iteration
methods,’’USSR Comput. Math. Math. Phys., vol. 4, no. 5, pp. 1–17, 1964.

[9] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin, ‘‘Running unstruc-
tured grid-based CFD solvers on modern graphics hardware,’’ Int. J.
Numer. Methods Fluids, vol. 66, no. 2, pp. 221–229, 2011.

[10] S. Dong and G. E. Karniadakis, ‘‘Dual-level parallelism for high-order
CFD methods,’’ Parallel Comput., vol. 30, no. 1, pp. 1–20, 2004.

[11] W. D. Smith and A. R. Schnore, ‘‘Towards an RCC-based accelerator
for computational fluid dynamics applications,’’ J. Supercomput., vol. 30,
no. 3, pp. 239–261, 2004.

[12] T. Hauser, ‘‘A flow solver for a reconfigurable FPGA-based hypercom-
puter,’’ in Proc. 43rd AIAA Aeros. Sci. Meeting Exhibit, Jan. 2005,
pp. 1382.

[13] R. C. Núñez, J. G. Gonzalez, and J. A. Camberos, ‘‘Large-scale numerical
solution of partial differential equations with reconfigurable computing,’’
in Proc. 18th AIAA Comput. Fluid Dyn. Conf., Jun. 2007, p. 4085.

[14] K. Sano, T. Iizuka, and S. Yamamoto, ‘‘Systolic architecture for com-
putational fluid dynamics on FPGAs,’’ in Proc. 15th Annu. IEEE
Symp. Field-Program. Custom Comput. Mach. (FCCM), Apr. 2007,
pp. 107–116.

[15] J. Dongarra, G. Peterson, S. Tomov, J. Allred, V. Natoli, and D. Richie,
‘‘Exploring new architectures in accelerating CFD for air force applica-
tions,’’ in Proc. DoD HPCMP Users Group Conf. (DOD HPCMP UGC),
2008, pp. 472–478.

[16] J. Sun, G. D. Peterson, and O. O. Storaasli, ‘‘High-performance mixed-
precision linear solver for FPGAs,’’ IEEE Trans. Comput., vol. 57, no. 12,
pp. 1614–1623, Dec. 2008.

[17] E. Andrés, C. Carreras, G. Caffarena, M. del Carmen Molina, O. Nieto-
Taladriz, and F. Palacios, ‘‘A methodology for CFD acceleration through
reconfigurable hardware,’’ in Proc. 46th AIAA Aerosp. Sci. Meeting
Exhibit, Jan. 2008, pp. 1–20.

9726 VOLUME 5, 2017



A. Ebrahimi, M. Zandsalimy: Evaluation of FPGA Hardware as a New Approach

[18] K. Inakagata, H. Morishita, Y. Osana, N. Fujita, and H. Amano, ‘‘Modu-
larizing flux limiter functions for a computational fluid dynamics accel-
erator on FPGAs,’’ in Proc. Int. Conf. Field Program. Logic Appl., 2009,
pp. 654–657.

[19] E. Andrés, M. Widhalm, and A. Caloto, ‘‘Achieving high speed CFD
simulations: Optimization, parallelization, and FPGA acceleration for the
unstructured DLR TAU code,’’ in Proc. 47th AIAA Aerosp. Sci. Meeting
Including New Horizons Forum Aerosp. Expo., Jan. 2009, pp. 1–20.

[20] D. Sanchez-Roman, G. Sutter, S. Lopez-Buedo, I. Gonzalez,
F. J. Gomez-Arribas, and J. Aracil, ‘‘An Euler solver accelerator in
FPGA for computational fluid dynamics applications,’’ in Proc. 7th
Southern Conf. Program. Logic (SPL), 2011, pp. 149–154.

[21] K. Sano, Y. Hatsuda, and S. Yamamoto, ‘‘Performance evaluation of
FPGA-based custom accelerators for iterative linear-equation solvers,’’ in
Proc. 20th AIAA Comput. Fluid Dyn. Conf., Jun. 2011, pp. 1–8.

[22] I. Liu, E. A. Lee, M. Viele, G. Wang, and H. Andrade, ‘‘A heterogeneous
architecture for evaluating real-time one-dimensional computational fluid
dynamics on FPGAs,’’ inProc. IEEE 20th Annu. Int. Symp. Field-Program.
Custom Comput. Mach. (FCCM), Apr./May 2012, pp. 125–132.

[23] Field Programmable Gate Array Chips: History. [Online]. Available:
https://web.archive.org/web/20070412183416/ and http://filebox.vt.edu/
users/tmagin/history

[24] S. Asano, T. Maruyama, and Y. Yamaguchi, ‘‘Performance comparison
of FPGA, GPU and CPU in image processing,’’ in Proc. Int. Conf. Field
Program. Logic Appl., Aug./Sep. 2009, pp. 126–131.

[25] D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi, and A. Benkrid,
‘‘Design and implementation of a high level programming environment for
FPGA-based image processing,’’ IEE Proc.-Vis., Image Signal Process.,
vol. 147, no. 4, pp. 377–384, Aug. 2000.

[26] C. Dick and F. Harris, ‘‘FPGA signal processing using sigma-delta modu-
lation,’’ IEEE Signal Process. Mag., vol. 17, no. 1, pp. 20–35, Jan. 2000.

[27] B. Block, P. Virnau, and T. Preis, ‘‘Multi-GPU accelerated multi-spin
Monte Carlo simulations of the 2D Isingmodel,’’Comput. Phys. Commun.,
vol. 181, no. 9, pp. 1549–1556, 2010.

[28] M. Weigel, ‘‘Performance potential for simulating spin models on GPU,’’
J. Comput. Phys., vol. 231, no. 8, pp. 3064–3082, 2012.

[29] N. Shirazi, A. Walters, and P. Athanas, ‘‘Quantitative analysis of floating
point arithmetic on FPGA based custom computing machines,’’ in Proc.
IEEE Symp. FPGAs Custom Comput. Mach., Apr. 1995, pp. 155–162.

[30] K. R. Nichols, M. A. Moussa, and S. M. Areibi, ‘‘Feasibility of floating-
point arithmetic in FPGA based artificial neural networks,’’ in Proc.
CAINE, 2002, pp. 8–13.

[31] M. A. Zidan, A. G. Radwan, and K. N. Salama, ‘‘The effect of numerical
techniques on differential equation based chaotic generators,’’ in Proc.
ICM, Dec. 2011, pp. 1–4.

[32] N. Margolus, ‘‘An FPGA architecture for DRAM-based systolic compu-
tations,’’ in Proc. 5th Annu. IEEE Symp. Field-Program. Custom Comput.
Mach., Apr. 1997, pp. 2–11.

[33] W. Chen, P. Kosmas, M. Leeser, and C. Rappaport, ‘‘An FPGA imple-
mentation of the two-dimensional finite-difference time-domain (FDTD)
algorithm,’’ in Proc. ACM/SIGDA 12th Int. Symp. Field Program. Gate
Arrays (FPGA), New York, NY, USA, 2004, pp. 213–222.

[34] W. Sun, M. J. Wirthlin, and S. Neuendorffer, ‘‘FPGA pipeline synthesis
design exploration using module selection and resource sharing,’’ IEEE
Trans. Comput.-Aided Des. Integr., vol. 26, no. 2, pp. 254–265, Feb. 2007.

[35] R. Lysecky and F. Vahid, ‘‘A study of the speedups and competitiveness
of FPGA soft processor cores using dynamic hardware/software partition-
ing,’’ in Proc. Design, Autom. Test Eur., vol. 1. Mar. 2005, pp. 18–23.

[36] Y. Lin, F.Wang, X. Zheng, H. Gao, and L. Zhang, ‘‘Monte Carlo simulation
of the Ising model on FPGA,’’ J. Comput. Phys., vol. 237, pp. 224–234,
Mar. 2013.

[37] G. Estrin, ‘‘Reconfigurable computer origins: The UCLA fixed-plus-
variable (F+V) structure computer,’’ IEEE Ann. Hist. Comput., vol. 24,
no. 4, pp. 3–9, Oct. 2002.

[38] M. B. Gokhale and P. S. Graham,Reconfigurable Computing: Accelerating
Computation With Field-Programmable Gate Arrays. Berlin/Heidelberg,
Germany: Springer, 2005.

[39] E. Christen and K. Bakalar, ‘‘VHDL-AMS—A hardware description lan-
guage for analog and mixed-signal applications,’’ IEEE Trans. Circuits
Syst. II, Analog Digit. Signal Process., vol. 46, no. 10, pp. 1263–1272,
Oct. 1999.

[40] A. Canis et al., ‘‘LegUp: High-level synthesis for FPGA-based proces-
sor/accelerator systems,’’ in Proc. 19th ACM/SIGDA Int. Symp. Field
Program. Gate Arrays (FPGA), New York, NY, USA, 2011, pp. 33–36.

[41] Xilinx.com. Intellectual Property, accessed on Jun. 16, 2016. [Online].
Available: https://www.xilinx.com/products/intellectual-property.html

[42] K. Atkinson, W. Han, and D. E. Stewart, Numerical Solution of Ordinary
Differential Equations (Pure and Applied Mathematics: A Wiley Series of
Texts, Monographs, and Tracts). Hoboken, NJ, USA: Wiley, 2011.

[43] M. Y. Kamil, A. A. Al-Zuky, and R. S. Al-Tawil, ‘‘Study of experimental
simple pendulum approximation based on image processing algorithms,’’
Appl. Phys. Res., vol. 3, no. 1, p. 29, 2011.

[44] T. Myint-U and L. Debnath, Linear Partial Differential Equations for
Scientists and Engineers. Boston, MA, USA: Birkhäuser, 2007.

[45] K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics for
Engineers, vol. 1, ed. 2.Wichita, KS, USA: Engineering Education System,
1993.

[46] G. R. Shubin, A. B. Stephens, and H. M. Glaz, ‘‘Steady shock tracking
and Newton’s method applied to one-dimensional duct flow,’’ J. Comput.
Phys., vol. 39, no. 2, pp. 364–374, 1981.

[47] H. C. Yee, R.M. Beam, and R. F.Warming, ‘‘Boundary approximations for
implicit schemes for one-dimensional inviscid equations of gasdynamics,’’
AIAA J., vol. 20, no. 9, pp. 1203–1211, Sep. 1982.

[48] J. L. Steger and R. F.Warming, ‘‘Flux vector splitting of the inviscid gasdy-
namic equations with application to finite-difference methods,’’ J. Comput.
Phys., vol. 40, no. 2, pp. 263–293, 1981.

[49] J. D. Anderson, Fundamentals of Aerodynamics (Anderson). New York,
NY, USA: McGraw-Hill, 2011.

ABBAS EBRAHIMI received the Ph.D. degree in
aerodynamic from the Sharif University of Tech-
nology, Tehran, Iran. He is currently an Assis-
tant Professor with the Aerospace Engineering
Department, Sharif University of Technology. His
research interests include CFD, applied aerody-
namics, unsteady aerodynamics, and wind tunnel
testing.

MOHAMMAD ZANDSALIMY is currently
pursuing the Ph.D. degree with the Aerospace
Engineering Department, Sharif University of
Technology, Tehran, Iran. His research inter-
ests include CFD, numerical modeling and sim-
ulation, applied aerodynamics, and unsteady
aerodynamics.

VOLUME 5, 2017 9727


