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ABSTRACT Major challenges anticipated in the future C4ISR (command, control, communications,
computers, intelligence, surveillance, and reconnaissance) operations involve rapid mission planning/
re-planning in highly dynamic, asymmetric, unpredictable, and network-centric environments. Developing
decision support for such complex mission environments requires automated processing, interpretation, and
development of proactive decisions using large volumes of structured, unstructured, and semi-structured
data, while simultaneously decreasing the time necessary to arrive at a decision. To overcome this data
deluge, there is a need for mastering information dominance via acquisition, fusion, and transfer of the
right data/information/knowledge from the right sources in the right mission context to the right decision-
maker (DM) at the right time for the right purpose (6R). The fundamental challenge in achieving the
6R is to conceive a generic framework that encompasses the dynamics of relevant contextual elements,
their interdependence and correlation to the current and evolving situation, while taking into account the
cognitive status of the DM. In this paper, we propose a context-driven proactive decision support (PDS)
framework that comprises: 1) adaptive model-based dynamic graph models (e.g., Dynamic Hierarchical
Bayesian Networks) and the concomitant inference algorithms for context representation, inference, and
forecasting, 2) information selection, valuation, and prioritization methods for context-driven operations,
including uncertainty management approaches, and 3) application of PDS concepts for courses of action
recommendations across representative maritime operations.

INDEX TERMS Context-aware decision support, context representation, uncertaintymanagement, proactive
decision support.

I. INTRODUCTION
A. MOTIVATION
Future C4ISR (Command, Control, Communications, Com-
puters, Intelligence, Surveillance and Reconnaissance) envi-
ronments are anticipated to be more complex, distributed and
network-centric due to three trends in operations faced by
mission planners. First, the ubiquitous use of complex cyber-
physical systems (e.g., unmanned subsurface, surface, air and
ground vehicles), provides a unique range of decision options,
such as ultra-long endurance and high-risk mission accep-
tance, which cannot be reasonably performed by manned
systems. Additionally, the use of unmanned systems, com-
bined with smart sensing technologies, provides real-time
access to data, especially in regions which cannot be accessed

by humans. With the availability of sensor data, making real-
time decisions for efficient control, de-confliction and coordi-
nation of heterogeneous manned/unmanned resources within
a congested mission space becomes immensely challenging.

Second, the changing patterns of potential threats and
conflicts in today’s world requires proactive military capa-
bilities to execute a full range of operations – from normal
peacetime operations (e.g., humanitarian assistance/disaster
relief, search and rescue operations) to major combat
operations (e.g., theater anti-submarine warfare (TASW),
counter-smuggling operations). With increased networking
capabilities, the new operational planning concepts empha-
size network-centric distributed planning capabilities and
decentralized execution of multiple simultaneous tasks,
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often under disrupted, intermittent and low bandwidth envi-
ronments (e.g., anti-access/area denial (A2AD) for regional
access and freedom of navigation) [1]. The A2AD concept is
predicated on the use of stealthy submarines in littoral envi-
ronments, equipped with surface-to-air missiles, and fighter
planes to destroy land-based targets, while disrupting space-
based sensors and communications. In this vein, coordinated,
dynamic and adaptive decision support technologies are vital
to counter A2AD strategies for achieving sea control, power
projection, and deterrence.

Third, with the availability of real-time data, it becomes
difficult to recognize and extract mission relevant informa-
tion to present to the Decision Makers (DMs) in an easily
understandable format, especially for time-critical opera-
tional decision making. Presenting too much information
overwhelms the DM, as it requires the DM to infer or recon-
struct courses of action (COAs) by comprehending all of the
data, which is often laborious and an error-prone process.
Recently, channelized attention (or cognitive tunneling) has
been implicated in numerous operational mishaps, which
could have been preventable [2]. For example, operators
flying an MQ-1B Predator in Afghanistan in 2009 were so
focused on a fierce firefight that they failed to notice that
the unmanned aircraft was headed toward a mountain; the
aircraft, valued at 3.9 million USD, was destroyed on impact.

Moreover, eight of the soldiers who were to be provided
air support by the Predator were killed. If alerts and task-
ing had been appropriately issued to the right operators on
the team, those lives may have been saved [3]. Thus, these
trends suggest that there is a need to develop methods to
identify, process and integrate decision-relevant information
from structured, semi-structured and unstructured data and
proactively present this information to DMs in order to com-
press the detect-to-engage timeline for anticipatory decision
making.

Effective mission planning involves Boethius’ who, what,
why, how, where, when, with what, implying who has the
expertise to make the plan (DMs who may be humans or
autonomous agents), what needs to be planned (tasks, jobs,
and actions to be executed using assets or resources), why
make the plan (desired goal or objective function), how to
achieve the expected outcome (the assignment of assets to
tasks, sequencing of activities arranged as a directed graph),
where the plan is executed (task location or mission area),
when the plan is to be executed (start time and duration
for each task), and with what facilities to make the plan
(decision support systems that exploit relevant information
about tasks, assets, desired objectives, DM’s cognitive states,
etc.) [4]. The current state-of-the-art includes the Battlespace
on Demand (BonD) framework, which provides a systematic
approach to convert the knowledge of forecasted environ-
mental data into actionable decisions. The BonD framework
includes four tiers: Data (Tier 0), Environment (Tier 1), Per-
formance (Tier 2), and Decision (Tier 3) [5], [6]. Currently,
the Tier 3, Decision layer, is primarily a manual capabil-
ity and requires experienced and highly-trained personnel

for superior mission performance. As an illustration, the
TASW commanders spend many hours manually assigning
submarines to waterspace for training exercises. This process
requires an enormous amount of human supervision and is
therefore error-prone and cumbersome. As per the USNavy’s
report on Fleet Battle Experiment Kilo, to address the cur-
rently slow and manually intense apportionment process, the
anti-submarine warfare (ASW) commanders need training,
more staff for crisis action planning at the operational level,
improved collaboration among commanders, and decision
support for allocating assets to engage hostile submarines and
prevent attacks [7]. Therefore, there is a need to capture the
evolving dynamics among the mission planning elements and
provide proactive decision support (PDS) to the DMs across a
range of maritime operations (e.g., counter-smuggling, ASW,
waterspace planning) and across different skill levels of com-
mand personnel.

In this vein, it becomes critical to systematically identify
and make appropriate inquiries regarding the key planning
events as they emerge, as shown in Figure 1 (e.g., What is
known? What events have happened? Why they happened?
What could happen? What COAs need to be taken? What do
the COAs mean?). Once these inquiries are made, selection,
fusion, and transfer of the right data/information/knowledge
from the right sources in the right context to the right DM
at the right time for the right purpose (6R) is possible [8].
The 6R process facilitates the processing of collected data
and presenting decision-relevant information to DMs in a
timely manner to aid in effective decision making, even
under dynamic, uncertain and challenging mission conditions
(e.g., changes in mission goals, environment, assets and
mission tasks/threats). By context-driven we mean dynam-
ically integrated knowledge that is (i) relevant to the mis-
sion, the environment, assets, threats/tasks including the
DM activities, (ii) informed by up-to-date data sources, and
(iii) congruent with the workflow and individual DM’s role
in the mission, workload, time pressure and expertise. To be
effective, the new mission planning concepts must be accom-
panied by a proactive C4ISR decision framework that facil-
itates context-dependent high value data to be identified,
prioritized, processed and exchanged among humanDMs and
automated agents based on operational information require-
ments. The term proactive extends beyond adaptability;
its virtues range from responsiveness, robustness, innovative-
ness, flexibility, and anticipation of changes in the mission
context.

B. LITERATURE REVIEW
Context has been extensively studied in the last decade; how-
ever, it is a poorly used source of information in decision
making. In order to successfully incorporate context into the
decision making process, various attempts have been made to
define context and its architectural framework. In [9]–[11],
context is defined, via an example, as location, environment,
identity of people and objects, including the changes to
them. References [12]–[14] view context as the state of the
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FIGURE 1. Proactive decision support (PDS) problem involving the processing of massive sensor data to provide proactive
course of action (COA) recommendations to DMs in a meaningful manner. The key is to identify the critical events and predict
the event probability to evaluate the impact on the mission. Based on anticipated, unfolding or unforeseen events, appropriate
COA recommendations are provided via optimization algorithms. Here, higher level of proactivity is expected to result in better
decision quality.

application’s surroundings or settings. Reference [15] claims
that the important aspects of context are: where the user
is, who the user is with, and what resources are nearby.
They define context to be a constantly changing execution
environment, which includes computing, physical and user
environments. Reference [16] defined context as any infor-
mation that can be used to characterize the situation of entities
(i.e., whether a person, place or object) that are considered
relevant to the interaction between a user and an application,
including the user and the application themselves. According
to [16], context is typically the location, identity and state
of people, groups, and computational and physical objects.
In most of the literature, the authors either consider context
as the physical environment (real world), computing environ-
ment, or the user environment.

Defining context by example is difficult to incorporate in
a systematic decision making process because when a new
context arises, it is hard to classify it correctly. Additionally,
since context is about the whole situation relevant to an
application and its set of users, it is difficult to enumerate
all of its aspects, as these change depending on the situa-
tion [17]. Due to this diversity of contextual definitions, it
is vital to categorize it in order to comprehend it in a sys-
tematic manner. Therefore, from the perspective of mission
planning, understanding context at each level of the decision
making paradigm of transforming data to decisions requires:
i) context in the ontology of the BonD framework;

ii) context in computing and decision making; and iii) context
in communication, interpretation and visualization. We ana-
lyze the state-of-the-art in the above three categories, which
are essential in the different tiers of the decision framework.

1) CONTEXT IN ONTOLOGY
Context facilitates in defining which knowledge should be
considered, what are its conditions of activation and limits of
its validity, and when to use it [18]. This is especially impor-
tant for the creation and use of large and reliable knowledge-
based systems for complex mission planning. Contexts act as
adjustable filters for giving the right meaning in the current
situation and to present the minimal number of information
pieces and essential functions that are necessary to the task
at hand [18]. Context representation via ontology facilitates
knowledge sharing and reuse in an open and dynamic dis-
tributed system [19]–[22]. Also, it derives newly acquired
knowledge and facts using reasoning on contextual data and
information by using inference engines. A shared context is
referred to as an ontology because the domain provides a
common understanding of the involved design concepts and
of the topological relations among them.

2) CONTEXT IN COMPUTING, DECISION
MAKING AND COMMUNICATION
Once the context is sensed and represented via ontology,
it can be instantiated for decision making. Reference [23]
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mentions two ways of using context by either automatically
adapting the behavior according to the discovered context
(active context), or presenting the context to the user in
real-time and/or storing it for later retrieval (passive con-
text). Active context aware computing is challenging, as it
requires a decision support system to switch models based
on the context. [18] considered context as an attribute of the
interactions among agents, as opposed to context being a
fixed attribute of a particular problem or application domain,
i.e., without interacting agents, there would be no context.
In communication, context is considered as the history of all
that has occurred over a period of time, the overall state of
knowledge of the participating agents at a given moment,
along with the small set of things they are attending to at
that particular moment. Context appears as a shared space
of knowledge. Each entity involved in an interaction has its
own context, which may or may not be consistent with parts
of the context of other entities. Context can be thought of as
a system that would be expert at ‘predicting’ what the user
would likely want/need to do next because of its knowledge
of what had happened to either that user or other users with
the same goals/needs. Then, context can be provided through
a user interface using currently known graphical techniques.

In the domain of decision making for mission planning, we
define context as an interlinked multidimensional dynamic
feature space, where a significant change in any of the
elements (i.e., contextual information) incurs a corrective
measure to be taken in order to obtain the desired objec-
tives/ or stay within the acceptable performance limits of
the operation. By this definition, it is crucial to note that
context is proactive and not reactive; this implies that a cor-
rective action is taken only when the changes in the mission
elements are beyond the acceptable limits. Deciding when
a particular change or context becomes significant enough
that a corrective measure should be taken is an important
research question in itself. According to [24], context-aware
applications require i) heterogeneity andmobility to represent
the large contextual data; ii) relationships and dependencies
among the different elements of context must be captured
to ensure correct behavior of the application; iii) timeliness
ensures that the context aware application must have access
to the past and forecasted future contextual information;
iv) imperfection regarding contextual information must be
taken into account (e.g., uncertainty in context); v) reasoning
is necessary to determine if a particular change requires an
adaptation to the new context; vi) usability would allow the
system to check for ‘‘what-if’’ scenarios. In this paper, we
focus on defining a dynamic multi-dimensional feature space
and how to utilize it to develop a proactive decision support
framework that is applicable across various mission planning
domains.

C. SCOPE AND ORGANIZATION OF THE PAPER
The goal of proactive decision making is to identify the 6R,
i.e., to determine and understand the current mission context
and, acquire the concomitant decision-relevant high-value

information for anticipating and exploring alternative COAs
to achieve the DM’s intent in a timely manner. The technical
challenges in developing PDS include:

1) How to define, represent, identify and characterize
critical mission context elements for dynamic resource
management, so that the DM readily understands what
is known and unknown about the mission scenario, and
what controls/ options might be available to manage
and optimize decisions given these uncertain events?

2) How to include realistic asset modeling parameters
(e.g., speed, capability, sweep width) under evolving
mission context, without making the problem compu-
tationally expensive?

3) How to predict context and develop flexible (for antici-
pated events), as well as agile (for unanticipated events)
COAs to achieve resilience in dynamic and uncertain
environments?

4) How to communicate context among the DMs in a
timely manner?

5) How to explore methods for instantiating alternative
COAs in a manner consistent with the needs of military
planning/re-planning when changes in mission context
are detected and the root cause inferred?

6) How many candidate COAs should the DM be pre-
sented with? If more than one, how to present them to
the DM, what is the planning horizon, and what meta-
information is required?

7) How frequently should re-planning occur (e.g., with
a predefined frequency (few hours, daily), as events
emerge, or a hybrid of the two)?

8) How to include the ability to apply weights on objec-
tives and how to conduct ‘‘what-if’’ experiments based
on the choice of weightings and confidence in the
information?

9) How to reduce the DM’s/operator’s cognitive
workload?

Our work in this paper goes beyond previous research
on context-driven decision support by developing a broadly
applicable framework for PDS and by addressing the
following sub-problems. In section II, we focus on devel-
oping: i) generic and widely applicable methods for repre-
senting missions, environment, assets, threats and humans,
and instantiating these models with operational data in order
to detect incipient context changes early, infer the current
context, project the impact of changed context on the mis-
sion goals, and proactively explore decision alternatives to
exploit opportunities or mitigate the negative consequences
of a changed context to achieve the DM’s intent; ii) reliable
methods for uncertainty management, information selection,
valuation and prioritization; and iii) context dissemination
and visualization in a user friendly manner. In section III,
we implement the proposed context-driven PDS algorithms
within different maritime domains for impact analysis and
COA recommendations.We envision the context-driven deci-
sion making process to dynamically invoke plans as a func-
tion of emerging events, readily adapt plans to meet unfolding
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FIGURE 2. Proactive decision support (PDS) framework consists of three blocks (a) Context-Aware Intelligence where all
the data collected from the environment is prioritized, filtered and arranged in the form of MEAT-H ontology to facilitate
context inference; (b) Context-Aware Design allows to further comprehend the context via non-normalcy detection and
severity assessment. A set of COA recommendations and the associated risk is developed by predicting the context; and
(c) Context-Aware Choice allows visualization of the different COAs in an easily interpretable manner. The framework
also allows the DM to tweak the parameters and conduct ‘‘what-if’’ analyses (denoted by dashed arrows) before
finalizing the operational decisions. The solid arrows represent the flow of information/actions within the decision
framework. The proposed PDS framework maps well to the existing BonD framework.

events, monitor the outcomes of many of its previous deci-
sions, and replan if warranted, while providing transparent
and unobtrusive recommendations relevant to the evolving
mission scenario. Finally, section IV concludes our research
work and provides future research directions.

II. PROACTIVE DECISION SUPPORT FRAMEWORK
Our PDS framework is illustrated in Figure 2 and is consistent
with Simon’s model of the decision making process [25],
as well as Endsley’s situation awareness model [26]. The
PDS framework encompasses three key building blocks,
as shown in Figure 2, viz., context-aware intelligence,

context-aware design and context-aware choice. The
context-aware intelligence block involves data collection,
formatting, and filtering to develop a list of contextual ele-
ments and workflows for maritime missions (e.g., ASW,
counter-smuggling). We posit context as a two-level
(i.e., conceptual and operational), multi-dimensional fea-
ture space composed of Mission, Environment, Assets,
Threats, and Humans (MEAT-H), that adapts to the DM’s
role, workload, time pressure, task expertise, and a variety
of other cognitive states pertaining to human perfor-
mance. Additionally, we develop the structure of the corre-
sponding dynamic hierarchical Bayesian network (DHBN),

VOLUME 5, 2017 12479



M. Mishra et al.: Context-Driven Framework for Proactive Decision Support With Applications

FIGURE 3. Representation of MEAT-H elements via the Protégé software [31]. The solid arrows represent the hierarchy, whereas the dashed
arrows denote the relationships among different elements.

representing the abstract contextual elements of the MEAT-H
architecture with the help of idioms and subject-matter
experts. In the results section of the paper, we demonstrate
realistic mission scenarios, where the evolving context forms
a stimulus that automatically triggers the transmission of
context, from the Intelligence block to the Design block in
Figure 2. In the context-aware design phase, the contextual
information, enriched with the non-normalcy detection and
severity assessment features, triggers automatic generation
of COA recommendations using optimization-based resource
management algorithms across multiple scenarios. Within
each of these scenarios, we simulate multiple environmental
conditions such that the recommended COAs are robust even
in the face of an evolving context [27]. In the context-aware
Choice block, we model, capture and analyze various aspects
of the DM’s behavior under different contexts (e.g., varying
workload, time constraints, different environmental condi-
tions) via the internal cognitive context inference algorithms.
Mission workload measures include the task load, DM’s
cognitive workload, as well as asset coordination [28]–[30].
The mission performance measures include task execution
effectiveness, task processing delays, and coordination over-
heads. The proposed PDS framework represents, identifies,
exploits and communicates context-relevant information to
DMs with real-time context-driven COA recommendations,
while evaluating ‘‘what-if’’ scenarios for achieving superior
mission performance and mitigating error-prone planning
processes. We discuss the algorithms in each of the blocks
in detail in the following subsections.

A. CONTEXT REPRESENTATION
In order to successfully incorporate context within the
decision-making process, it is imperative to systematically

understand, identify and project operational context. The key
technical challenges here are:

1) What are the methods to represent the multi-
dimensional context feature space?

2) How to infer context from operational data of dynamic
interactions of contextual elements?

3) How to detect non-normal situations and project the
potential paths of themission given an inferred context?

In this paper, the multi-dimensional operational con-
text comprises an external context in terms of i) Mission,
ii) Environment, iii) Assets and iv) Threats, and an inter-
nal context composed of the human/DM’s cognitive states,
as shown in Figure 3, via the Protégé tool [31]. Each of
these MEAT-H elements may have several sub-elements with
associated states and the level of specificity may vary with
the role of the DM. Some examples of Mission include
ASW, counter-smuggling operations, and Unmanned Aerial
Vehicle (UAV) coordination in a heterogeneous environment.
Each mission is characterized by goals, desired performance,
achievable performance, and constraints. Examples of Envi-
ronment elements include cloud cover, sea state, precipi-
tation, salinity, and temperature, each of which may have
multiple states. Examples of Asset types include sea, air,
space and land assets with sub-elements such as frigates, high
or medium endurance cutters,and P-3s, where the states of
the sub-elements may include the asset’s availability (avail-
able, unavailable) or crew endurance (measured in hours).
Lastly, it is important to note that Threats in the MEAT-H
framework may refer to not only the threats or the tasks
to be done, but also the DM’s activities to accomplish the
tasks (viz., the workflow). Some examples of Threats/Tasks
include interdiction of a drug smuggler, protection of a high
priority maritime vessel, or reconnaissance, depending on
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FIGURE 4. Time evolution of context-based mission using Dynamic Bayesian Networks. Actions, exogenous events/context, intermediate goals
and desired objectives are represented by A, B, C and D respectively. The solid arrows represent the dependency relationship within a single
time slice, where are the dashed arrows denote the temporal evolution of the model between neighboring time slices. Pij (ti ) is the probability
of desired goal states D1 = i and D2 = j at time ti . Each node may be expanded as a lower level network, which in turn may be expanded
further [32].

what Mission context we are operating in. In this paper, we
consider that a mission may consist of sub-goals, which are
referred to as tasks/threats. A proactive DSS considers the
DMs’ workload, time pressure, and role in determining and
communicating the relevant information for effective mission
performance.

We consider an adaptive model-based approach to further
enhance the context and critical event representation. The
key benefit of selecting an adaptive model-based approach,
informed by data, in lieu of a purely data-driven approach
is that the former allows the subject matter expert’s knowl-
edge to be incorporated and can be effective from the begin-
ning, even with sparse data, often the case in operational
settings, while the latter would require enormous amounts
of data spanning a huge variety of mission scenarios to
be effective. In addition, when learning graphical models
with purely operational data, it is only possible to learn
their Markov equivalence classes, meaning that all graphical
models in this class represent the same set of conditional
independencies, and hence are indistinguishable from each
other with respect to the data [33]. Adaptive model-based
approaches include graphical models such as dependency
graphs (digraphs), Petri nets, multi-functional flow graphs,
action-goal attainment (AGA) graphs, hidden Markov mod-
els (HMMs), coupled HMMs, factorial HMMs and dynamic
hierarchical Bayesian networks (DHBNs) are suitable for rep-
resenting context-based missions [33]–[37]. Since DHBNs
subsume the models embodied in the digraph, Petri nets,
multi-functional flow graphs, AGA graphs, and all forms of
HMMs, they are good for representing context-based mis-
sions. DHBNs are hierarchical directed graphs consisting of
a set of nodes and a set of directed edges at various levels
of the hierarchy. Each node, representing the contextual ele-
ments of the MEAT-H architecture (Figure 3), is considered
as a (set of) random variable(s) with either a probability

mass function (pmf), probability density function (pdf) for
continuous variable(s), or modes to indicate specific states.
As the dynamic contextual mission model unfolds over time,
it is assumed to be discretized into time slices, where each
time slice represents a snapshot of the evolving temporal
process/context [32], shown in Figure 4. The nodes, repre-
senting the MEAT-H elements, in this network have depen-
dencies with each other (which captures the causal-temporal
relationships among the MEAT-H elements). The solid arcs
are synchronic to portray the dependency relationships in a
single time slice, and the dashed edges are diachronic to show
the temporal evolution of the model between neighboring
time slices. HMMs can be used to represent the temporal
evolution of the states of a node at the lowest level of the
hierarchy, as well as other dynamics for network changes
from one time slice to the next.

The key components of the DHBN model are shown in
Figure 4. The desired objectives are denoted by D, which
define the overall mission objectives. The critical/important
exogenous events (e.g., environmental conditions, unforeseen
mission changes), regarded as context, whose occurrence is
beyond the control of the DMs, and affect the evolution of
the network states, are denoted by B. A denotes a set of
actions (or planned COAs) which can be taken by the DMs to
influence the state of the mission. Intermediate goals are not
necessarily desired end effects, but are useful in connecting
the actions and events to the desired end goals, denoted by C .
Direct influence dependencies between all the contextual
elements and their interactions are specified by conditional
probability tables (CPTs) or conditional probability distribu-
tions (CPDs) in the parlance of BNs. In order to construct a
complex DHBN, we need a generic building block, known as
‘‘idioms’’, which serves as a pattern repository for linking the
contextual elements and for displaying the interdependencies
of the Bayesian network [38]. An idiom can be of many types
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(e.g., synthesis, cause-consequence, measurement, induction
and reconciliation). Using these idioms, we can model a
variety of realistic mission scenarios. For example, a syn-
thesis idiom can be used to represent logical relationships,
such as OR, AND, XOR, among multiple objectives under
different mission contexts. This enables us to depict the
potential context-driven strategies, as well as the dynamic
status of actions and objectives. The use of OR nodes delin-
eates context-driven alternative COAs in realizing the DM’s
intent. The structure and the parameters of the DHBN are
instantiated and updated based on operational data.

Learning the network structure enables us to discover new
context and to obtain the joint probability of the projected
context. However, structure learning is NP-hard, meaning that
the computational complexity increases exponentially with
the size of the network. Some approximate structure learning
methods include reinforcement learning, linear programming
relaxation [39], ordering-based search [40], and structural
Expectation Maximization [34]. Thus, new data can be incor-
porated by propagating its effects, as suggested in [34], or by
sequentially updating the networks, as in [41]. DHBN-based
context representation has the following characteristics:
i) finite, but a very large number of states; ii) multi-stage rep-
resentations, where the decisions are made at the beginning
of each stage; iii) stochastic effects generated from action
execution; iv) function execution in a particular state results in
one of a number of possible states with associated probability
values due to unforeseen external events (e.g., enemy actions,
weather, terrain); and v) Complete or partial observation of
the true state of the operational environment at any stage.
DHBNs can also be converted into Markov Decision Process
(MDP) or Partially Observable Markov Decision Process
(POMDP), as needed [42].

B. CONTEXT INFERENCE
The context inference problem in DHBNs is to determine
the most likely evolution of nodal states over time based on
operational data (evidence). Evidence can be hard (observa-
tion of the state of a node) or soft (e.g., pmf associated with
the states of a node or sufficient statistics associated with a
node) [43]. In the context of counter-smuggling operations,
examples of hard evidence include detections, interdictions,
asset availability, and current weather information, while soft
evidence includes probability of activity (POA) surfaces, flow
surfaces based on historical drug interdictions and contraband
carried [44], [45]. There are two context inference problems
here: an external one related to the Mission, Environment,
Assets and Threats, and an internal one related to the DMs,
viz., inferring their decision making styles, workload, time
pressure, and so on [46], [47].

Compared to the extensive set of exact and approximate
inference algorithms for static Bayesian networks, inference
algorithms for DHBNs are sparse [48]. Although a transition
DHBN can, in theory, be expanded over time, the massive
number of nodes generated for a large number of time slices
makes this approach impractical. In order to infer external

context from operational data of dynamic interactions
among contextual elements, the near-optimal inference algo-
rithms based on a novel combination of coordinate ascent,
Lagrangian relaxation andViterbi decoding algorithms devel-
oped for coupled HMMs [49]–[55] can be extended to
DHBNs. These algorithms decompose the inference problem
into decoupled sub-problems, one for each node/MEAT-H
element, given the current inference at its child and parent
nodes; the sub-problems, which can be solved in parallel, are
coordinated by updating the Lagrangemultipliers and iterated
until convergence. Each sub-problem corresponds to finding
the optimal node-state sequence, which can be solved using
the Viterbi decoding algorithm [52]–[55]. This approach
is ideally suited for distributed, asynchronous implemen-
tation. Other approximate inference algorithms include
Boyen-Koller [56], loopy belief propagation [33]–[35], and
Markov chain Monte Carlo methods [33]–[35]. The external
context inference enables us to compare model predictions
of outcomes with the expected (desired) outcomes; these
deviations form the basis for non-normalcy detection.

C. CONTEXT DETECTION AND PREDICTION
The importance of non-normalcy detection lies in the
re-planning stages of the decision making process and forms
the basis for root cause analysis (i.e., what caused the change
in context) and projection of potential paths that the mission
can take given the inferred context and the current plan.
The main challenge in context detection is to extract useful
features from operational data that can be used to detect
anomalies and to quickly estimate the severity of context
change with respect to the mission impact.

An adaptive model-based approach (e.g., DHBN) provides
a natural mechanism for detecting context changes. Given
the current plan, there are expected outcomes or perfor-
mance measures (e.g., expected number of detections in a
surveillance task) based on the DHBN model. The adaptive
model-based approach uses residuals (deltas) as features for
non-normalcy detection, where the residuals are the out-
comes of consistency checks between the actual outcomes
derived from operational data and the outputs of the DHBN
model. The residuals are large in the presence of context
changes and small in the presence of routine or anticipated
mission deviations. The residual analysis provides a means
to detect changes in context, which triggers (i) root cause
analysis [46]–[53], (ii) projection of the impact of the current
context on mission goals, and (iii) re-planning strategies to
proactively explore decision alternatives to exploit opportu-
nities or mitigate the negative consequences of a changed
context. Statistical hypothesis testing techniques (such as
change detection [57] e.g., generalized likelihood ratio test,
cumulative sum test, sequential probability ratio test, etc.)
are used to define thresholds to detect context changes.
Additionally, data-driven and knowledge-based approaches
can be integrated into an adaptive model-based approach
for non-normalcy detection. Data-driven change detection
and root cause analysis approaches are derived directly from
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FIGURE 5. Algorithms for uncertainty management.

routinely monitored operating data. The strength of data-
driven techniques lies in their ability to transform high-
dimensional noisy data into lower dimensional features
for detection and diagnostic decisions. Signal analysis
methods [58], [59], graphical models [33]–[35], neural
networks [35] and multivariate statistical methods [57]
are illustrative of data-driven techniques. Knowledge-based
approaches are based on qualitative knowledge about the
system,where the diagnostic rules are generated using subject
matter experts. Thus, model-based/data-driven/knowledge-
based approaches can be integrated for robust context change
detection.

The context change detection information is further uti-
lized along with the existing mission models (including target
and asset models) to predict the probability of achieving
the desired objective. As an illustration, in the context of
ship routing, we used the predicted weather information to
evaluate the amount of wait time at a safe waypoint around
a bad weather area. Additionally, the likelihood of reaching
the destination can be evaluated depending on the belief
in the weather forecasts. Other methods to project context
into the future, include Kalman filters, particle filters or
DHBN [34], [60], [61].

D. METHODS OF CONTEXT EXTRACTION
Determining the context-driven selection and prioritization
of information by quantifying the value of information
(VOI) is the key to pre-staging decision-relevant informa-
tion. When information is successfully valued and extracted,
prioritization of contextual information is enabled, thereby

promoting mission success. It is therefore important to
develop VOI models in order to relay high-value information
to DMs. Since each of the MEAT-H elements have associated
uncertainty, context becomes inherently uncertain, as well.
This exacerbates the challenge of proactive decision making
and requires uncertainty management methods in order to
efficiently extract and exploit context for decision making.
Uncertainty management involves understanding, quantify-
ing and reducing uncertainty for informed decision making
to reduce risk (unexpected mission outcomes) and/or max-
imize reward. Uncertainty management methods, as illus-
trated in Figure 5, broadly include:

1) Risk-based methods which assume that the probability
distribution over outcomes is known. Models, such as
subjective expected value, subjective expected utility
and Markov decision processes that assume the state
dynamics and reward structure to be perfectly known,
belong to this category. However, these models are
vulnerable to sudden or unforeseen changes in context
and are therefore fragile in nature [62], [63].

2) Robust decision making methods recognize that uncer-
tainty in context exists and thus, seek to man-
age it by employing conservative decision strategies.
These include strategies that minimize variability in
the expected risk/reward, minimize maximum risk,
maximize minimum reward or minimize maximum
regret [64].

3) Flexible decision making methods adapt to uncer-
tain context by enumerating or brainstorming poten-
tial event sequences a priori, conducting ‘‘what-if’’
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analysis and pre-planning response policies. Typical
methods in the context of planning include fragmentary
plan (branches and sequels) and conformant plans [65].
These methods are inspired by systems engineering
methods such as failure modes, effects and criticality
analysis, fault tree analysis, event trees and cause-
consequence diagrams, that are used to understand how
systems can fail and to mitigate the effects of fail-
ures. Thus, flexible decision making methods adapt to
expected scenarios by recognizing critical events that
signal a context change.

4) Agile decision making methods adapt to uncertain con-
text by learning, on-line, an updated model of the
decision environment and/or hedging against uncer-
tainty by trading off exploration versus exploita-
tion (also known as dual control or probing and
caution in stochastic control literature [66]–[68]).
Typical methods in the context of planning include
moving horizon planning, certainty equivalence, open-
loop optimal feedback, and other approximate dynamic
programming (including various forms of reinforce-
ment learning) techniques [66]–[68]. Thus, agile deci-
sion making methods adapt to unexpected scenarios by
learning the new world model (new context) they are
operating in.

5) Resilient (Anti-fragile) decision making methods
manage uncertainty by adapting to both expected and
unexpected events even when information is sparse or
lacking. Thus, resilience requires flexibility, robustness
and agility. These methods trade-off risk and reward in
an uncertain environment by exploiting opportunities.
Here, it is important to note that Anti-fragility does not
imply that uncertain events will always be experienced
positively, rather it means that such systems experience
more gains than losses from uncertain events [69].

Thus, a key aspect of uncertainty management is uncertainty
reduction by seeking high value information to recognize or
learn context changes for informed decision making.

Paucity of information results in poor decisions due to
not having enough data pertaining to the context; on the
other hand, having too much information will distract and
overburden the DM, resulting in poor decision quality [70].
Finding optimal high-value information (HVI) that maxi-
mizes the decision quality enables the decision support tool to
recommend effective COAs for mission success. A prototype
version of this concept is discussed in the context of the
counter-piracy problem in [71] and [72], where the impact
of POA surface update frequency on the expected decision
quality is examined [71]. Similar context-driven analyses
in other mission contexts are applicable by considering the
uncertainty in POAs themselves (second order uncertainty or
ambiguity) and evaluating the sensitivity of HVI with respect
to this uncertainty [73]. Our framework employs context-
driven selection, extraction, and presentation of information
based on its impact on decision quality. This is shown via the
arrow feeding into the relevance extractor block in Figure 2,

labeled Information Query. This information comprises con-
textual elements (e.g., the current task is to detect a contact
of interest), as well as specific states within the elements of
the MEAT-H architecture (e.g., P-3 crew endurance is eight
hours). The amount of information and the corresponding
level of specificity may vary with the role and cognitive state
of the DM (e.g., a targeting board member under time pres-
sure will be presented with only active cases with high pay-
load as opposed to all active and pending cases). In addition
to top-down selection of context-relevant HVI, we prioritize
the selected information for enhanced context comprehension
(Level 2 in Endsley’s model of situation awareness [26]).
Viable metrics to prioritize the VOI include Bayesian diag-
nosticity, information gain, and Bayesian optimal experi-
mental design methods [74]–[79], as elaborated on in [80].
Statistical entropy-based computations, including pre-
posterior analysis, utility, and Kullback-Leibler Divergence,
which also serve as metrics to prioritize information. While
these statistical metrics of HVI do not have tangible units,
they can serve as a means to rank order multiple pieces
of HVI or provide their relative importance. Maximizing
decision quality with respect to nodes of a DHBN to be
observed, subject to a constraint on the DM’s information
processing capacity, is similar to the generalized set covering
problem used to select optimal sensors for fault detection
and isolation [81]. After successfully identifying the context
and selecting/prioritizing HVI, the contextualized informa-
tion can be distributed to the DM(s) via a compact (low
bandwidth) format (e.g., Java Script Object Notation, or
JSON [82], which can then be relayed to any part, or parts, of
the network.

III. PDS APPLICATION SCENARIOS
In this section, we demonstrate the utility of our
MEAT-H architecture, HVI models and uncertainty man-
agement approaches on three operational problems relevant
to the maritime domain: counter-smuggling operations, ship
routing, and multiple Unmanned Aircraft System (UAS)
mission planning. These maritime missions involve dynamic
mission planning (e.g., asset coordination, search path recom-
mendation and asset-task allocation), which requires adapta-
tion to evolving operational context by proactively deducing
context-specific COAs for achieving superior mission
performance.

A. COUNTER-SMUGGLING OPERATIONS
IN THE CONTEXT OF MEAT-H
Counter-smuggling missions involve surveillance operations
(to search, detect, track and identify potential threats) and
interdiction operations (to intercept, investigate and poten-
tially apprehend suspects). Given the POA surfaces, which
integrate meteorological and oceanographic (METOC) and
intelligence information (INTEL) to predict where the smug-
glers may transit, we consider the joint problem of allocat-
ing and routing surveillance and interdiction assets to best
thwart potential smuggling activities under evolving mission,
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FIGURE 6. (a) Original cases showing the temporal evolution (as indicated by the color gradient) of the probability of smuggler activity in the East
Pacific Ocean and Caribbean Sea. (b) Target corridors (white rectangles) and the uncertainty associated with them in red. (c) Ideal weather scenario
with sweep width = 20 nm. (d) Degraded weather conditions impact the performance of the sensors and the sweep width = 2 nm.

environment, asset and threat contexts. Figure 6(a) identifies
theMEAT-H elements within the counter-smuggling domain,
where the surveillance and interdiction operations are the sub-
goals/mission phases to be executed using surveillance and
interdiction assets, respectively, such that regions with high
POA are maximally covered to prevent smuggling activity,
while simultaneously increasing the context awareness. The
stochastic counter-smuggling problem (i.e., prone to exoge-
nous events) fits well within theDHBNmodel as it utilizes the
spatio-temporal POA surfaces to search, track and interdict
(i.e., intermediate goals) the targets/smugglers within the
planning horizon. Since the mission environment is large,
the DMs assign surveillance assets to specific search regions
and the observations from these assets are processed to char-
acterize the target types, their trajectories and to correlate

contacts of interest that have been located with current
INTEL. The newly collected information (e.g., INTEL,
detections, interdictions, weather data, etc.), serve as a stimuli
(which may become a non-normal situation if the values are
out of bounds) for context identification. This information is
relayed back to the reachback cell in the form of situational
reports, using the context protocol (in JSON format). The sit-
uational reports are then extracted, processed and aggregated
to predict new POA maps (which are considered as HVI) for
the next planning interval. The predicted POA surfaces are
uncertain and can be prioritized based on weight of contra-
band to be interdicted or the belief in the target intelligence
information. The context-relevant information gathered by
the surveillance assets is communicated to the interdiction
assets using the context protocol for adapting their COAs to
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the new context. The coordinated surveillance and interdic-
tion operations may be viewed as amoving horizon stochastic
control problem, which is NP-hard (see Appendix A). Our
solution approach is employed on open-loop optimal feed-
back concepts and consists of asymmetric assignments via
a Branch and Cut algorithm for the surveillance problem,
and an approximate dynamic programming (ADP) algorithm
coupledwith rollout andGauss Seidel techniques, to solve the
interdiction problem [44], [45], [66], [67], and [83]. These
algorithms are embedded in Courses of Action Simulation
Tool (COAST), an optimization-based decision support tool
for dynamic allocation of surveillance and interdiction assets
for counter-smuggling operations. COAST is an optimizer
in widget format, integrated with Google Earth, as shown
in Figure 6(a).

COAST is proactive in the sense that it automatically
incorporates context (with a manual override option) as it
has access to operational data, various environment, asset
and target models, including the DM’s behavior models and
inferred context. It allows a flexible targeting strategy by
allocating surveillance and interdiction assets based on mis-
sion context. As an illustration, Figure 6(b) shows the prior
information regarding the target corridors (white rectangles)
and the uncertainty (red boxes) related to it, analogous to
the possible locations with possible smuggler activity while,
taking into account the weather impact, and intelligence
information of the approximate time window of departure
from a specified port; this is an input to COAST. In the
context of calm weather conditions, the sweep width1 of the
surveillance assets is 20 nm, shown in Figure 6(c). However,
as the weather worsens (i.e., environmental context change),
the sweepwith reduces to 2 nm (change in asset performance
models) and this affects the target detection probability of
the surveillance asset. Due to the severe weather degradation,
the proactive COAST assimilates this change in context and
provides modified search boxes (i.e., corrective measure to
overcome a non-normal scenario), which are reduced in size
and shifted (change in search task), as shown in Figure 6(d).
Since the unfavorable weather conditions adversely affect the
asset performance, additional surveillance may be required
(i.e., change in sub-goals/mission) to concentrate effort on
that particular region before routing the interdiction assets
to that location. This particular example illustrates how
the change in environmental context ripples through the
MEAT-H parameters and results in proactive COA recom-
mendations by COAST.

Additional features of proactive COAST allow the DM to
specify objectives and the parameters and constraints based
on mission context. These objectives include: a) maximiz-
ing the number of interdictions/detections over the planning
horizon, b) maximizing the contraband interdicted/detected,
c) obtaining the highest probability of at least one

1Sweep width of any sensor is the width a definite range sensor would
have to sweep in order to detect the same number of objects per unit time in
a uniform distribution of search objects. It is used to evaluate the probability
of detection.

FIGURE 7. Impact analysis of how information types affect mission
performance. In this figure, cases refer to targets within a realistic
counter-smuggling scenario. In the Uniform POA scenario, representing
when little to no information is available, we assumed a uniform
distribution of targets across the area of interest. The Flow POA scenario
represented when historic information was available, e.g., typical routes
traversed by drug smugglers, and resulted in higher quality decision
making. Decision quality (measured in terms of the expected number of
targets interdicted) was maximized in the third case wherein complete
information was available with regards to the POA surfaces (spatial and
temporal information providing insight as to where and when a smuggler
will be). Hence, BonD POA surfaces are context-relevant HVI.

interdiction/detection, d) maximizing the number of smug-
glers captured, or e) maximizing the number of unique inter-
dictions/detections. The tool also provides the ability to out-
put the DM-specific m-best solutions for the corresponding
objective function, along with valid reasoning, thus allowing
the DM to choose the best objective, optimization horizon
for that objective, and the different recommendations to out-
put with respect to that objective function. The dynamic
coordination between the surveillance and interdiction assets
is established via context protocol (in JSON format) for
prompt (re)allocation of interdiction assets, once the smug-
gler has been identified by a surveillance asset. The context-
projection and its impact are represented in the form of risk
surfaces (contour plots) to the commander and added as
a layer to Google Earth to allow for human feedback and
solution visualization. These context-specific surfaces form
an input to the context-aware design block to find multi-
ple COAs for both interdiction and surveillance problems.
In the ‘‘what-if’’ analysis mode, the DM can utilize the
tool to explore a variety of mission scenarios by considering
different asset types, their capabilities, mission constraints,
objectives, and algorithmic options. In scenarios where the
mission environment is disrupted, the POA surfaces may
not be available or not up-to-date. In such cases, historic
(or ‘‘flow’’) POA surfaces are used as input for the asset allo-
cation and scheduling process. Additionally, sensitivity anal-
ysis is performed to quantify the value of the POA surfaces
and to find the point of diminishing returns. The sensitivity
analysis with respect to each of the MEAT-H parameters pro-
vides the gradient information on the solution quality, thereby
presenting the DMs with cues on how to improve the decision
making process. Figure 7 examines the impact of three differ-
ent types of POA surfaces on the expected decision quality.
As shown in Figure 7, providing POA surfaces in the form of
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FIGURE 8. Flow diagram of TMPLAR (Tool for Multi-objective PLanning and Asset Routing) which mimics the four layers (Data, Environment,
Performance and Decision) of the BonD framework. The TMPLAR screenshot shows hurricane Joaquin (in colored dots where the color represents the
strength of the hurricane. TMPLAR screenshot also shows four different routes : a) actual route of El Faro (in purple); b) TMPLAR with original forecast
without waiting (in white); c) TMPLAR with original forecast with waiting (in green) and d) TMPLAR with updated forecast with waiting (in yellow) [84].

historical routes of smugglers provided 884% improvement
in decision quality (as measured by expected number of tar-
gets interdicted) in comparison to a uniform (uninformative)
POA surface, while the POA specific to the cases (termed
BonD POA) provided 50% further improvement in relation to
the historical routes and 1445% improvement overall. Thus,
case-based high-valued contextual information in the form
of POAs can substantially improve mission success and also
facilitate in determining how often to re-plan based on the
improvement in decision quality.

B. NAVIGATION IN UNCERTAINTY IN
THE CONTEXT OF MEAT
Navigation in uncertainty involves efficient routing of ships
in areas impacted by sudden changes in the ocean environ-
ment, such as obstacles, weather, fast adversarial boats, etc.
Given a graph (e.g., grid maps similar to POA surfaces),
a departure point, and a destination point (and possibly a
number of waypoints), the objective is to find the shortest
path with the lowest cost, where cost may be with respect to
a variety of factors (e.g., fuel, fulfillment of training require-
ments, expected sensor degradation, distance, ship’s life).
A brief formulation of the multi-objective ship routing prob-
lem is provided in Appendix B. In particular, navigation of
ships in uncertain environments fits well within our proposed
MEAT-H architecture (shown in Figure 8), as this mission
involves a number of contextual elements, such as different
environmental conditions (bathymetry data, ensemble fore-
casts with varying spatial-temporal uncertainty over time),

multiple objectives, changes in mission goals en route
(e.g., training requirements, humanitarian aid) and asset capa-
bilities (ship limits). The MEAT-H elements form an input
to the Tool for Multi-objective Planning and Asset Rout-
ing (TMPLAR) software [84], which facilitates proactive
scheduling of ships (via re-planning or waiting at way-
points to ensure safety) under varying weather and mission
contexts and conveys this information to the route planner
unobtrusively.

Proactive TMPLAR specifically addresses the follow-
ing challenges in ship routing under weather uncertainty:
1) Time-dependent costs and asset speed (capable of variable
speeds); 2) Time windows of arrival and departure at each
waypoint; 3) Uncertain costs and times (due to uncertainty in
periodically updated forecasts i.e., predicted METOC); and
4) Costs and times that are functions of theMETOC (environ-
mental impacts on ships capabilities, etc.). As an application
of proactive decision support, [84], [86] applied TMPLAR
to a recent event where a cargo ship (the El Faro), carrying
33 crew members, vanished off the coast of the Bahamas,
in Hurricane Joaquin. Figure 8 shows the TMPLAR screen-
shot with four different routes: a) actual route of El Faro
(in purple); b) TMPLAR with original forecast without wait-
ing (in white); c) TMPLAR with original forecast with wait-
ing (in green) and d) TMPLAR with updated forecast with
waiting (in yellow). All paths embark at the same time and
take nearly the same path for the first 12 hours because
the original forecast severely underestimated the strength of
Hurricane Joaquin incurring more risk to the cargo ship.
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FIGURE 9. Supervisory Control Operations User Testbed (SCOUT): Left screen - shows the position of the UASs, targets in Google Maps, and
information about the UASs and targets; Right screen - shows the sensor feed, UAS information (speed, altitude), and two chat windows for INTEL
updates and commands [85].

The path El Faro took and the one recommended by
TMPLAR without waiting functionality ignore anomalous
weather conditions (environment context) and both head into
Hurricane Joaquin’s path. TMPLAR with waiting using the
original forecast also succumbs to the hurricane’s power
because of bad initial forecast. However, proactive TMPLAR
with updated forecast waits until the hurricane passes and rec-
ommends a route that safely guides the ship to its destination,
which could have saved the lives of 33 crew members. This
particular application demonstrates when a particular pre-
dicted context change (here, weather forecast) becomes sig-
nificant enough to be incorporated into the decision making
process. The routes that TMPLAR found were not only safe
for the ship (involving waiting at waypoints and varying the
ship’s speed in order to avoid the hazardous conditions), but
also fuel efficient. Additionally, in scenarios where there is a
conflict (e.g., pop-up obstacle or a restricted zone), proactive
TMPLAR automatically generates an alternative route, while
minimizing the time of route and adhering to the concept of
operations.

C. DYNAMIC UAS MISSION PLANNING
IN THE CONTEXT OF MEAT-H
In this section, PDS in the cognitive context of human oper-
ators is illustrated via Supervisory Control Operations User
Testbed (SCOUT), an experimental paradigm developed by
the Naval Research Laboratory-Washington DC. SCOUT
was designed for the purpose of exploring UAS operator per-
formance in a single operator multiple UAS environment, but
assumes some advances in automation necessary to conduct
supervisory control operations involving multiple heteroge-
neous systems. One such advancement includes updating
plans based on cognitive context in order to provide COA
recommendations to the operators in a proactive and unobtru-
sive manner. Current unmanned vehicle operations are char-
acterized by teams of operators with highly specialized roles,
where the task demands on each operator are independent and

highly variable resulting in sub-optimal tasking, mission per-
formance, and mishaps. Maritime operations envision multi-
ple ground-based, aerial, surface and subsurface unmanned
vehicles to be simultaneously controlled by a team of opera-
tors. In order to achieve this goal, it is crucial to anticipate
the future task needs and necessary resource requirements
(including the human operators) based on changing environ-
mental conditions. Anticipating future resource requirements
based on context changes provides time-critical informa-
tion on emerging tasks and necessary changes to the order
in which the tasks are dynamically assigned and executed,
thereby allowing sufficient time for the operators to make
appropriate decisions and, in turn, reducing their workload.
The key research questions here include: How to determine
when the operators are overloaded?And, if they are, what cor-
rective measures (e.g., customized COA recommendations)
need to be taken to reduce their cognitive workload?

In order to exploit the PDS framework proposed in this
paper, we identify the MEAT-H elements within the SCOUT
framework, as shown in Figure 9, and determine the cognitive
context, by analyzing the operator’s physiological behavior to
understand, characterize and predict the cognitive difficulty
experienced by them under varying task load levels (i.e., easy,
medium and hard workload). The use of psychophysiolog-
ical measurements (pupillary data, gaze data) as indices of
cognitive workload can be considered distinctly superior to
other techniques because they can be gathered continuously
and coupled with behavioral measures (e.g., risk averse, risk
seeker and risk neutral operators) to obtain more information
as compared to when using behavioral measures alone. The
psychophysiological measurements facilitates in understand-
ing the cognitive context of the human operators and allows
proactive adaptation to the changing context. Given the eye-
tracking data fromNRL’s SCOUT, a flexible simulation envi-
ronment that represents the tasks that a future UAS opera-
tor would engage in while controlling multiple UASs, [87],
[88] utilized statistical machine learning and classification
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techniques for cognitive context determination. According
to [87] and [88], average pupil dilation, variability of pupil
dilation and the power spectral density of pupil dilation are all
correlated to cognitive context. By combining several types of
features, such as pupil dilation features and gaze metrics, the
robustness and accuracy of cognitive context detection can be
improved. Additionally, [87], [89] discuss several approaches
that can be employed to combine, for example, a series of
operator’s gaze durations accumulated over a certain period
of time (such as mean, median, maximum, standard devia-
tion, etc.) for multiple areas of interest on a screen. In cases
where an operator interacts with multiple screens, fusing
gaze duration statistics from multiple screens is done via
principal component analysis (PCA). PCA is a statistical
tool to obtain a smaller number of uncorrelated variables
(called principal component scores) that distinguish the data
under different conditions, and thus these scores, when used
with machine learning algorithms, improve the chances of
detecting high workloads with greater accuracy. The results
indicate that high workload classification accuracies are
possible (e.g., greater than 91% accuracy in distinguishing
between easy/medium workload levels and hard workload
levels versus 75% accuracy between easy and medium only;
this is desirable for adaptive automation). The classification
results have the potential in proactively detecting and pro-
viding alerts regarding operator overload in realistic UAS
mission scenarios. The alerts can be used for improving sit-
uation awareness and for providing context-dependent COA
recommendations to enhance the productivity of UAS opera-
tors, while decreasing operational delays and human fatigue-
related mishaps [87], [88].

The information regarding the operator’s cognitive con-
text is further utilized to develop proactive recommenda-
tions for dynamic scheduling of UASs in order to assist
the UAS operators in efficiently managing their workloads.
We consider a decision task where an operator must manage
multiple UASs and determine the best routes to send their
assets to search for targets of varying reward. Targets have
some degree of uncertainty associated with their positions,
requiring the UAS to search for targets within circular regions
of varying radii. During mission execution, the operators
update the UAS parameters and target parameters, based
upon real-time intelligence provided via chat messages to
re-balance workload among the operators, and (re)schedule
operator-to-task assignments depending on their cognitive
workload. A brief formulation of the dynamic scheduling
problem is provided in Appendix C. The dynamic assignment
and routing algorithms provide time-critical decision support
to the operator on emerging and changing tasks, thereby
increasing the time available for human decision making.
In particular, the scheduling algorithms (optimal algorithms
exemplified by Branch and bound, heuristic approaches such
as path time equalization, pairwise exchange combined with
rollout) embedded within the SCOUT provide the following
capabilities: a) dynamic allocation of targets to UASs in order
to meet the target deadlines; b) plan updates based on context

FIGURE 10. Planning under risk. Risk seeker: The weight function rises
rapidly with increasing tij /Sij , i.e. the player assigns a higher value to a
target even if the player is able to search the target partially. Risk averse:
The growth in weight function with tij /Sij is much more gradual. Hence a
risk-averse player assigns more time to search than required to do 100%
search. The yellow line indicates the risk neutral [90].

TABLE 1. Expected utility of targets based on operator’s risk propensity.

changes (e.g., new target, updated information); and c) plan
adaptation to operator’s risk propensity (viz., risk seeking,
risk neutral, risk averse). The proactive SCOUT user interface
displays two windows to the operator, as shown in Figure 9.
The left screen shows the positions of targets, UASs, and
restricted operating zones on the Google map. It has the
target information box, which provides the operator with
information on the minimum time it takes each UAS to reach
a target and the latest time to leave the target after searching. It
also has UAS route builder boxes, where an operator assigns
targets to UAS(s). The right screen shows the sensor feed, and
speed of each UAS. It includes Intelligence and Command
chat boxes, which provide the updates on target position,
uncertainty radius, and UAS speed during mission execu-
tion. UAS operators would benefit greatly from proactive
SCOUT to support rapid planning and re-planning, given
the likelihood for sub-optimal decisions while handling high
workloads. Variables such as target priorities, environmental
factors, intelligence uncertainty, etc., have been accounted for
in the planning tool. The proactive SCOUT allows the DM to
choose the m-best solutions to be displayed on the screen,
which provides a means to rank order the performance of
UAS operators.

In order to incorporate risk into the decision making pro-
cess, proactive SCOUT provides customized COA recom-
mendations based on the operator’s risk propensity. Risk
propensity of an operator (denoted as x in Figure 10) can
be broadly classified into three categories: a) risk averse,
where targets are devalued if they cannot be completely
searched; b) risk neutral, where targets are valued based on
the percentage of the corresponding uncertainty region that
can be searched; and c) risk seeking, wherein targets with
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TABLE 2. Proactive decision support process, algorithms and testbeds.

high rewards (and low probability of complete search) are pri-
oritized over targets with low rewards (and high probability
of complete search). A utility theory-based approach is used
to model the operator’s risk propensity behavior via a weight
function, as shown in Figure 10, where the red and green
colored regions of the plot correspond to the risk-seeking
and the risk-averse behavior, respectively. The risk-neutral
behavior is denoted by the yellow line (i.e., x = 1). In case
of a risk-seeking operator, the value of the weighing function
rises rapidly with the increase in tij/Sij, whereas this rise is
very gradual for a risk-averse operator. This implies that a
risk-averse operator spends more time than a risk-seeker to
obtain the same reward. Table 1 illustrates this concept, by
considering a scenario where the target Bravo has amaximum
achievable reward of 750 units and only 88% of its area can
be searched within the stipulated deadline. Based on the risk-
propensity model, a risk-seeking operator (x = 0.6) would
expect the maximum achievable utility of 750 units, where as
a risk-averse operator (x = 1.4) devalues this target

to an expected utility of 471 units (=0.88 × 750/1.4).
The risk-neutral operator assigns it a utility of 660 units
(=0.88 × 750) [90]. Therefore, depending on the operator’s
past behavior (risk averse, seeking or neutral), the COA rec-
ommendations are customized accordingly. Thus, proactive
SCOUT identifies and anticipates the cognitive context of
human operators engaged in a realistic operation and presents
context-relevant COAs in an unobtrusive manner to assure
that the operators are attending to the right task at the right
time such that task demands do not exceed operator capabil-
ities in a multi-mission environment.

IV. CONCLUSION AND FUTURE WORK
In this paper, we developed a generalized context-driven
PDS which is applicable across multiple maritime missions,
as summarized in Table II. The PDS framework and the
algorithms discussed in the paper facilitate the identification,
extraction and quantification of the context-specific infor-
mation, along with proactive presentation and dissemination
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of this information to DMs for faster, context-specific and
anticipatory decisionmaking. Additionally, it allows the DMs
to promptly understand and envision the current and projected
mission context, while allowing them ample time to make
appropriate decisions by taking into consideration the con-
comitant uncertainties, and unknown risks stemming from
the specific context via networking, collaboration, distributed
execution, and resource sharing within the mission environ-
ment. In particular, the PDS framework contributes to the
maritime mission planning processes by: 1) increasing the
efficiency of asset utilization at the tactical and the opera-
tional levels; 2) dynamically invoking pre-planned COAs as
a function of emerging events, while automatically adapting
plans to unfolding events, and rapid re-planning in the event
of unforeseen context evolution; 3) timely, relevant and vali-
dated decision support for operational level commanders by
moving the right information/knowledge to the right people
at the right time to enable proactive information processing;
and, 4) reducing the operator overload via dynamic tasking
and scheduling in a decentralized environment. Our future
research includes extending the PDS framework for theater
mission planning in littoral environments via incorporation
of multistage pursuit-evasion games (e.g., Stackelberg secu-
rity games) that utilize POA surfaces as input and provide
proactive COAs in disrupted and low-bandwidth environ-
ments. We plan to explore other viable methods, such as deep
reinforcement opponent learning, to infer the adversary’s
intent. Additionally, we plan to develop parallel algorithms in
order to infer context and notify DMs if mission performance
parameters breach certain thresholds, while the mission is in
progress.

APPENDIX A
The mathematical formulation for the counter-piracy oper-
ation (also extensible to the counter-smuggling operation)
can be formulated as a stochastic control problem involving
surveillance and interdiction sub-problems [71], [72]. The
nomenclature is detailed in Table III.

A. SURVEILLANCE SUBPROBLEM

max
{As(k),s∈Sk }

K∑
k=1

γ (k−1)
∑
s∈Sk

PDs(As(k), k)

s.t. Ai (k) ∩ Aj (k) = ∅, (i 6= j) ∈ Sk
Ai (k) has rectangular shape, ∀i ∈ Sk (1)

In the above objective function, the probability of detection,
denoted PDs, is defined as

PDs (As (k) , k)

=

∑
g∈As(k)

PP (g, k)×
(
1− exp

(
−ws (k) ∗ vs (k) ∗ τs (k)

ac |As (k)|

))
(2)

TABLE 3. Summary of notation for surveillance and interdiction problems.

B. INTERDICTION SUBPROBLEM

max
U

K∑
k=1

γ (k−1)
∑
g∈G

PoA (g, k)

•

1−∏
i∈Ik

(1− PIi (xi(k), g)PD (g, k))


s.t. xi(k + 1) ∈ Ri [xi(k)] (3)

where

U = {xi (k)∀k = 1, 2, ..,K , ∀i ∈ Ik}

PD (g, k) =

{
1, dist (xi (k) , g) ≤ ρ(i)
0, otherwise

(4)

PIi (xi (k) , g)

=


2r (i, τ )

dist (xi (k) , g)
, r (i, τ ) <

dist (xi (k) , g)
2

1, r (i, τ ) ≥
dist (xi (k) , g)

2
(5)

here

r (i, τ ) =

{
viτ, τ ≤ thi
vithi + v

h
i

(
τ − thi

)
, τ > thi

Ri [xi(k)] represents the set of reachable cells by asset i
within time period k + 1 given the current location at
time k .
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TABLE 4. Summary of notation for multi-objective ship routing.

TABLE 5. Summary of notation for dynamic scheduling of UASs.

APPENDIX B
Table IV lists the notation summary for the multi-
objective ship routing problem, which is formulated
formally in [84].

min J (x)

s.t. xk ∈ Xa(k) Within the predefined grid system

uk ∈Ua(k) Allowable transitions between grid points

M k ∈ Ma(k) Allowable motion (6)

where J (x) = [J1(x), . . . , J i(x), . . . , Jd (x)]; and J i(x) =
N−1∑
k=1

gik (xk , uk ,M k )+ g
i
N (xN ) is the total cost for an N -stage

path planning. Here, gik represents the cost (with respect to
objective i) of being at a node, while giN denotes the terminal
cost corresponding to objective i.

APPENDIX C
The notation summary for dynamic scheduling of UASs is
listed in Table V. The dynamic scheduling of UASs is formu-
lated as a bi-objective problem of maximizing the cumulative
utility, while simultaneously minimizing the mission time
(makespan). The constraints ensure that not every target is
assigned to a UAS, while each UAS is assigned only once and
the number of UASs assigned must not exceed the number of
available UASs. The arrival time and deadline constraints are

also taken into account [90].

max J : max
∑
i∈U

∑
j∈ψi∪T

∑
k∈T

Eik (τk ) ξijk

min MT : min max
i∈U,k∈T

(τk + sik )

s.t.
∑
i∈U

∑
j∈ψi∪T

ξijk ≤ 1

∑
k∈T

ξiψik ≤ 1∑
i∈U

∑
k∈T

ξiψik ≤ m

τk =
∑
i∈U

∑
j∈ψi∪T

(
τj + sij(τj)+ pijk

)
× ξijk

0 ≤ τk ≤ Dk
τk − τj > 0, ∀ξijk = 1

τψi = 0, ∀i (7)

where

ξijk =


1, if UAS ui is assigned to target tk

immediately after target tj or UAS’s
initial position

0, otherwise
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