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ABSTRACT This paper addresses the recovery and demixing problem of signals that are sparse in some
general dictionary. Involved applications include source separation, image inpainting, super-resolution,
and restoration of signals corrupted by clipping, saturation, impulsive noise, or narrowband interference.
We employ the `q-norm (0 ≤ q < 1) for sparsity inducing and propose a constrained `q-minimization
formulation for the recovery and demixing problem. This nonconvex formulation is approximately solved
by two efficient first-order algorithms based on proximal coordinate descent and alternative directionmethod
of multipliers (ADMM), respectively. The new algorithms are convergent in the nonconvex case under
some mild conditions and scale well for high-dimensional problems. A convergence condition of the new
ADMMalgorithm has been derived. Furthermore, the extension of the two algorithms for multichannels joint
recovery has been presented, which can further exploit the joint sparsity pattern among multichannel signals.
Various numerical experiments showed that the new algorithms can achieve considerable performance gain
over the `1-regularized algorithms.

INDEX TERMS Alternative direction method of multipliers, proximal coordinate descent, `q-norm
minimization, sparse recovery, signal separation, inpainting.

I. INTRODUCTION
This work considers the problem of identifying two sparse
vectors xk ∈ Rnk , k = 1, 2, from the linear measurements
y ∈ Rm modeled as

y = A1x1 + A2x2 (1)

where Ak ∈ Rm×nk are known deterministic dictionaries.
The objective is to recover and demix the two sparse signals
x1 and x2 by exploiting their sparsity structure. Important
application examples involving such a recovery and demix
problem arise in the following scenarios.
1) Source separation: In many applications such as the sep-

aration of texture in images [1], [2] and the separation of neu-
ronal calcium transients in calcium imaging [3], the task is to
demix the two distinct components entangled within y. In this
case, A1 and A1 are two dictionaries allowing for sparse rep-
resentation of the two distinct features, and x1 and x2 are the
corresponding (sparse or approximately sparse) coefficients

describing these features [4]–[6]. 2) Super-resolution and
inpainting: In the super-resolution and inpainting problem
for images, audio, and video signals [7]–[9], only a subset
of the entries of the desired signal y0 = A1x1 is available.
The task is to fill in the missing parts in y0 from y . In this
case, A2 = Im and x2 accounts for the missing parts of the
desired signal. 3) Interference cancellation: In many audio,
video, or communication applications, it is desired to recover
a signal corrupted by narrowband interference, such as elec-
tric hum [5]. Such interference can be naturally sparsely
represented in the frequency domain. In this case, A2 is an
inverse discrete Fourier transform matrix allowing for sparse
representation of the interference. 4) Saturation and clipping
restoration: In practical systems where the measurements are
quantized to a finite number of bits, nonlinearities in ampli-
fiers may result in signal saturation, which causes significant
nonlinearity and potentially unbounded errors [5], [10], [11].
In this situation, the task is to restore y0 = A1x1 from its
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situated measurement y, with x2 represents the saturation
errors. 5) Robust recovery in impulsive noise: In practical
applications, impulsive noise may come from missing data in
the measurement process, transmission problems [12]–[14],
faulty memory locations [15], buffer overflow [16], reading
out from unreliable memory, and has been raised in many
image and video processing works [17]–[19]. In this case,
A2 = Im and x2 represents the (sparsely) impulsive noise,
and the task is to recover the sparse signal x1 from y.

In all these applications, x1 and x2 in model (1) can be
reasonably assumed to be sparse. To recover x1 and x2 from y,
we use `q-norm with 0 ≤ q < 1 for sparsity promotion and
propose the following formulation

min
x1,x2

{
µ ‖x1‖q1q1 + ‖x2‖

q2
q2

}
subject to A1x1 + A2x2 = y (2)

where 0 ≤ q1, q2 < 1, µ is a positive parameter which
takes the statistic difference between the two components
into consideration and its optimal value is related with the
statistical information of the true signals x1 and x2, ‖ · ‖q is
the `q quasi-norm defined as ‖v‖q = (

∑n
i=1 |vi|

q)1/q.
To achieve sparsity inducing, the `1-norm regularization

is the most widely used technique since an `1-minimization
problem is tractable due to its convexity. However, the
`1-regularization has a bias problem as it would produce
biased estimates for large coefficients. Meanwhile, it cannot
recover a signal with the least measurements [20]. These
problems can be ameliorated by using a nonconvex regu-
larization function, such as `q-norm or smoothly clipped
absolute deviation (SCAD) [21].

Compared with `1-regularization, `q-regularization with
q < 1 can yield significantly better recovery performance
in many applications [22], [33], [51]. Extensive studies in
compressive sensing (CS) have demonstrated that, relative
to `1-regularized sparse recovery methods, `q-regularized
methods require fewer measurements to achieve reliable
reconstruction while require weaker sufficient conditions for
reliable reconstruction. More specifically, it has been shown
in [20] that under certain restricted isometry property (RIP)
conditions of the sensing matrix, `q-regularized algorithms
require fewer measurements to gain a good recovery than
`1-regularized ones. Moreover, the sufficient conditions in
terms of RIP for `q-minimization are weaker than those for
`1-minimization [22], [33].

A. CONNECTIONS TO RELATED WORK
When q1 = q2 = 1, the formulation (2) becomes

min
x1,x2
{µ‖x1‖1 + ‖x2‖1} subject to A1x1 + A2x2 = y (3)

which has been considered in [6] for source separation.
When µ = 1 and q1 = q2 = 1, the formulation
(2) degenerates to the basis-pursuit form considered in [4]
for the applications of source separation, super-resolution
and inpainting, interference cancellation, and robust sparse
recovery.

When A2 = Im and q1 = q2 = 1, the formulation (2) can
be expressed as

min
x1,x2
{µ‖x1‖1 + ‖x2‖1} subject to A1x1 + x2 = y. (4)

In this case, it in fact reduces to the well-known
`1-regularized least-absolute (`1-LA) problem for robust
sparse recovery [34]

min
x1

{
µ‖x1‖1 + ‖A1x1 − y‖1

}
. (5)

In compressive sensing, this formulation has showed con-
siderable gain over the `2-loss based ones in the presence
of impulsive measurement noise. Meanwhile, for A2 = Im,
q1 = 1 and 0 ≤ q2 < 2, the formulation (2) reduces
to the robust sparse recovery formulation considered in [35]
and [45]. Moreover, the `q-regularized least-squares sparse
recovery methods [28]–[30] can be viewed as special cases
of (2) with A2 = Im, 0 ≤ q1 < 1 and q2 = 2.
For the formulation (2) with 0 ≤ q1, q2 < 1, since both

terms in the objective are nonsmooth and nonconvex, it is
more difficult to solve compared with those in the above
works.

B. CONTRIBUTIONS
Generally, the constrained `q1 − `q2 mixed minimization
problem (2) is difficult to solve. The efficient alternative
direction method of multipliers (ADMM) framework can be
directly used to solve (2) [36], but this directly extended
ADMM algorithm often fails to converge in empirical exper-
iments (see Fig. 1 in section V). The main contributions of
this work are as follows.

First, to derive convergent algorithms for (2), we pro-
pose two first-order algorithms to solve an approximation
of (2) based on the block coordinate descent (BCD) and
ADMM frameworks, respectively. Both algorithms are con-
vergent under some mild conditions and scale well for high-
dimensional problems. Furthermore, a sufficient condition of
convergence for the proposed ADMM algorithm has been
derived.

Second, to exploit the feature correlation among multi-
channels of color images, the new algorithms have been
extended for multi-channel joint recovery, which can achieve
further performance gain in color image recovery.

Finally, we have evaluated the new algorithm via various
experiments. The results showed that, with properly selected
q1 < 1 and q2 < 1, the new algorithms can achieve consid-
erable performance improvement over the `1-minimization
algorithms.

Matlab codes for reproducing the results in this
work are available at https://github.com/FWen/Lq-Sparse-
Recovery.git.

C. OUTLINE AND NOTATIONS
Section II introduces the proximity operator for the
`q-norm function, which is employed in the proposed algo-
rithms. In Section III, the two new algorithms are presented.
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Section IV extends the new algorithms to the multitask case.
Section V provides experimental results on image inpainting.
Finally, Section VI ends the paper with concluding remarks.
Notations: For a matrix M, ‖M‖F is the Frobenius norm,

λmax(M) and λmin(M) denote the maximal and the minimal
eigenvalues of M, respectively. 〈·, ·〉 and (·)T stand for the
inner product and transpose, respectively. ∇f (·) and ∂f (·)
stand for the gradient and subdifferential of the function f ,
respectively. sign(·) denotes the sign of a quantity with
sign(0)=0. I stands for an identity matrix with proper size.
‖ · ‖q with q ≥ 0 denotes the `q-norm defined as ‖x‖q =
(
∑

i=1 |xi|
q)1/q. dist(x, S) := inf{‖y− x‖2 : y ∈ S} denotes

the distance from a point x ∈ Rn to a subset S ⊂ Rn.

II. PROXIMITY OPERATOR FOR `q-NORM FUNCTION
This section introduces the proximity operator of the `q-norm
function, which is defined as

proxq,η(t) = argmin
x

{
‖x‖qq +

η

2
‖x− t‖22

}
(6)

for x ∈ Rm, and with penalty η > 0. This proximity operator
is easy to compute since ‖x‖qq is separable and the compu-
tation of proxq,η reduces to solving a number of univariate
minimization problems.

When q = 0, the solution is explicitly given by

prox0,η(t)i = Hη(t)i =


0, |ti| <

√
2/η

{0, ti}, |ti| =
√
2/η

ti, otherwise

(7)

for i = 1, · · · ,m, which is the well-known hard-thresholding
operation. When q = 1, this proximity operator is the well-
known soft-thresholding or shrinkage operator and has a
closed-form expression as

prox1,η(t)i = Sη(t)i = sign(ti) max
{
|ti| − 1

/
η, 0

}
(8)

for i = 1, · · · ,m.
When 0 < q < 1, it can be computed as [37]

proxq,η(t)i =


0, |ti| < τ

{0, sign(ti)β}, |ti| = τ

sign(ti)zi, |ti| > τ

, i = 1, · · · ,m (9)

where β = [2(1− q)/η]
1

2−q , τ = β + qβq−1/η, zi is
the solution of h(z) = qzq−1 + ηz − η |ti| = 0 over the
region (β, |ti|). Since h(z) is convex, when |ti| > τ , zi can be
efficiently solved using a Newton’s method. For the special
cases of q = 1/2 or q = 2/3, the proximal mapping can
be explicitly expressed as the solution of a cubic or quartic
equation [38].

III. PROPOSED ALGORITHMS
Generally, the linearly constrained `q1 − `q2 mixed mini-
mization problem (2) is difficult to tackle since both terms
in the objective are nonconvex and nonsmooth. It can be
directly solved by the standard two-block ADMM procedure,
but it is not guaranteed to converge in the nonconvex case

of 0 ≤ q1, q2 < 1. Empirical studies show that the directly
extended two-blocks ADMM algorithm for (2) often fails to
converge (see Fig. 1 in section V). To address this problem,
we propose to solve (2) approximately and develop two first-
order algorithms, which are guaranteed to converge in the
nonconvex case. The first algorithm is based on the proximal
BCD and the second one is a four-block ADMM algorithm.

First, we consider an approximation of (2) as

min
x1,x2

{
µ ‖x1‖q1q1 + ‖x2‖

q2
q2

}
subject to ‖A1x1 + A2x2 − y‖2 ≤ ε (10)

where ε > 0. It is easy to see that as ε→ 0, the problem (10)
reduces to the problem (2). Thus, with a sufficient small ε,
the solution of (10) accurately approaches that of (2). Further,
this constrained optimization problem can be converted into
an alternative unconstrained form

min
x1,x2

{
1
β
‖A1x1 + A2x2 − y‖22 + µ ‖x1‖

q1
q1 + ‖x2‖

q2
q2

}
(11)

where β > 0 is a penalty parameter. A small ε in (10)
corresponds to a small β in the problem (11). As β → 0,
the solutions of (11) satisfy ‖A1x1 + A2x2 − y‖2 → 0 and
the problem (11) reduces to the problem (2). Thus, we can
use a sufficient small β to enforce ‖A1x1 + A2x2 − y‖2 ≈ 0,
e.g., β = 10−6 in the experiments in section V.

Note that, although the formulation (11) is an approxima-
tion of (2), it is a more reasonable formulation in some appli-
cations where the measurements contains additive Gaussian
noise. Specifically, in the presence of measurement noise, the
signal model becomes

y = A1x1 + A2x2 + n (12)

where n is the noise. In this case, the formulations
(10) and (11) are more reasonable than (2) as they take the
measurement noise into account. In the following, we develop
two algorithms for (11) based on the BCD and ADMM
frameworks, respectively.

A. PROXIMAL BCD ALGORITHM
The core idea of the BCD algorithm is to solve an intractable
optimization problem by successively performing approxi-
mate minimization along coordinate directions or coordinate
hyperplanes. Specifically, for the problem (11), at the k+1-th
iteration, x1 and x2 are alternatingly updated by minimizing
the objective as

xk+11 = argmin
x1

{
1
β

∥∥∥A1x1 + A2xk2 − y
∥∥∥2
2
+ µ ‖x1‖q1q1

}
(13)

xk+12 = argmin
x2

{
1
β

∥∥∥A1xk+11 + A2x2 − y
∥∥∥2
2
+ ‖x2‖q2q2

}
.

(14)

Since it is difficult to exactly minimize these two nonconvex
and nonsmooth subproblems, a standard trick is to adopt
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an approximation of this scheme via the proximal lineariza-
tion of each subproblem. Specifically, consider a quadratic
majorization of the first term in (13) as∥∥∥A1x1 + A2xk2 − y

∥∥∥2
2
≈

∥∥∥A1xk1 + A2xk2 − y
∥∥∥2
2

+

〈
x1− xk1, g1(x

k
1)
〉
+
η1

2

∥∥∥x1−xk1∥∥∥22
where g1(xk1) = 2AT

1 (A1xk1 + A2xk2 − y), η1 > 0 is a
proximal parameter. With this approximation, the x1-update
step becomes a form of the proximity operator (6), which can
be efficiently updated as

xk+11 = proxq1,η1/(βµ)(c
k
1) =


Hη1/(βµ)(c

k
1), q1 = 0

solved as (9), 0 < q1 < 1

Sη1/(βµ)(c
k
1), q1 = 1

(15)

where ck1 = xk1−
2
η1
AT
1 (A1xk1+A2xk2−y). In a similar manner,

we use a quadratic majorization of the first term in (14) with
a proximal parameter η2 > 0. Then, the x2-update step (14)
can be solved as

xk+12 = proxq2,η2/β (c
k
2) =


Hη2/β (c

k
2), q2 = 0

solved as (9), 0 < q2 < 1

Sη2/β (c
k
1), q2 = 1

(16)

where ck2 = xk2 −
2
η2
AT
2 (A1xk+11 + A2xk2 − y).

This algorithm can scale to relatively large problems since
the dominant computational complexity in each iteration is
the cheapmatrix-vector multiplication. The convergence con-
dition for this kind of nonconvex BCD algorithm has been
established recently in [39]. As shown in the following result,
under some mild conditions, the above two-block coodinate
descent procedure is guaranteed to be globally convergent in
the nonconvex case.
[39, Th. 1]: For any q1 ≥ 0 and q2 ≥ 0, if η1 >

2λmax(AT
1A1) and η2 > 2λmax(AT

2A2), the algorithm updated
via (15) and (16) is a descent algorithm and the gener-
ated sequence {(xk1, x

k
2)} converges to a critical point of the

problem (11).

B. ADMM ALGORITHM
ADMM is a powerful framework which is well suited to solve
many high-dimensional optimization problems [36]. ADMM
uses a decomposition-coordination procedure to naturally
decouple the variables, which makes the global problem easy
to tackle. Specifically, using two auxiliary variables z1 =
x1 and z2 = x2, (11) can be equivalently reformulated
as

min
x1,x2,z1,z2

{
‖A1x1 + A2x2 − y‖22 + βµ ‖z1‖

q1
q1 + β ‖z2‖

q2
q2

}
subject to x1 = z1, x2 = z2. (17)

The augmented Lagrangian function is

L(x1, x2, z1, z2,w1,w2) = ‖A1x1 + A2x2 − y‖22
+ βµ ‖z1‖q1q1 + β ‖z2‖

q2
q2 + 〈w1, x1 − z1〉 + 〈w2, x2 − z2〉

+
ρ1

2
‖x1 − z1‖22 +

ρ2

2
‖x2 − z2‖22

wherew1 andw2 are the dual variables, ρ1 and ρ2 are positive
penalty parameters. ADMM iteratively updates the primal
and dual variables as follows

zk+11 = argmin
z1

(
βµ ‖z1‖q1q1 +

ρ1

2

∥∥∥∥∥xk1 − z1+
wk
1

ρ1

∥∥∥∥∥
2

2

)
(18)

zk+12 = argmin
z2

(
β ‖z2‖q2q2 +

ρ2

2

∥∥∥∥∥xk2 − z2 +
wk
2

ρ2

∥∥∥∥∥
2

2

)
(19)

xk+11 = argmin
x1

(∥∥∥A1x1 + A2xk2 − y
∥∥∥2
2

+
ρ1

2

∥∥∥∥∥x1 − zk+11 +
wk
1

ρ1

∥∥∥∥∥
2

2

)
(20)

xk+12 = argmin
x2

(∥∥∥A1xk+11 + A2x2 − y
∥∥∥2
2

+
ρ2

2

∥∥∥∥∥x2 − zk+12 +
wk
2

ρ2

∥∥∥∥∥
2

2

)
(21)

wk+1
1 = wk

1 + ρ1(x
k+1
1 − zk+11 ) (22)

wk+1
2 = wk

2 + ρ2(x
k+1
2 − zk+12 ). (23)

Both the z1- and z2-subproblems are the form of the proximity
operator (6) and can be updated as (7), (8) and (9). The objec-
tive function in the x1- and x2-subproblems are quadratic, the
exact solutions are directly given by

xk+11 = (2AT
1A1 + ρ1I)−1[2AT

1 (y− A2xk2)

+ ρ1zk+11 − wk
1] (24)

xk+12 = (2AT
2A2 + ρ2I)−1[2AT

2 (y− A1xk+11 )

+ ρ2zk+12 − wk
2]. (25)

In computing the inverse in (24) and (25), Cholesky decom-
position can be used to reduce the computational complex-
ity [36]. When the penalty parameters ρ1 and ρ2 do not
change in iteration, we can only compute the inverse once.
Moreover, when Ai is orthonormal, i.e., AiAT

i = I, the
inversion in the xi-step can be avoided as

(2AT
i Ai + ρiI)−1 =

1
ρi
I−

2
ρi(2+ ρi)

AT
i Ai.

In the following, we provide a sufficient condition for the
convergence of the above ADMM algorithm.
Theorem 2: Let λi = λmax(AT

i Ai) and ϕi = λmin(AT
i Ai),

i = 1, 2, for any q1 ≥ 0 and q2 ≥ 0, if

ρ1 >
16λ21
ρ1
+

16λ1λ2
ρ2
− 2ϕ1,

ρ2 >
16λ22
ρ2
+

16λ1λ2
ρ1
− 2ϕ2, (26)
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the sequence {(zk1, z
k
2, x

k
1, x

k
2,w

k
1,w

k
2)} generated by the

ADMM algorithm via (18)–(23) converges to a critical point
of the problem (11).

Proof: See Appendix A.
The convergence properties of ADMM for the nonconvex

case have been established very recently in [40] and [41].
This convergence condition for the above 4-block ADMM
algorithm is derived via extending the result for 2-block
ADMM in [40]. It is worth stressing that, there exists a recent
work [46] on the convergence of nonconvex multi-block
ADMM. However, the convergence condition in Theorem 2
cannot be directly derived from the results in [46], since [46]
only considers the class of ADMM algorithms with a single
dual variable while our algorithm has multiple (two) dual
variables.

IV. MULTICHANNEL JOINT RECOVERY FOR
COLOR IMAGES
In recovering a color image with 3 channels (e.g., RGB
image), the above BCD and ADMM algorithms can be used
to recover each channel independently. However, since the
original 3 channel images (also the corruption in the three
channels) may have similar sparsity pattern, performance
improvement can be expected via exploiting the feature cor-
relation among different channels, also called group or joint
sparsity in multitask sparse recovery. In this section, we
extend the above BCD and ADMM algorithms to the mul-
titask case.

In the multitask case, the linear measurements Y ∈ Rm×L

of L channels can be modeled as

Y = A1X1 + A2X2 (27)

where Xk ∈ Rnk×L , k = 1, 2, are the sparse features in
the two components. To exploit the joint sparsity among the
L channels, we consider a multitask version of the problem
(11) as

min
X1,X2

{
1
β
‖A1X1+A2X2−Y‖2F + µ ‖X1‖

q1
2,q1
+ ‖X2‖

q2
2,q2

}
(28)

where 0 ≤ q1, q2 < 1, ‖X‖q2,q is defined as

‖X‖q2,q =
∑

i
‖X[i, :]‖q2 =

∑
i

(∑
j
X2[i, j]

)q/2
.

Note that, in other joint sparse recovery applications, such
as multiple measurement vectors recovery in CS, the formu-
lation (28) can be modified to enforce joint sparsity only on
one of the features.

Before presenting the algorithms, we give a generalization
of the `q-norm proximity operator.
Theorem 3: For any 0 ≤ q ≤ 1, η > 0, x ∈ RL , consider

the following vector optimization problem

min
x

{
‖x‖q2 +

η

2
‖x− t‖22

}
. (29)

Then, its solution is given by

x= prox
q,η‖t‖2−q2

(1) · t. (30)

Proof: See Appendix B. For the special case of q = 1,
(29) reduces to the `1-norm proximity operator of multi-task
which has been addressed in [47].

A. BCD ALGORITHM FOR MULTITASK
Using a similar linearization strategy as in the BCD algorithm
for signle-task in section III, the BCD algorithm for the
multitask problem (28) consists of the following two steps

Xk+1
1 = argmin

X1

{
µ ‖X1‖

q1
2,q1
+
η3

2β

∥∥∥X1 − Xk
1

+
2
η3

AT
1 (A1Xk

1 + A2Xk
2−Y)

∥∥∥2
F

}
(31)

Xk+1
2 = argmin

X2

{
‖X2‖

q1
2,q1
+
η4

2β

∥∥∥X2 − Xk
2

+
2
η4

AT
2 (A1Xk+1

1 +A2Xk
2−Y)

∥∥∥2
F

}
(32)

where η3 > 0 and η4 > 0 are proximal parameters used in
the linearization. These two subproblems can be solved row-
wise as (29). The following sufficient condition for the con-
vergence of this algorithm can be derived following similarly
to the work [39].
Theorem 4: For any q1 ≥ 0 and q2 ≥ 0, if η3 >

2λmax(AT
1A1) and η4 > 2λmax(AT

2A2), the algorithm updated
via (31) and (32) is a descent algorithm and the generated
sequence {(Xk

1,X
k
2)} converges to a critical point of the

problem (28).

B. ADMM ALGORITHM FOR MULTITASK
Using two auxiliary variables Z1 = X1 and Z2 = X2, the
problem (28) can be equivalently reformulated as

min
X1,X2,Z1,Z2

{
‖A1X1 + A2X2 − Y‖2F

+ βµ ‖Z1‖
q1
2,q1
+ β ‖Z2‖

q2
2,q2

}
subject to Z1 = X1, Z2 = X2. (33)

Then, similar to the ADMM algorithm in section III, the
ADMM algorithm for the multitask problem (28) consists of
the following steps

Zk+11 = argmin
Z1

βµ ‖Z1‖
q1
2,q1
+
ρ3

2

∥∥∥∥∥Xk
1 − Z1 +

Wk
1

ρ3

∥∥∥∥∥
2

F


(34)

Zk+12 = argmin
Z2

β ‖Z‖q22,q2+ ρ42
∥∥∥∥∥Xk

2 − Z2 +
Wk

2

ρ4

∥∥∥∥∥
2

F


(35)

Xk+1
1 = (2AT

1A1 + ρ3I)−1
[
2AT

1 (Y− A2Xk
2)

+ ρ3Zk+11 −Wk
1

]
(36)

Xk+1
2 = (2AT

2A2 + ρ4I)−1
[
2AT

2 (Y− A1Xk+1
1 )

+ ρ4Zk+12 −Wk
2
]

(37)

Wk+1
1 = Wk

1 + ρ3(X
k+1
1 − Zk+11 ) (38)
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FIGURE 1. Typical convergence behavior in the nonconvex case, with
µ = 1 and K = 20. Left: S-ADMM. Middle: BCD. Right: ADMM.

Wk+1
2 = Wk

2 + ρ4(X
k+1
2 − Zk+12 ). (39)

W1 and W2 are the dual variables, ρ3 > 0 and ρ4 > 0
are penalty parameters. The Z1- and Z2-subproblems can be
solved row-wise as (29). The following sufficient condition
for the convergence of this ADMM algorihm can be derived
similarly to Theorem 2.
Theorem 5: Let λi = λmax(AT

i Ai) and ϕi = λmin(AT
i Ai),

i = 1, 2, for any q1 ≥ 0 and q2 ≥ 0, if

ρ3 >
16λ21
ρ3
+

16λ1λ2
ρ4

− 2ϕ1,

ρ4 >
16λ22
ρ4
+

16λ1λ2
ρ3

− 2ϕ2,

the sequence {(Zk1,Z
k
2,X

k
1,X

k
2,W

k
1,W

k
2)} generated by the

ADMM algorithm via (34)–(39) converges to a critical point
of the problem (33).

When L = 1, these two algorithms reduces to the BCD and
ADMM algorithms for single task in section III.

V. NUMERICAL EXPERIMENTS
In this section, we evaluate the performance of the new meth-
ods via three groups of experiments, including a synthetic
sparse separation experiment, inpainting experiments, and an
experiment of robust compressive sensing in impulsive noise.

Selecting an appropriate value of µ is important for the
new algorithms (as well as the compared FISTA and YALL1
methods) to achieve satisfactory performance. In general, the
optimal value is related with the statistical information of the
true signal components, the values of q1 and q2, and hence
is difficult to obtain. Various suboptimal approaches can be
used for the selection. For example, it can be selected based
on experience or by learning. Typically, using training data,
it can be learned via cross validation [44]. Another popular
approach is to compute the restoration for a set of µ, which
is often called the regularization path, and select the optimal
value based on some statistical information of x2. In practice,

FIGURE 2. Frequency of successful recovery versus sparsity, A1 is a
DCT matrix, A2 is a Gaussian matrix, and q1 = q2 = q.

FIGURE 3. Recovery performance of BCD and ADMM versus q1 and q2, in
terms of RelErr in dB defined as 20log10(‖x̂1 − x1‖2/‖x1‖2).

for each algorithm the optimal value of µ could be different.
To compare the algorithms fairly, in each algorithm µ is
chosen by providing the best performance, in terms of the
lowest relative error (RelErr) of recovery.

In the proposed BCD and ADMM algorithms, we use
β = 10−6. Generally, with a very small value of β, both the
algorithms would be very slow and impractical. A standard
trick to accelerate the algorithms is to adopt a continuation
process for this parameter, e.g., use a properly large start-
ing value of it and gradually decrease it by iteration until
reaching the target value, e.g., β0 ≥ β1 ≥ · · · ≥ βK =

βK+1 = · · · = β. In the implementation, we use a contin-
uation process for β as βk = 0.97βk−1 if βk > 10−6 and
βk = 10−6 otherwise.

A. SYNTHETIC EXPERIMENT FOR SPARSE
SIGNALS SEPARATION
We first evaluate the new algorithms by a synthetic exper-
iment with A1 ∈ R128×128 be a DCT matrix and
A2 ∈ R128×128 be an orthonormal Gaussian random matrix.
x1 and x2 have the same sparsity of K . The positions of the
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FIGURE 4. Restoration of a 318× 500 image corrupted by salt-and-pepper impulsive noise using the compared methods. (a) Corrupted
image with salt-and-pepper impulsive noise (30% of the pixels are corrupted). (b) FoE (PSNR = 39.64 dB). (c) JP (PSNR = 21.48 dB).
(d) YALL1 (PSNR = 25.80 dB). (e)–(h) Proposed BCD method for different q1 and q2 (best PSNR = 34.62 dB). (i)–(l) Proposed ADMM
method for different q1 and q2 (best PSNR = 34.44 dB). Note: Even though FoE is significantly effective, it requires the mask of the
corruption.

K nonzeros are uniformly randomly chosen while the ampli-
tude of each nonzero entry follows a Gaussian distribution.

Fig. 1 shows the typical convergence behavior of the pro-
posed BCD and ADMM algorithms in nonconvex conditions,
in comparison with the standard ADMM (S-ADMM) algo-
rithm applied to (2) (see Appendix C). For S-ADMM, we use
ρ = 10, ci = 2.1λmax(AT

i Ai), i = 1, 2. With this setting, the
corresponding Lagrangian function is guaranteed to decrease
in both the x1- and x2-steps even in the nonconvex case. It can
be seen that S-ADMM does not converge in the nonconvex
cases.

Fig. 2 compares the performance of the algorithms ver-
sus K in terms of success rate of recovery. A recovery
x̂1 is regarded as successful if the RelErr satisfies
‖x̂1−x1‖2
‖x1‖2

≤ 10−2. The result is an average over 300 indepen-
dent runs. The S-ADMMalgorithmwith q1 = q2 = 1 and the
FISTA algorithm [48] solving (11) are included for compari-
son. With q1 = q2 = 1, S-ADMM is guaranteed to globally
converge [36]. In the nonconvex case of q1 < 1 and/or
q2 < 1, while the proposed BCD and ADMM algorithms
are guaranteed to converge under some mild conditions, there
is no guarantee of convergence for FISTA. In the nonconvex
case of q1 < 1 and/or q2 < 1, FISTA and the proposed
algorithms are initialized by S-ADMM with q1 = q2 = 1
and µ = 1. Fig. 3 presents the recovery performance of the
FISTA, BCD and ADMM methods for different values of q1
and q2.
It can be seen that, with q1 < 1 and q2 < 1, each of

the three nonconvex methods can significantly outperform

the convex S-ADMM method (with q1 = q2 = 1). Note
that, when q1 = q2 = 1, all the FISTA, BCD and ADMM
methods can find a global minimizer of (11) and achieve
the same accuracy (which approximates the accuracy of
S-ADMM with q1 = q2 = 1 since β = 10−6 is very small).
The results indicate that relatively small values of q1 and q2
(e.g., q1, q2 < 0.5) tend to yield better performance.

B. COLOR IMAGE INPAINTING
In this subsection, we evaluate the performance of the new
methods via inpainting experiments, in comparison with
two existing `1 solvers, JP [4] and YALL1 [34], and a
classic inpainting method using the Field of Experts (FoE)
model [50]. It has been shown in [49] that the k-SVD [49]
and FoE [50] methods have comparable performance in color
image inpainting, and both methods outperform the method
in [9].While there exist a number of inpaintingmethods in the
literature, e.g., [7]–[9], [42], [43], the focus here is to quantify
the impact of the values of q1 and q2 on the performance in
comparison with the `1-regularized methods. The proposed
BCD and ADMM algorithms are initialized by S-ADMM
with q1 = q2 = 1 and µ = 1.
The goal is to separate the original image from sparse

corruption. It is typically a sparse demixing problem of
the form (1) with A1 be a basis of the image and
A2 = I. We select A1 as an inverse discrete cosine trans-
formation (IDCT) matrix, accordingly, x1 is the DCT coeffi-
cients of the image. The advantage of using such a matrix
is that the multiplication of A1 (or AT

1 ) with a vector can
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FIGURE 5. Recovery performance of multitask BCD and ADMM versus
q1 and q2 in color image inpainting corrupted by salt-and-pepper noise
(in terms of PSNR in dB). The best BCD reconstruction (PSNR = 34.62 dB)
is given by q1 = 0.9 and q2 = 0.3. The best ADMM reconstruction
(PSNR = 34.44 dB) is given by q1 = 0.8 and q2 = 0.4.

be rapidly obtained via IDCT (or DCT) of the vector, and
thus scales well for high dimensional problems. The perfor-
mance of the algorithms are evaluated in terms of RelErr
of the estimated DCT coefficients x̂1 and peak-signal noise
ratio (PSNR) of the restored image.

We first consider an inpainting example in the presence
of salt-and-pepper impulsive noise. 30% of the pixels of
the color image are corrupted by salt-and-pepper noise. The
multitask BCD and ADMM algorithms given in section IV
are used to jointly recover the 3 channels of the color image.
JP and YALL1 are also extended in a similar manner to the
multitask case and used to jointly recover the 3 channels of
the image. Fig. 4 shows the recovered images of the compared
methods along with the RelErr and PSNR of each recovered
image. Fig. 5 presents the recovery PSNR of the two proposed
methods for different values of q1 and q2.
It can be seen from Fig. 4 that, JP is outperformed by

YALL1 and the new BCD and ADMM methods. It is rea-
sonable since JP is a special case of YALL1 with µ = 1.
Since YALL1 often attains its best performance at a value
µ 6= 1, it outperforms JP in most cases. With properly chosen
q1 and q2, both the new methods achieve surprisingly better
recovery performance compared with the JP and YALL1
methods. FoE achieves the best performance and significantly
outperforms our algorithms. However, while FoE (as well
as the methods [9] and [49]) requires the exact support-set
knowledge (mask) of the corruption, our algorithms do not
use such prior information.

From Fig. 5, the best performance of BCD is given by
q1 = 0.9 and q2 = 0.3, which yields a recovery PSNR 8.8 dB
higher than that of YALL1 (34.62 dB vs. 25.80 dB), with the
corresponding RelErr be only approximately 39.3% that of
YALL1 (0.042 vs. 0.107). The best performance of ADMM
is given by q1 = 0.8 and q2 = 0.4, which yields a recovery
PSNR 8.64 dB higher than that of YALL1 (34.44 dB vs.
25.80 dB), with the corresponding RelErr be only approxi-
mately 40.2% that of YALL1 (0.043 vs. 0.107).Moreover, the
worst performance of both the BCD and ADMM algorithms
are given by q1 = 0 and q2 = 1. The results imply
that, to attain a good inpainting performance, a moderate to
large value should be used for q1, while a relatively small

TABLE 1. Recovery performance of the compared methods (Single-task:
the 3 channels are independently recovered; Multitask: the 3 channels
are jointly recovered).

value should be used for q2. This is due the nature that, the
DCT (also wavelet) coefficients x1 of a real-life image are
not strictly sparse but rather compressible, e.g., with DCT
(also wavelet) coefficients approximately follow an exponen-
tial decay. But the considered corruption coefficients x2 are
strictly sparse.

Table 1 compares the recovery results given by each
algorithm in two conditions, the single-task condition and
multitask condition. Unlike in the multitask condition each
algorithm recovers the 3 channels of the image jointly, in the
single-task condition each algorithm recovers the 3 channels
independently. In the single-task condition, the BCD and
ADMM algorithms given in section III are used. For the new
algorithms, different values of q1 and q2 have been consid-
ered. From Table 1, the multitask algorithms outperforms
their single-task counterparts. This advantage can be expected
to increase as the number of channels increases in some
applications involving joint recovery.

Fig. 6 shows the recovery results on more example images
(three 512 × 512 color images) in the presence of salt-and-
pepper impulsive noise (30% of the pixels are corrupted). For
the proposed (multi-task) BCD and ADMM algorithms, we
use q1 = 0.7 and q2 = 0.4. The results also demonstrate the
significant improvement of nonconvex regularization over the
`1-regularization. Generally, the proposed BCD and ADMM
algorithms have comparable performance.

In recovering the corrupted image in Fig. 4 and on a
desktop PCwith an Intel Core i7-4790KCPU at 4.0 GHzwith
16 GB RAM, the runtime of FoE, JP and YALL1 (for a fixed
µ) are approximately 84, 29 and 26 seconds, respectively,
while that of the proposed BCD andADMMalgorithms (for a
fixed µ) for different q1 and q2 ranges from 28 to 47 seconds.

C. ROBUST COMPRESSIVE SENSING IN IMPULSIVE NOISE
In the last experiment, we consider the robust sparse recovery
problem in compressive sensing in the presence of impulsive
measurement noise. We use a simulated K -sparse signal x1
of length n1 = 256. The positions of the K nonzeros are uni-
formly randomly chosen while the amplitude of each nonzero
entry follows a Gaussian distribution. The 100× 256 sensing
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FIGURE 6. Restoration of three 512× 512 images corrupted by salt-and-pepper noise using the compared methods (30% of the pixels
are corrupted). The proposed BCD and ADMM methods at q1 = 0.7 and q2 = 0.4 outperform YALL1 reconstruction with 4-5 dB
improvement.

FIGURE 7. Frequency of successful recovery versus sparsity, A1 is a
Gaussian matrix, A2 is an identity matrix, x2 is SαS noise with α = 1
and γ = 10−3, and q1 = q2 = q.

matrix A1 is an orthonormal Gaussian random matrix. A2 is
an identity matrix and x2 is symmetric α-stable (SαS) noise.
Except for a few known cases, the SαS distributions do
not have analytical formulations, but can be conveniently
described by the characteristic function

ϕ(ω) = exp
(
−γ α|ω|α

)

FIGURE 8. Recovery performance of BCD and ADMM versus q1 and q2 in
SαS noise with α = 1 and γ = 10−3, in terms of RelErr in dB defined as
20log10(‖x̂1 − x1‖2/‖x1‖2).

where 0 < α ≤ 2 is the characteristic exponent and γ > 0
is the scale parameter. The characteristic exponent measures
the thickness of the tail of the distribution. The smaller the
value of α, the heavier the tail of the distribution and the more
impulsive the noise is.

Fig. 7 shows the recovery performance of the proposed
BCD and ADMM algorithms compared with YALL1. x2 is
SαS noise with α = 1 and γ = 10−3. The result is an average
over 300 independent runs. It can be seen that both the
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proposed algorithms significantly outperforms YALL1.
Fig. 8 presents the recovery performance of the proposed
algorithms for different values of q1 and q2. The result indi-
cates that a relatively small value of q1 and a moderate to
large value of q2 should be used, e.g., q1 ≤ 0.5 and q2 ≥ 0.5.
This is reasonable because x1 is strictly sparse while the SαS
noise x2 is not strictly sparse.

VI. CONCLUSIONS
In this paper, we proposed a novel formulation for
sparse signals recovery and demixing using `q-norm
(0 ≤ q < 1) for sparsity inducing. Two first-order algo-
rithms have been developed to solve an approximation of this
nonconvex `q-minimization formulation. The two algorithms
are based on the BCD and ADMM frameworks, respectively,
which are convergent under some mild conditions and scale
well for high-dimensional problems. Furthermore, the new
algorithms have been extended for the multitask case. Exper-
iments demonstrated that the new algorithms can achieve
considerable performance gain over the `1-minimization
algorithms. Moreover, by exploiting the multi-channel joint
sparse pattern, the multitask versions of these methods can
attain further performance improvement.

In practical applications, q1 and q2 can be selected in an
application-dependent manner. For example, when `q-norm
is used as regularization for the DCT or wavelets coefficients
of real-life images, a moderate to large value of q (e.g., q ∈
[0.5, 0.8]) can yield good performance [52], which accords
well with our results in inpainting experiments. This is due
to the fact that the DCT (also wavelets) coefficients of a real-
life image are not strictly sparse but rather follow an expo-
nential decay. On the other hand, for strictly sparse signals,
a relatively small value of q would give good performance,
e.g., q ≤ 0.5.

Appendix A
PROOF OF THEOREM 2
We first give the following lemmas in the proof of
Theorem 2. In the sequel for convenience we use the nota-
tions: vk := (xk1, x

k
2, z

k
1, z

k
2,w

k
1,w

k
2), λi = λmax(AT

i Ai) and
ϕi = λmin(AT

i Ai), i = 1, 2.
Lemma 1: Define L̃(vk , x̃) := L(vk ) + c1

∥∥xk2 − x̃
∥∥2
2

with c1 = 8λ1λ2/ρ1, for the sequence {vk} generated
via (18)-(23), if (26) holds, then

L̃(vk+1, xk2)+ c2
∥∥∥xk+11 − xk1

∥∥∥2
2
+ c3

∥∥∥xk+12 − xk2
∥∥∥2
2

≤ L̃(vk , xk−12 )

where c2, c3 > 0 are given by

c2 =
2ϕ1 + ρ1

2
−

8λ21
ρ1
−

8λ1λ2
ρ2

,

c3 =
2ϕ2 + ρ2

2
−

8λ22
ρ2
−

8λ1λ2
ρ1

.

Lemma 2: For the sequence {vk} generated via (18)–(23),
if (26) holds, then

lim
k→∞

∥∥∥vk+1 − vk
∥∥∥2
2
= 0.

In particular, any cluster point of {vk} is a stationary point
of L.
Lemma 3: For L̃(vk , x̃) := L(vk )+c1

∥∥xk2 − x̃
∥∥2
2 as defined

in Lemma 1, for the sequence {vk} generated via (18)–(23),
suppose that (26) holds, then there exists a constant c4 > 0
such that

dist(0, ∂L̃(vk+1, xk2))

≤ c4(
∥∥∥xk+11 − xk1

∥∥∥
2
+

∥∥∥xk+12 − xk2
∥∥∥
2
+

∥∥∥xk2 − xk−12

∥∥∥
2
).

Proof of Lemma 1: First, the minimizer xk+11 given by
(20) satisfies

2AT
1 (A1xk+11 + A2xk2 − y)+ ρ1(xk+11 − zk+11 + wk

1/ρ1) = 0.

(40)

Substituting (22) into (40) yields

wk+1
1 = −2AT

1 (A1xk+11 + A2xk2 − y). (41)

Then, it follows from (41) that∥∥∥wk+1
1 − wk

1

∥∥∥2
2

= 4
∥∥∥AT

1A1(xk+11 − xk1)+ AT
1A2(xk2 − xk−12 )

∥∥∥2
2

≤ 4
(∥∥∥AT

1A1(xk+11 − xk1)
∥∥∥
2
+

∥∥∥AT
1A2(xk2 − xk−12 )

∥∥∥
2

)2
≤ 8λ21

∥∥∥xk+11 − xk1
∥∥∥2
2
+ 8λ1λ2

∥∥∥xk2 − xk−12

∥∥∥2
2

(42)

where λ2max(A
T
1A2) ≤ λ1λ2 is used for the last inequality.

Similarly, from the definition of xk+12 as a minimizer of (21),
and with the use of (23), we have

wk+1
2 = −2AT

2 (A1xk+11 + A2xk+12 − y) (43)

and further∥∥∥wk+1
2 − wk

2

∥∥∥2
2

≤ 8λ1λ2
∥∥∥xk+11 − xk1

∥∥∥2
2
+ 8λ22

∥∥∥xk+12 − xk2
∥∥∥2
2
. (44)

From (22), (23) and the definition of L, we have

L(xk+11 , xk+12 , zk+11 , zk+12 ,wk+1
1 ,wk

2)

−L(xk+11 , xk+12 , zk+11 , zk+12 ,wk
1,w

k
2) =

1
ρ1

∥∥∥wk+1
1 − wk

1

∥∥∥2
2

(45)

and

L(xk+11 , xk+12 , zk+11 , zk+12 ,wk+1
1 ,wk+1

2 )

−L(xk+11 , xk+12 , zk+11 , zk+12 ,wk+1
1 ,wk

2)=
1
ρ2

∥∥∥wk+1
2 −wk

2

∥∥∥2
2
.

(46)
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Since L(x1, xk2, z
k+1
1 , zk+12 ,wk

1,w
k
2) is (2ϕ1 + ρ1)-strongly

convex, for any xk1 ∈ Rn1 , the minimizer xk+11 given by (20)
satisfies

L(xk+11 , xk2, z
k+1
1 , zk+12 ,wk

1,w
k
2)

≤ L(xk1, x
k
2, z

k+1
1 , zk+12 ,wk

1,w
k
2)−

2ϕ1+ρ1
2

∥∥∥xk+11 − xk1
∥∥∥2
2
.

(47)

Similarly, as L(xk+11 , x2, zk+11 , zk+12 ,wk
1,w

k
2) is (2ϕ2 + ρ2)-

strongly convex, for any xk2 ∈ Rn2 , the minimizer xk+12 given
by (21) satisfies

L(xk+11 , xk+12 , zk+11 , zk+12 ,wk
1,w

k
2)

≤ L(xk+11 , xk2, z
k+1
1 , zk+12 ,wk

1,w
k
2)

−
2ϕ2 + ρ2

2

∥∥∥xk+12 − xk2
∥∥∥2
2
. (48)

Moreover, the minimizer zk+11 given by (18) satisfies

L(xk1, x
k
2, z

k+1
1 , zk2,w

k
1,w

k
2) ≤ L(xk1, x

k
2, z

k
1, z

k
2,w

k
1,w

k
2).

(49)

Meanwhile, the minimizer zk+12 given by (19) satisfies

L(xk1, x
k
2, z

k+1
1 , zk+12 ,wk

1,w
k
2)≤L(x

k
1, x

k
2, z

k+1
1 , zk2,w

k
1,w

k
2).

(50)

Then, summing (45)–(50) and using (42) and (44) yields

L(vk+1)− L(vk )

≤

(
8λ21
ρ1
+

8λ1λ2
ρ2
−

2ϕ1 + ρ1
2

)∥∥∥xk+11 − xk1
∥∥∥2
2

+

(
8λ22
ρ2
−

2ϕ2 + ρ2
2

)∥∥∥xk+12 − xk2
∥∥∥2
2

+
8λ1λ2
ρ1

∥∥∥xk2 − xk−12

∥∥∥2
2

(51)

which consequently results in Lemma 1, where c2 > 0 and
c3 > 0 when (26) holds. This result indicates the auxiliary
function L̃(vk , xk−12 ) is decreasing when (26) is satisfied.

Proof of Lemma 2: First, we show that, under the con-
dition of (26), the sequence {vk} generated via (18)–(23) is
bounded. It follows from (41) that∥∥∥wk

1

∥∥∥2
2

= 4
∥∥∥AT

1 (A1xk1 + A2xk2 − y)− AT
1A2(xk2 − xk−12 )

∥∥∥2
2

≤ 4
(∥∥∥AT

1 (A1xk1+A2xk2−y)
∥∥∥
2
+

∥∥∥AT
1A2(xk2−x

k−1
2 )

∥∥∥
2

)2
≤

16
3
λ1

∥∥∥A1xk1 + A2xk2 − y
∥∥∥2
2
+ 16λ1λ2

∥∥∥xk2 − xk−12

∥∥∥2
2
(52)

where λmax(A1AT
1 ) = λmax(AT

1A1) = λ1 and λ2max(A
T
1A2) ≤

λ1λ2 are used for the last equality.Meanwhile, it follows from
(43) that ∥∥∥wk

2

∥∥∥2
2
≤ 4λ2

∥∥∥A1xk1 + A2xk2 − y
∥∥∥2
2
. (53)

Define ṽk := (xk1, x
k
2, z

k
1, z

k
2,w

k
1,w

k
2, x

k−1
2 ) and L̃(ṽk ) :=

L(vk ) + c1
∥∥∥xk2 − xk−12

∥∥∥2
2
, since L̃(ṽk ) is lower semi-

continuous, it is bounded from below. Meanwhile, from
Lemma 1, when (26) is satisfied, L̃(ṽk ) is nonincreasing,
thus it is convergent. From the definition of L̃ and using
(52) and (53), for any k > 1 we have

L̃(ṽ1) ≥ L̃(ṽk )

=

∥∥∥A1xk1 + A2xk2 − y
∥∥∥2
2
+

8λ1λ2
ρ1

∥∥∥xk2 − xk−12

∥∥∥2
2

+
ρ1

2

∥∥∥∥∥xk1 − zk1 +
wk
1

ρ1

∥∥∥∥∥
2

2

+
ρ2

2

∥∥∥∥∥xk2 − zk2 +
wk
2

ρ2

∥∥∥∥∥
2

2

−

∥∥wk
1

∥∥2
2

2ρ1
−

∥∥wk
2

∥∥2
2

2ρ2
+ βµ

∥∥∥zk1∥∥∥q1q1 + β
∥∥∥zk2∥∥∥q2q2

≥ c6
∥∥∥A1xk1 + A2xk2 − y

∥∥∥2
2
+ βµ

∥∥∥zk1∥∥∥q1q1 + β
∥∥∥zk2∥∥∥q2q2

+
ρ1

2

∥∥∥∥∥xk1 − zk1 +
wk
1

ρ1

∥∥∥∥∥
2

2

+
ρ2

2

∥∥∥∥∥xk2 − zk2 +
wk
2

ρ2

∥∥∥∥∥
2

2

(54)

where c6 = 1 − 8λ1
3ρ1
−

2λ2
ρ2

. When c6 > 0, from (52),
(53) and (54), it is easy to see that the sequence {vk} is
bounded. It can be proved after straightforward algebraic
manipulation that c6 > 0 when (26) is satisfied. Briefly, let
x = λ1

ρ1
, y = λ2

ρ2
, using ϕ1 ≤ λ1 and ϕ2 ≤ λ2, (26) can be

rewritten as

0 < y <
1

16x
− x +

1
8
, (55)

0 < x <
1
16y
− y+

1
8
. (56)

The domain of (x, y) satisfies these two inequalities is shown
as the green area in Fig. 9. In this domain the maximal value
of f (x, y) = 8

3x+2y is given by f (0.2108, 0.2108) = 0.9837.
Thus, c6 > 0 when (26) is satisfied.

When ṽk is bounded, there exists a convergent subse-
quence ṽkj which converges to a cluster point ṽ∗. Further,
when c2 > 0 and c3 > 0, it follows from Lemma 1 that
L̃(ṽk ) is nonincreasing and convergent, and L̃(ṽk ) ≥ L̃(ṽ∗)
for any k ≥ 1. In this condition, from Lemma 1 we have

∞ > L̃(ṽ1)− L̃(ṽ∗) ≥ L̃(ṽ1)− L̃(ṽN+1)

=

N∑
k=1

[
L̃(ṽk )− L̃(ṽk+1)

]
≥ c2

N∑
k=1

∥∥∥xk+11 − xk1
∥∥∥2
2
+ c3

N∑
k=1

∥∥∥xk+12 − xk2
∥∥∥2
2
.

Let N →∞, when c2 > 0 and c3 > 0, we have

∞∑
k=1

∥∥∥xk+11 − xk1
∥∥∥2
2
<∞ and

∞∑
k=1

∥∥∥xk+12 − xk2
∥∥∥2
2
<∞

(57)
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FIGURE 9. Illustration of the maximal value of f (x, y ) = 8
3 x+2y under the

two constraints (55) and (56).

which together with (42) and (44) implies

∞∑
k=1

∥∥∥wk+1
1 − wk

1

∥∥∥2
2
<∞ and

∞∑
k=1

∥∥∥wk+1
2 − wk

2

∥∥∥2
2
<∞.

(58)

Moreover, based on (57), (58) and using (22), (23),
we have
∞∑
k=1

∥∥∥zk+11 − zk1
∥∥∥2
2
<∞ and

∞∑
k=1

∥∥∥zk+12 − zk2
∥∥∥2
2
<∞.

(59)

Then, from (57), (58) and (59), it is easy to see that
lim
k→∞

∥∥vk+1 − vk
∥∥2
2 = 0.

Next, we show that any cluster point of the sequence {vk}
generated via (18)–(23) is a stationary point of L. From the
optimality conditions, the sequence generated via (18)–(23)
satisfies

0 ∈ βµ∂
∥∥∥zk+11

∥∥∥q1
q1
− wk+1

1 + ρ1(xk+11 − xk1)

0 ∈ β∂
∥∥∥zk+12

∥∥∥q2
q2
− wk+1

2 + ρ2(xk+12 − xk2)

0 = wk+1
1 + 2AT

1 (A1xk+11 + A2xk2 − y)

0 = wk+1
2 + 2AT

2 (A1xk+11 + A2xk+12 − y)

wk+1
1 = wk

1 + ρ1(x
k+1
1 − zk+11 )

wk+1
2 = wk

2 + ρ2(x
k+1
2 − zk+12 ).

(60)

Let {vkj} be a convergent subsequence of {vk}, since
lim
k→∞
‖vk+1 − vk‖22 = 0, vkj and vkj+1 have the same

limit point v∗ := (x∗1, x
∗

2, z
∗

1, z
∗

2,w
∗

1,w
∗

2). Furthermore,
since L̃(ṽk ) is convergent, ‖zk+11 ‖

q1
q1 and ‖zk+12 ‖

q2
q2 are also

convergent. Then, passing to the limit in (60) along the sub-
sequence {vkj} yields

x∗1 = z∗1, x∗2 = z∗2,

w∗1 ∈ βµ∂
∥∥z∗1∥∥q1q1 , w∗2 ∈ β∂

∥∥z∗2∥∥q2q2 ,
−w∗1 = 2AT

1 (A1x∗1 + A2x∗2 − y),

−w∗2 = 2AT
2 (A1x∗1 + A2x∗2 − y).

In particular, v∗ is a stationary point of L.
Proof of Lemma 3: Define ṽk := (xk1, x

k
2, z

k
1, z

k
2,

wk
1,w

k
2, x

k−1
2 ), it follows from the definition of L̃ that

∂z1L̃(ṽ
k+1) = βµ∂

∥∥∥zk+11

∥∥∥q1
q1
− wk+1

1 − (wk+1
1 − wk

1)

which together with the first relation in (60) yields

ρ1(xk1 − xk+11 )+ (wk
1 − wk+1

1 ) ∈ ∂z1L̃(ṽ
k+1).

Similarly, we have

ρ2(xk2 − xk+12 )+ (wk
2 − wk+1

2 ) ∈ ∂z2L̃(ṽ
k+1)

∂x1L̃(ṽ
k+1) = wk+1

1 − wk
1

∂x2L̃(ṽ
k+1) = (wk+1

2 − wk
2)+ 2c1(xk+12 − xk2)

∂x̃L̃(ṽk+1) = 2c1(xk2 − xk+12 )

∂w1L̃(ṽ
k+1) = (wk+1

1 − wk
1)/ρ1

∂w2L̃(ṽ
k+1) = (wk+1

2 − wk
2)/ρ2.

Thus, there exists a constant c5 > 0 such that

dist(0, ∂L̃(ṽk+1)) ≤ c5
(∥∥∥xk+11 − xk1

∥∥∥
2
+

∥∥∥xk+12 − xk2
∥∥∥
2

+

∥∥∥wk+1
1 − wk

1

∥∥∥
2
+

∥∥∥wk+1
2 − wk

2

∥∥∥
2

)
which together with (42) and (44) results in Lemma 3. This
result establishes a subgradient lower bound for the iterate
gap, which together with Lemma 2 implies that

dist(0, ∂L̃(ṽk+1))→ 0 as k →∞.

Proof of Theorem 2: Based on the Lemma 2 and
Lemma 3, the rest proof of Theorem 2 is to show the sequence
{vk} generated via (18)–(23) has finite length i.e.,

∞∑
k=0

∥∥∥vk+1 − vk
∥∥∥
2
<∞ (61)

which means the sequence {vk} is a Cauchy sequence and
thus is convergent. Consequently, this property together with
Lemma 2 results in that the sequence {vk} globally converges
to a critical point of L. The property (61) can be derived
based on the Kurdyka-Lojasiewicz (KL) property of L̃. L̃ is
a KL function for arbitrary q1 ≥ 0 and q2 ≥ 0, since ‖ · ‖q1q1
and ‖ · ‖q2q2 are sub-analytic functions (thus KL functions) in
this case. Since the detailed proof of (61) is similar to that for
the 2-block ADMM in [40] with some minor changes, it is
omitted here for succinctness.
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APPENDIX B
PROOF OF THEOREM 3
Define

f (x) = ‖x‖q2 +
η

2
‖x− t‖22 .

For q = 0, since ‖x‖02 = 0 only when x = 0 and ‖x‖02 =
1 when x 6= 0, it is easy to see that the minimizer of f (x),
denoted by x∗, is given by

x∗ =


0, ‖t‖2 <

√
2/η

{0, t}, ‖t‖2 =
√
2/η

t, otherwise

. (62)

For 0 < q ≤ 1, by simple geometrical arguments, we
first show that the minimizer x∗ satisfies that x∗ = αt with
some α ≥ 0. Specifically, assume that ‖x∗ − t‖2 = r and
consider the set � = {x : ‖x− t‖2 = r}, the points in the
set� are lying on the ball with center at t and radius r . In the
set �, the minimal ‖·‖q2 value is given by the point which is
the intersection of the ball and the vector t. Thus, x∗ = αt
with some α ≥ 0, with which we have

f (x∗) = ‖t‖q2 α
q
+
η

2
‖t‖22 (α − 1)2.

Further, α should be the minimizer of the function h(α) =
‖t‖q2 α

q
+

η
2 ‖t‖

2
2 (α − 1)2. It has be shown in [37] that the

minimizer of h(α) is given by α = prox
q,η‖t‖2−q2

(1), which
together with (62) results in (30) (can be computed via (7),
(8) and (9)).

APPENDIX C
ADMM ALGORITHM APPLIED TO PROBLEM (2)
For the formulation (2), the standard 2-block ADMM proce-
dure (S-ADMM) applies as follows [36]

xk+11 = argmin
x1

(
µ ‖x1‖q1q1+

ρ

2

∥∥∥∥A1x1 + A2xk2 − y−
wk

ρ

∥∥∥∥2
2

)

xk+12 = argmin
x2

(
‖x2‖q2q2+

ρ

2

∥∥∥∥A1xk+11 + A2x2 − y−
wk

ρ

∥∥∥∥2
2

)
wk+1

= wk
− ρ(A1xk+11 + A2xk+12 − y)

Both the x1- and x2-subproblems are `q-regularized least-
square problem which are difficult to solve directly. The
standard trick is to adopt a proximal linearization of each
subproblem. Let uk = A2xk2−y−w

k/ρ, consider a quadratic
majorization of the second term in the x1-subproblem as

1
2

∥∥∥A1x1 + uk
∥∥∥2
2

≈
1
2

∥∥∥A1xk1 + uk
∥∥∥2
2
+

〈
x1 − xk1, g1(x

k
1)
〉
+
c1
2

∥∥∥x1 − xk1
∥∥∥2
2

where g1(xk1) = AT
1 (A1xk1 + uk ), c1 > 0 is a proximal

parameter. Then, the x1-subproblem becomes a form of the
`q-norm proximity operator as

xk+11 = proxq1,c1ρ/µ
(
xk1 − g1(x

k
1)/c1

)
.

Similarly, the x2-subproblem can be solved as

xk+12 = proxq2,c2ρ
(
xk2 − g2(x

k
2)/c2

)
where g2(xk2) = AT

2 (A1xk+11 +A2xk2−y−w
k/ρ) and c2 > 0.
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