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ABSTRACT Despite the recent advances in manufacturing automation, the role of human involvement in
manufacturing systems is still regarded as a key factor in maintaining higher adaptability and flexibility.
In general, however, modeling of human operators in manufacturing system design still considers human
as a physical resource represented in statistical terms. In this paper, we propose a human in the loop (HIL)
approach to investigate the operator’s choice complexity in a mixed model assembly line. The HIL simulation
allows humans to become a core component of the simulation, therefore influencing the outcome in a way
that is often impossible to reproduce via traditional simulation methods. At the initial stage, we identify
the significant features affecting the choice complexity. The selected features are in turn used to build a
regression model, in which human reaction time with regard to different degree of choice complexity serves
as a response variable used to train and test the model. The proposed method, along with an illustrative
case study, not only serves as a tool to quantitatively assess and predict the impact of choice complexity on
operator’s effectiveness, but also provides an insight into how complexity can be mitigated without affecting
the overall manufacturing throughput.

INDEX TERMS Manufacturing, mixed model assembly line (MMAL), choice complexity, machine

learning, information entropy.

I. INTRODUCTION

In the past, manufacturers had provided the market with
a few models that had few attributes and long life cycles.
Today, the increasing customer sophistication and expecta-
tions along with the accelerated pace of technology devel-
opment have led to a much more complex market [1].
Manufacturing organizations are now expected to offer a high
product variety to remain competitive. As a result, the number
of part variants registered a 400% increase between the year
1975 and 1990 [2].

Meanwhile, the mixed-model assembly system and mod-
ular supply chains have been adopted in order to handle
the increased variation [3]. By offering a range of models,
companies have gained a competitive edge. However, as the
variety increased, manufacturing performance worsened due
to the complexity from creating and handling multiple prod-
uct models [4], [5].

This means that there exists a tradeoff between additional
advantages from a greater variety of options and higher costs

associated with manufacturing complexity. However, from a
decision-making standpoint, it is still a challenge to estimate
the tradeoff since it is not only subjectively defined but also
very vague due to lack of constitutional measurement of
manufacturing complexity.

Thus, analyzing the complexity of manufacturing is a
promising way of ensuring higher product variability, while
simultaneously maintaining the production efficiency. This
paper proposes a machine learning methodology in which
various features of choice complexity are not only identi-
fied, but also used in assessing and predicting the dynamics
of operator’s performance. The paper focuses on operator’s
choice complexity; since, in spite of advances made in manu-
facturing automation, human is still regarded as a key fac-
tor in adaptable and flexible manufacturing systems such
as MMAL. Here, choice complexity (CCO) refers to the
difficulties encountered by the operators when selecting the
right component (e.g., tools, part, etc.,) from a number of
options on the assembly line. The operator’s performance is
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expressed as function of the time it takes to select the right
component; which, according to research, diminishes as the
number of options increases [6], [7].

As in most complex systems in which closed-form analyt-
ical solution is nonexistent, simulation has become a power-
ful tool in the analysis of complex manufacturing systems.
Thanks to the technological advances in the new “smart
manufacturing” era, simulations analysis has hit its strides.
However, the existing progress and research on smart manu-
facturing put little emphasis on human, the essential compo-
nent of a smart factory, while focusing, instead, on the higher
level artificial intelligence in factory environments [8], [9].

Furthermore, due to the dynamics of human behaviors,
modelling or simulating human performance via traditional
methods is often hard. In fact, the statistical estimations of the
human role fall short in several human-involved systems [10].
We aim to simulate and analyze the CCO and its underlying
effects, by incorporating a real human (human-in-the-loop) in
the overall assembly simulation in a manner that accurately
represents the core physical aspect of choice complexity. Fur-
thermore, using the human in loop simulation (HIL) platform,
we build and train a machine learning model, to not only
assess possible features affecting the operator’s performance
in an MMAL, but also through prediction, to potentially be
used for allocating accurate dynamic cycle time in accor-
dance with the task complexity. The proposed methodology
provides an in-depth analysis of CCO, and gives a hint how
on how to effectively encapsulate human component in smart
manufacturing settings.

Il. RELATED WORKS

A. MANUFACTURING COMPLEXITY

The study of complex systems represents a collective
scientific effort that investigates how interaction between
parts give rise to the overall behaviors of a system [11], [12].
Recent progress in the study of complexity has made it
possible to systematically characterize a wide range of com-
plex systems [12], [13]. Due to heterogeneous characteris-
tics of different complex systems, the scientific notion of
complexity has been traditionally conveyed using particular
examples [14].

In this regard, recent researchers introduced models for
the computation of operator choice complexity in a mixed
model assembly [6], [7]. These models adopt Hick’s law,
later known as the Hick-Hyman law, to model the cycle
time as a function of complexity measured by information
entropy. Hick’s law has been popularly used to describe the
time it takes for a person to make a decision as a result of
the number of possible choices [15]. However, Hick’s choice
complexity modeling relies heavily on the part mix ratio and
pay little attention on other factors such as the relationship
and interdependency among the options that have been shown
to be an important factor in choice complexity [16].

From MMAL perspective, before an assembly process,
an operator receives a command requesting him or her
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to select a specific part from a pool of available options.
Research has shown that, once the command is received,
the operator’s memory retrieval cue can become less effective
when the command stimuli are associated with multiple items
in the memory [17], [18]. For example, the more similar
the options, the more ambiguous it becomes to the operator
when responding to the stimuli. The similarity effect on an
operator’s selection also depends on the brain activation,
which is more or less category-based [19]. Thus, [20] pro-
posed an entropic choice complexity model that considers
both part mixes and their respective similarity. The model,
however, ignores the effect of task sequence on the operators’
effectiveness [21]. Despite these research attempts, there is
still no validated model that explicitly explains the nature of
choice complexity in MMAL and its underlying effects on
system performance.

B. MODELING AND SIMULATION OF
HUMAN-INVOLVEMENT IN MANUFACTURING SYSTEMS
Simulation, specifically the discrete event simulation (DES),
plays a major role in analyzing the manufacturing complexity.
Simulation allows the testing and analysis of a new resource
policy before actual implementation, deployment, or gather-
ing information and knowledge without disturbing the actual
system [22]. Thanks to advances in computing, the simulation
in manufacturing has had several progresses in recent history.

The success of the simulation is based upon the advances
in the representation of several aspects of the manufacturing
in computable terms (i.e., conceptual model) [23]. For exam-
ple, computer simulations have represented different tech-
nological aspects of manufacturing systems (e.g., machines,
conveyors) with deterministic and stochastic data. However,
the traditional approach, which is based on simple discrete
event-based specifications, often fails to represent the details
of the relationship between the performance of a person
and his or her working environments, which is regarded a
key modeling attribute in human-machine co-working envi-
ronments [10]. In fact, human variation is the cause of a
significant percentage of the discrepancy between simulation
predictions and real world performance. This presents a prob-
lem when modelling systems that involve highly manual work
contents such as a MMAL.

While several aspects of manufacturing complexity can
be modeled, and analyzed, the choice complexity presents
a greater challenge due to several human factors involved.
This is why few researchers opted to incorporate human
models in DES for simulating various aspects of manufac-
turing processes [10]. Because of the complexity of human
actions, the existing human models are often oversimplified
and only built for specific purposes (e.g., military, etc.). For
example, [10] included a human performance model that
only considers both the age and experience to simulate the
manufacturing assembly production. Similarly, due to tech-
nological advances in 3D representation, several researchers
have successfully opted for digital human models (DHM) to
increase the accuracy of various simulation of manufacturing
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assembly process, particularly with regards to human fac-
tors [24]. However, the study also points out the need for
several needed improvements to bridge the gap that still exist
between DHM and real human operators [24], [25]

Although human models, including DHM do a better job
compared to most other discrete event simulations, there is
no ideal human performance model yet that encloses all
the relevant human factors from a manufacturing point of
view. In this regard, studies have noted a surge in number
of researchers and practitioners embracing the virtual simu-
lation as the new norm of simulation of human-centered sys-
tems [26]. Virtual simulation has many advantages, including
the ability to provide adaptable virtual replication of physical
systems that would otherwise be overly expensive, sometimes
even impossible to explore [27]. Whereas the majority of
virtual simulation focus on practice and testing user’s knowl-
edge using interactive scenarios and environments to reflect
real-life situations [28]; in this paper, we propose machine-
learning-based HIL simulation in which a non-immersive
virtual choice simulation is used to accurately represent and
analyze the CCO and predicts its impact on manufacturing
performance.

ill. HUMAN IN THE LOOP MACHINE LEARNING

A. MACHINE LEARNING IN MANUFACTURING SYSTEMS
Through the advancement of technology, manufacturing
industry has become capable of collecting a wide range of
data in different format and quality [29]. As the available
data grow, practitioners have relied on machine learning to
create new ways to support decision-making or to improve the
system automatically. The goal of certain machine learning
techniques is to detect patterns or regularities that describe
vital relations, necessary to understand or improve the sys-
tem [30], [31]. As a field that originated from the study
of pattern recognition and computational learning theory in
artificial intelligence and expert system, machine learning
explores construction of algorithms that can learn from his-
torical relationships and trends in the data to make data-
driven predictions or uncover hidden critical insights needed
to produce reliable, repeatable decision [32], [33].

Machine learning has been successfully utilized in pro-
cess optimization, monitoring, control applications, and
predictive maintenance in different manufacturing indus-
tries [34], [35], [36]. Whereas the majority application of
machine learning concept has often been limited to optimiza-
tion of sequencing or line balancing problems, machine learn-
ing has, sometimes, been applied to predict the task duration
of a wide range of manufacturing processes. For example,
[37] used support vector regression to predict the life of cut-
ting tools. Similarly, in [38] various regressions models have
been proposed to predict the factory cycle time based on his-
torical data. However, little has been researched in quantified
modeling and analysis of CCO under flexible manufacturing
environments. In fact, the role of human involvement in the
aforementioned research is either minimal, or considered as
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FIGURE 1. Choice Complexity in a mixed-model assembly line. Once an
operator receives the stimulus, he/she proceed on selecting the right part
from several options available.

a physical resource expressed in statistical terms, which may
not hold in reality, given the dynamism of human operators,
especially in a complex MMAL.

B. HIL MACHINE LEARNING IN MMAL

Planning and training assembly operations during the early
stages of product design can ensure that a product is man-
ufactured in the most efficient way. Thus, manufacturers
rely on simulation results for insights necessary for adequate
planning before further expenditure is made.

However, due to the dynamics of human behavior, it is
often impossible to accurately simulate the choice complexity
in a mixed model assembly via the traditional simulation
methods. Thus, we use the HIL to reproduce the assem-
bly problem by embedding a real human in the system to
accurately reproduce the physical facet of choice complexity.
As opposed to simply considering human as a physical
resource represented in statistical terms, in this type of simu-
lation, a human is always part of the simulation, thus, affects
the outcome of the simulation in such a way that it would be
almost impossible to reproduce without him/her [39]. In other
words, HIL readily identifies the problems and requirements
that may not be easily identified by other means of simulation.

As shown in Fig. 1, in a MMAL environment, the operator
receives, before each task, the stimuli instructing him or her to
perform a given task following certain guidelines. Practically,
the form of the stimuli varies from one instance to another. For
example, the operator may receive instructions that include a
coded name or an image of the part to be assembled with the
mainframe. Once the command is received, the operator starts
by selecting the right part from a pool of available options,
after which he/she proceeds with the assembly. In this paper,
the proposed approach is accompanied by an illustrative
example, in which a human subject is requested to identify the
right part in similar fashion as in the real physical assembly
line.

The proposed method mirrors the actual physical setups
that characterizes the choice complexity in a MMAL. After
selecting the features of choice complexity, we build and train
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FIGURE 2. Screw Selection task. The subject click on a specific screw
according to the stimulus.
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FIGURE 3. Human in the loop machine learning in a MMAL.

a machine learning model based on the operator’s selection
time as depicted in Fig.3, which will be discussed further in
the next sections.

IV. FEATURES AND CHARACTERISTICS OF CHOICE
COMPLEXITY IN MMAL

A. SIMULATION OF CHOICE COMPLEXITY IN MMAL

The mixed model assembly lines often consist of multiple
stations arranged along some kind of a transportation system,
e.g., a conveyor belt, which is carrying workpieces from one
station to another. Operators move along the workpiece car-
rying out distinct tasks, most of which require the ““selection
of the right part” according to the model at hand. Recall
that “‘operator’s choice complexity” refers to the difficulty
that operators face when selecting the right component from
a number of options. That is, a more complex choice is
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FIGURE 4. User interface of the experiment.

more likely to take longer time to make, or results in an
erroneous part selection. The selection process involves a
visual search, which, according to [40], is ““a type of percep-
tual task requiring attention that typically involves an active
scan of the visual environment for a particular object or fea-
ture (the target) among other objects or features (the dis-
tractors)”.Therefore, options can be visually differentiated
on the basis of their respective physical features, such as
shape, color, size, and position. The effectiveness of the visual
search depends on several factors, some of which are more
significant than others. The major factors include the number
of alternatives or distractors and their similarities to the target
object, the sequence and frequency of target and proximity,
grouping and orientation [20],[40]-[42].

For further understanding, let us take an example, in which
an operator is required to pick up the right screw to be
used according to the stimulus. Each available screw has a
distinctive corresponding model variety, in which it is to be
used. As in most visual search experiments, subjects are asked
to detect a target object upon receiving a command. That is,
once the stimulus is received, the subject goes on to select
the right screw according to the instructions. The selection
is done by clicking on the corresponding part, after which a
feedback is given to signal that the choice has been recorded
(See Fig.2).

Subjects were asked to detect a particular target screw pre-
sented among the irrelevant non-targets. Here, six human sub-
jects were involved in this illustrative example. Three major
simulation parameters were considered: namely, the number
of screws, the sequence rule and the layout settings. As shown
in Fig.4, seven distinct numbers of screws, three sequencing
rules and two layout settings were used in the simulation for a
total of 41 distinct experimental setups. The experiment was
run at a randomized order; that is, before each subject began
the selection task, levels were set according to a predefined
random order. The experiment lasted approximately 40 min-
utes consisting of at least 10 distinct factors’ combination for
each subject. The duration of each individual trial varied for
each combination of factors’ levels depending on the number
of screws involved, ranging from 60 seconds for two screws
to 300 seconds in the case of 15 screws.

B. FEATURES OF OPERATOR’s CHOICE COMPLEXITY
Several factors deemed to be affecting the operator’s choice
complexity are considered in this simulation. As shown
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TABLE 1. List of collected data in MMAL.

Attributes Attributes ID(s)
Number of options (screws) 1
Sequence rule 2
Physical arrangement (Layout) 3
Position data* 4,22-36
Similarity data** 5,7-21
Entropy 6
Variation in Similarity matrix 38
Reaction time 39

in Table 1, on each selection task, we collected a total
of 39 raw variables, ranging from the number of options to
operator’s reaction time. The position data include distance
between the two consecutively requested target screws (i.e.,
attribute 4) and the row of position matrix corresponding to
the requested option (i.e., how far apart any given option is to
the targeted option).

The similarity data include the similarity level as obtained
in (3) (i.e., attribute 5), and the row of the similarity matrix
corresponding to the requested option (how similar any given
option is to the targeted option). The entropy refers to a
complexity measure as proposed in [6], while the variation in
similarity matrix refers to the standard deviation of the row of
the similarity matrix corresponding to the requested option.
Note that the collected data may contain variables that are
either redundant or irrelevant, thus can be ignored without
losing much information. Hence, it is important to select a
subset of relevant features (predictors) to be used in model
construction. A successful feature selection not only makes it
easier to interpret, but also to reduce the training time and the
variation [43].

For selection of features, researchers have shown the
importance of selecting subsets of variables that together
have good predictive power, as opposed to simply ranking
variables according to their individual predictive power [44].
Thus, we use the wrapper method which evaluates selected
subsets of variables in terms of their overall prediction
power. Using greedy forward algorithm we select subsets
of features to be evaluated under a specific criterion (i.e.,
RMSE) [44]. Eleven algorithms representing an array of
popular machine learning (i.e., Linear Regression, Regres-
sion Trees, Regression Rules, Instance-Based Learning Algo-
rithms, and Support Vector Machines) were used for the
evaluation. Fig.5 shows how frequently a given feature was
deemed necessary in the prediction of time of selection. In the
next section, we will discuss three of the more complex
selected features of choice complexity in a mixed model
assembly line and the form in which they were collected in
this illustrative example.

1) SIMILARITY OF VARIANTS

Researchers have argued that an increase in the similarity
of choice alternatives leads to longer decision time, due to
inefficient memory retrieval [17], [18].
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The current formalization of similarity measures has relied
heavily on knowledge representation, where the similarity
between two objects is typically based on the semantic simi-
larity. Knowledge representation allows a better understand-
ing of the complexity or the ambiguity caused by stimuli,
since some semantic memory data structures store and use
lexical information in a way similar to how humans store
and use lexical information [45]. Semantically, objects can be
represented using the description of their properties. That is,
itis possible to express the similarity as a function of distance
between an object’s respective properties. In this case, object
properties will be represented in the form of dimensions with
ordered values [46]. In this context, the semantic distance can
be used as an analogy to spatial distance.

Geometric based semantic distance measure is based on
the notion of multi-dimensional vector spaces. Objects or
concepts are modelled within a multi-dimensional space
and their spatial distance indicates the semantic similarity.
The geometric model uses multi-dimensional scaling (MDS),
which is a method of representing the measurement of sim-
ilarities (or dissimilarities) as a distance between points of
a low-dimensional multidimensional space among pairs of
objects [46]. Once the dimensions are set and represented,
the semantic distance between objects a and b denoted as
d (a,b) can be formulated as a function of total compound
weighted distance of all their properties. We note that the
distance obtained is the Euclidian spatial distance as shown
in (1).

n 172
d(a.b) = | ) leixai —xp0)I M
i=1
where x,; is the value of dimension i for stimulus a xp; is the
value of dimension i for stimulus b, ¢; is the weight assigned
to dimension i as a functional reflection of the salience or
prominence of the various dimensions. By default, we set ¢;
to 1, that is, each dimension is equally important.

In this equation, it is important to acknowledge the dif-
ference in the object properties. For example, while some
properties can be geometrically comparable (e.g., volume,
etc.), other properties that are difficult to measure can present
a bigger challenge (e.g., complex shapes, etc.) Thus, object

VOLUME 5, 2017



M. Busogi, N. Kim: Analytical Modeling of Human CCO in a MMAL Using Machine Learning-Based HIL

IEEE Access

TABLE 2. Similarity matrix of screws.

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll s12 s13 s14 sl5
sl 1.0000 0.1353 0.0183 0.0067 0.0009 0.0001 0.0041 0.0498 0.0183 0.0067 0.0025 0.0041 0.0015 0.0002 0.0025
s2 0.1353 1.0000 0.1353 0.0498 0.0067 0.0009 0.0302 0.0498 0.1353 0.0498 0.0183 0.0302 0.0111 0.0015 0.0183
s3 0.0183 0.1353 1.0000 0.3679 0.0498 0.0067 0.2231 0.0067 0.0183 0.0498 0.1353 0.0041 0.0111 0.0111 0.0025
s4 0.0067 0.0498 0.3679 1.0000 0.1353 0.0183 0.0821 0.0025 0.0067 0.0183 0.0498 0.0015 0.0041 0.0302 0.0009
s5 0.0009 0.0067 0.0498 0.1353 1.0000 0.1353 0.0111 0.0003 0.0009 0.0025 0.0067 0.0002 0.0006 0.0041 0.0001
s6 0.0001 0.0009 0.0067 0.0183 0.1353 1.0000 0.0015 0.0000 0.0001 0.0003 0.0009 0.0000 0.0001 0.0006 0.0000
s7 0.0041 0.0302 0.2231 0.0821 0.0111 0.0015 1.0000 0.0015 0.0041 0.0111 0.0302 0.0183 0.0498 0.0498 0.0006
s8 0.0498 0.0498 0.0067 0.0025 0.0003 0.0000 0.0015 1.0000 0.3679 0.1353 0.0498 0.0821 0.0302 0.0041 0.0015
s9 0.0183 0.1353 0.0183 0.0067 0.0009 0.0001 0.0041 0.3679 1.0000 0.3679 0.1353 0.2231 0.0821 0.0111 0.0183
s10 0.0067 0.0498 0.0498 0.0183 0.0025 0.0003 0.0111 0.1353 0.3679 1.0000 0.3679 0.0821 0.2231 0.0302 0.0067
sll 0.0025 0.0183 0.1353 0.0498 0.0067 0.0009 0.0302 0.0498 0.1353 0.3679 1.0000 0.0302 0.0821 0.0821 0.0025
s12 0.0041 0.0302 0.0041 0.0015 0.0002 0.0000 0.0183 0.0821 0.2231 0.0821 0.0302 1.0000 0.3679 0.0498 0.0183
s13 0.0015 0.0111 0.0111 0.0041 0.0006 0.0001 0.0498 0.0302 0.0821 0.2231 0.0821 0.3679 1.0000 0.1353 0.0015
sl4 0.0002 0.0015 0.0111 0.0302 0.0041 0.0006 0.0498 0.0041 0.0111 0.0302 0.0821 0.0498 0.1353 1.0000 0.0002
s15 0.0183 0.1353 0.0183 0.0067 0.0009 0.0001 0.0041 0.0498 0.1353 0.0498 0.0183 0.0302 0.0111 0.0015 1.0000

properties with a measurement challenge can .be presented as
features with Boolean values (i.e., true or false). In this paper,
we represent objects by using a combination of dimensions
with ordered values and Boolean values. Here Boolean values
represent features that hold or not for that specific object.
In this particular case, the distance between two objects based
on a given feature can be obtained as shown in (2).

0

1 otherwise

if both a and b possess feature x;

|Xai — Xpil = )
where x,; and xp; denote feature x; of object aand b, respec-
tively.

Next, after the semantic distance between objects a and b,
d (a, b) is obtained, it is converted to the similarity measure
by using (4), where the similarity is an exponential decay
function of distance expressed as follow [47]:

s(a, b) = e~ ¢4@D)

3

where s(a, b) is the similarity between object a and b; c is
the general sensitivity parameter. Note that for N number of
options, there exist a N x N distance matrix whose entry dj;,
1 <1i,j < N, satisfies the following metric’s properties:
o djj = Ofor alli =j,
o All the off-diagonal entries are positive, such that d;; >
0if i #J,
o The matrix is a symmetric matrix, such that d;; = dj; and
o Foranyiand j,dij < dy + dyj for all k (the triangle
inequality)
Here, d;; denotes the distance between option i and j, as
seen in (1).
It follows that the level of similarity corresponding to a
given target variant (v;) can be obtained as follow:

N N

SO0 = 3 s 0w =3 (s (1) 1y = w)

i i

“

where N is the total number of variants, n is the number of
dimensions, t is the target variant, s (vj, v;) is the similarity
between variant i and j computed as shown in (3).
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In our illustrative example, we represent each screw using
three dimensions: thickness, length, and head shape. The
overall similarity matrix is shown in Table 2.

2) SEQUENCE RULE
The MMAL is an assembly line system, in which various
models of a common base product are manufactured in inter-
mixed sequences. In a mixed-model assembly line, assem-
bly sequence planning plays a crucial role in a successful
assembly procedure, and a good sequence often saves time
and cost [48]. In fact, other than line balancing problems,
the mixed-model assembly lines give rise to a short-term
sequencing problem. Therefore, within a planning horizon,
the production sequence ought to ensure an efficient work-
flow. Sequencing is central to effectiveness of the assem-
bly process because different sequencing rules or constraints
are set to ensure that the line do not present a work over-
load, or the works are well balanced throughout the stations.
The sequencing rules often specify how many models should
contain a specific option out of a given successive models.
Thus, based on the predefined rules, the sequencing problem
can be formulated as a constraint satisfaction problem.
Assembly sequencing in this illustration can be defined as
a three-tuple, (V, S, r) where

o V ={v1,..,v15} is the set of different variants (screw);

e S = {S1,..,8,} is the set of different subsequences;
St = {pk1, .., Pkm} Where py; denotes a position j in
subsequence k, and m is the number of variants in the
subsequence

1V x S — {0, 1}; that is, if variant v; is to be part

of assembly at py; then r,,; = 15 1y, = 0, otherwise.

o I

Assuming that the objective is to minimize the choice com-
plexity, a good sequence not only fulfils the constraint but
also minimizes the uncertainties in the choice process by pro-
moting a correct anticipation. Since there are three different
classes, all variants are partitioned into 3 subsets (i.e., per
head shape) where V = Ul-3=1 V. The subsets are as follows:

o Vi ={vi1,v4,v6, v8, V12, V14, V15}
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o Vo ={v2,v5,v7,v9, V10, Vi1, v13}

o V3 ={v3}
We consider three types of sequence in this illustrative exam-
ple. The first sequence rule (i.e., Rule A) can be described
using the following constraint

2
Z”v,-pk_/ <2, vieV )
J
Constraints in equation (5) mean that the same variant shall
not be requested successively in any sequence. In other words,
the constraint imposes that, for any subsequence of two con-
secutive model on the line, at most one of them may require v;,
for any v; € V. The constraints of the second sequence rule
(i.e., Rule B) are as follows:

5
ervipkffz, t=1,2,3 6)

vieVy j

2
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Constraints in equation (6) mean that in any sequence of 5,
at most two screws from any partition shall be included. That
is, for any subsequence of 5 consecutive products on the
line, at most 2 of them may require screw v; from the same
group Vj for all k. The constraints in equation (7) imply that
two variants from the same group or partition shall not be
requested successively in any sequence. The final sequence
rule is simply a random sequence in which the stimuli are
randomly generated from a uniform distribution to ensure an
equal probability for all the screws. That is, each variant is
equally likely to be requested at any position of any given
sequence.

The objective function in the sequencing problem is often
minimizing the labor utilization or the spreading of material
demand [49]. For example, the solution to a sequencing prob-
lem can ensure that models responsible for high station times
alternate with less work-intensive ones. In this illustrative
example, the objective is to minimize the time it takes to
respond to the stimulus requesting to select a given screw.
Here, the goal is to minimize the operator’s visual search
space. Let xj,; be the position of screw requested at py;, thus
our objective function is as follows:

min Z |xpkj = Xpiis1 | )

Note that we assume that the positions of screws are fixed.

3) PHYSICAL ARRANGEMENT

According to [50], location information is one of the most
important factors in ubiquitous computing. In this exam-
ple, the positions of screws are fixed before each exper-
imental run. Two setups are used: first; the screws are
arranged according to their visual features. That is, we place
screws from each subset (i.e., V1, V2& V3) closely together.
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In the second setup, screws are randomly positioned regard-
less of their features because the theory of grouping states that
humans naturally perceive objects as organized patterns and
objects. For example, parts that are similar and close to each
other tend to be grouped since their attributes are perceived as
related [42]. Note that the distance between any two closely
positioned screws is equal for both setups.

C. RESULT & DISCUSSION

1) MACHINE LEARNING AND PREDICTION OF SELECTION
TIME

A perfect prediction of the operator’s selection time is
unattainable; however, the proposed method fairly mimics
the actual physical setups that define the choice complexity
in a mixed model. Hence, in accordance with the features
of choice complexity, we built several machine learning
algorithms and trained them by using the human in loop
search time. As stated earlier, we select representative algo-
rithms from some of the popular machine learning tech-
nique namely: linear regression, regression trees, regression
rules, instance-based learning algorithms, and support vector
machines.

a: LINEAR REGRESSION

We fit the regression model using the least squares. Based on
the result in Table 3, the performance of linear regression on
our dataset is extremely poor.

b: REGRESSION TREES

Regression trees are binary decision trees with numerical val-
ues at the leaf nodes: In this analysis, we use random forest to
predict the operator’s reaction time. The forests studied here
consist of using randomly selected inputs or combinations of
inputs at each node to grow each tree. The number of features
the random forest is allowed to try in a given individual tree
was set to the first integer less than log2M+1, where M is the
number of features. We put no limitation on the maximum
number of trees [51].

¢: REGRESSION RULES

Here we use the decision table with default mapping to the
majority class, where a stepwise selection is used to find good
attribute combinations for the decision table [52].

d: INSTANCE-BASED LEARNING ALGORITHMS (IBL)

IBL are learning algorithms that compares new problem
instances with instances seen in training, and stored in
memory. That is, they construct hypotheses directly from
the training instances themselves. Here we use k-nearest
neighbor (K-NN) regression as exemplar IBL algorithm.
K-NN is a non-parametric method that assign weight to the
contributions of the neighbors, to ensure that the nearer
neighbors are more emphasized. Using a cross validation,
four nearest neighbors were obtained to be optimal. The
Euclidian distance was used to compute the distance between
neighbors [53].
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TABLE 3. Comparison of regression algorithms.

Test Regression Correlation
options Algorithm Coefficient MAE RMSE
SVM 0.8405 0.2562 0.3625
10fold Decision Table 0.8327 0.2406 0.3674
Cross- Random Forest 0.9101 0.1832 0.2827
Validation
K-NN 0.7917 0.2792 0.4119
Linear
Regression -0.0461 16.4838 371.492
SVM 0.8434 0.2614 04114
Decision Table 0.8358 0.2553 0.4138
70/30 split || Random Forest 0.9172 0.1977 0.3236
K-NN 0.784 0.3193 0.4743
Linear
Regression 0.5597 0.3406 0.7369
SVM 0.8326 0.2637 0.3704
Decision Table 0.8445 0.2369 0.3551
Leave 1 out
Cross- Random Forest 0.909 0.1846 0.2834
Validation
K-NN 0.798 0.2757 0.4067
Linear
Regression -0.0474 16.7196 | 368.4111

The random forest algorithm outperforms the rest of the algorithms in the
prediction of the operator’s selection time.

e: SUPPORT VECTOR MACHINE

We used the sequential minimal optimization algorithm to
implement the SVM with Gaussian kernels. After a thorough
grid search, the SVM parameters, namely, C parameter, RBF
Sigma and Epsilon were set to 0.7024, 0.9045, and 0.0702
respectively [54].

Three testing methods were used to assess the accuracy
of each machine learning. First, seventy percent of the data
were used for training while the remaining 30 was used for
testing the regression models. Second, a 10fold and leave one
out cross validation were also used for training and testing.
The time to build each model varied from less than 0.1sec
for KNN and decision table to approximately one second
for random forest and SVM. We compared the regression
models based on the three metrics; namely, the coefficient
of correlation, the mean absolute error (MAE) and the root
mean squared error (RMSE).

Table 3 shows the selected regression models and their
respective performance according to the three metrics. The
maximum coefficient of correlation reaches as high as 90%
implying a high correlation between the actual and the pre-
dicted values. Decision tree appears to be the better fit for this
particular problem where random forest outperforms other
algorithms in all categories, regardless of the testing methods.
That is, the Random forest present both the highest coefficient
of correlation, the lowest MAE and RMSE. Notice how all
the three testing methods have very similar results. To some
extent, the results shown in table 3 corroborates the notion
of human in the loop machine learning simulation. That is,
while the standard for a good machine learning model varies
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FIGURE 7. Comparison of Actual selection time (tested) vs. Predicted
selection time (simulated) obtained using random forest regression
algorithm.

depending on the prediction goal, one can argue that even
the least accurate predication on the list still offer significant
insights on the factors affecting the choice complexity and
their implication on the service time. The results in Table 3
are confirmed in Fig. 7 that shows the comparison between
predicted selection times (per random forest) along with the
real selection times.

2) HUMAN-INVOLVED SYSTEM CONTROL AND SIMULATION
Using the proposed method, the operator’s task can be broken
down into subtasks that include part selection whose service
time can be obtained by following the steps in Fig. 6. Thus,
the operator becomes a part of the simulation until the simu-
lation parameters are accurately extracted. The training ends
when the threshold RMSE or accuracy rate is consistently
reached. This means that the model is reliable enough to be
used independently in predicting the operator’s performance
to be included in simulating the overall assembly line.
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The inclusion of a real human in the simulation improves
the accuracy and reliability of the simulation prediction,
particularly regarding the operator’s service time. Human
involvement in the loop also provides more room for test-
ing and optimizing the number of assembly line policies.
As shown in Fig.8, changes in key factors improve the choice
complexity in a mixed model assembly. Thus, it is possible
to reduce the time required to make a choice by optimiz-
ing the sequence, the layout, or to reduce the number of
options. Furthermore, Smart manufacturing boosts sensing
technologies capable of capturing a wide range of data nec-
essary for advanced analysis of manufacturing operations.
(e.g., sequences, task data, etc.) [55]. That is, the imminent
adoption of smart manufacturing in the future will give rise
to several possible applications of machine learning in a wide
range of human-involved manufacturing processes in which
the proposed framework can be applied accordingly.

Each model commands a different level of complexity.
Thus, in a flexible manufacturing environment, the pro-
posed methodology can be of assistance in analyzing and
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optimizing the task sequence. Also, the predicted reaction
time, can be used to allocate dynamic cycle time for tasks
according to their complexities. For example, Fig 6 summa-
rizes how machine learning algorithms can be incorporated
into the overall assembly as follow:

— The human operator’s performance logs serve as
response variable (Feedback) used to train and contin-
uously improve the machine learning algorithm

— The trained algorithm is used to predict the cycle time
based on the complexity of the scheduled task.

— The scheduling and sequencing algorithm incorpo-
rates the machine learning data to ensure that the
chosen sequence is associated with low complexity
level.

V. CONCLUSION

One of the problems that emerges from increased varieties
in a mixed assembly line is the choice complexity. Adding
a model variants in a manufacturing system increases the
number of product components, the resources needed to man-
age the interactions of these components. These aspects of
complexity in the system incur additional direct and/or indi-
rect costs for managing the manufacturing process and asso-
ciated resources. As the number of options grow, operators
inefficiently require more time to make accurate decisions.
Different parameters have been shown to improve or worsen
the choice complexity.

In this paper, we proposed a simulation framework in
which various parameters of choice complexity are tested to
assess the overall effect on operators’ effectiveness. We select
the features of choice complexity and build a regression
model where human reaction time is the response variable
used for training and testing the model. The model, along
with an illustrative case study, serves as both a tool to evaluate
the impact of choice complexity on operator’s effectiveness,
and provides insight on how to approach the choice complex-
ity without necessarily affecting the overall manufacturing
throughput.

Although the primary research objective was attained,
there was some unavoidable limitations. For instance, while
the screw selection experiment illustrates the overall pro-
posed framework, it is arguable that the system is too simple
to showcase every aspect of human in the loop machine learn-
ing simulation framework. Also, due to the subjective nature
of human operators and the small sample size of human
subjects involved in the experiment, the simulation results
cannot be generalized; instead, the experiment should serve
as exemplary template of the proposed simulation framework.
Despite the limitations, the proposed model is valuable tool in
the pursuit of an effective modeling and simulation of human-
centered complex systems.

Although the proposed simulation framework is limited to
the simulation of choice complexity in a mixed model assem-
bly line, the same schematic may be applied in real-time
simulation of most human involved systems, especially with
the technological advances in data collection, e.g., sensors.
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Thus, the proposed model provides an example of how one
can effectively incorporate human component in the smart
manufacturing environments.

We admit that the illustrative example used in this paper is
not identical to the real manufacturing assembly line. How-
ever, it still captures the underlying source of complexity in
the choice making. Thus, this method is further expected to
be duplicated in a real assembly line with the right resources.
In our future work, we plan to investigate the feasibility
and scalability of the proposed model in real and complex
manufacturing assembly lines, including an expansion of the
model to include the overall assembly system simulation.
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