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ABSTRACT This paper presents a fast discrete Curvelet transform (FDCT)-based technique for multi-focus
image fusion to address two problems: texture selection in FDCT domain and block effect in spatial-based
fusion. First, we present a frequency-based model by performing FDCT on the input images. Considering the
human visual system characteristics, a union of pulse coupled neural network and sum-modified-Laplacian
algorithms are proposed to extract the detailed information of frequencies. Then, we construct a hybrid
spatial-based model. Unlike other spatial-based methods, we combine the image difference and the detailed
information extracted from input images to detect the focused region. Finally, to evaluate the robustness
of proposed method, we design a completed evaluation process considering the misregistration, noise error,
and conditional focus situations. Experimental results indicate that the proposed method improves the fusion
performance and has less computational complexity compared with various exiting frequency-based and
spatial-based fusion methods.

INDEX TERMS Multi-focus image fusion, discrete Curvelet transform, block effect, human visual system.

I. INTRODUCTION
Visual sensor network (VSN), wherein camera-equipped sen-
sor nodes can capture, process, and transmit visual informa-
tion, is an important research topic attracting considerable
attention in recent years [1]. However, the camera sensors
collect a huge amount of visual data, which are rich in infor-
mation and offer tremendous potential when used in VSN [2].

In practical systems, the huge amount of image data gen-
erated by image sensors have to be transmitted for various
applications. This amount of data directly affects the power
consumption of sensor nodes or, in other words, decreases
the life time of the network. Therefore, in VSN, there are
fusion centers used to integrate a large number of high rate
image data. However, current image fusion approaches usu-
ally perform complex fusion operations, which will consume
a significant portion of the battery power in a VSN. To meet
the requirement of resource- and bandwidth-limited VSN,

low-complexity image fusion techniques are much desired in
practice [4].

As we know, the focused range of visible imaging system
is limited. Thus, it is difficult to obtain all objects in the same
scene clearly [5], [6]. Fig. 1(a) shows the basic principle of
optical imaging characteristics [7]. Each point in a scene is
projected onto a single point on the focal plane, leading to
a focused image to be formed on it. However, if the sensor
plane does not coincide with the focal plane, the image
formed on the sensor plane will be a circular disk known
as a blur circle with the diameter 2r . Based on the property
of geometrical optics imaging, the intensity distribution of
the blur circle is supposed to be well-distributed. In reality,
however, diffraction effects and characteristics of the system
play a major role in forming the intensity distribution within
the blur circle. After considering the effect of lens aberrations,
the point spread function (PSF) of an optic system can be
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FIGURE 1. Multi-focus images. (a) The basic principle of optical imaging
characteristics. (b) Two multi-focus images: the left one focuses on the
big clock, the right one focuses on the small clock.

obtained by a 2D Gaussian function [7]:

h (x, y) = exp
(
−

(
x2 + y2

)
/2σ 2

)
/2πσ 2, (1)

where x and y are image coordinates, σ is not only the
standard deviation but also the spread parameter which is
proportional to the blur radius r of the blur circle. Therefore,
larger σ would result in the more blur image [6]. Fig. 1(b)
shows two common test images with different focus settings,
where the left image focuses on the big clock, and the right
one focuses on the small clock. As shown in Fig. 1(b), when
the big clock is focused, the selected block is clear and
its corresponding surface is sharp, however, when the big
clock is unfocused, the selected block is blurring and its
corresponding surface is flat. Hence, the pseudo-color of the
surface is related to the clarity of image block. A popular
technique to overcome this problem is to utilize multi-focus
image fusion techniques, in which one can obtain one image
with all of the objects in focus by means of containing the
best information from multiple original images [8].

Multi-focus image fusion is an important subfield of
image fusion. Of course, with or without modification, many

algorithms for merging multi-focus images can also be
employed for other image fusion tasks such as visible-
infrared image fusion and multi-modal medical image
fusion [8], [9]. Generally, multi-focus image fusion algo-
rithms can be divided into pixel level, feature level and deci-
sion level methods [10]. Pixel level image fusion methods
can perform on the images in spatial domain and frequency
domain [11]–[13].
The traditional spatial domain methods use the tech-

niques of principal component analysis (PCA), and intensity-
hue-saturation (IHS) [14], [15]. The fused images obtained
by PCA and IHS methods have high spatial quality, but
they usually overlook the high quality of spectral infor-
mation and suffer from spectral degradation [16], [17].
Tian J. et al. proposed the bilateral gradient-based sharpness
criterion (SCBG) basedmulti-focus image fusionmethod [3],
which can be used to evaluate the local content (sharp)
information well. Although the SCBG is of low computa-
tional complexity which suits VSN, the result always has
block effect which is not suitable for both visual perception
and further processing. In the result of SCBG-based method
which is shown in Fig. 2(c), it is easy to find the block effect
especially in the regions of red labels. The block effect is
mainly caused by two issues: (1) The size of sub-blocks is
difficult to determine. If the size is too large, it can easily
lead to situations where one block contains both clear areas
and blurred areas; if the size is too small, it is hard to judge the
features of the sub-block, which is likely to cause sub-block
selection error [18]. (2) The focusing properties of the sub-
block are difficult to determine. Especially when the detail
information of the block is not rich, it will easily cause sub-
block selection error.

So far, frequency domain methods have been explored
by using multi-scale transform, including Laplacian pyramid
transform, Gradient pyramid transform [19], [20] andwavelet
transform [21]. Due to the upstanding localize peculiarity
in both time and frequency domain, wavelet analysis has
become one of the most commonly used methods among
the frequency domain fusion [22]. With the deepening of
theoretical studies, methods have been proposed for image
fusion that are better than wavelet transform, such as wavelet
packet transform and wavelet frame transform. However,
wavelet analysis cannot effectively represent the line and
plane singularities of the images and thus cannot represent the
edge directions in images accurately [23], which results in the
wavelet family lacking shift-invariance and having pseudo-
Gibbs phenomena in the fused image. Figs. 2(d)-(g) show a
sample of fused result of discrete wavelet transform (DWT)
and the pseudo-Gibbs phenomena.

To overcome these shortcomings of the wavelet transform,
Da Cunha et al. [24] proposed the Non-subsampled Con-
tourlet Transform (NSCT) for image fusion, which can pos-
sess shift-invariance and effectively suppress Pseudo-Gibbs
phenomena but with time-consuming [25] and thus is not
suitable for real-time application. Candes and Donoho [26]
proposed the early Curvelet transform with strong anisotropy
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FIGURE 2. The fusion results of multi-focus images. (a-b) Multi-focus images: (a) focus on the right; (b) focus
on the left. (c-d) Fusion results of (c) SCBG [3], and (d) discrete wavelet transform (DWT). (e-g) The analysis
of pseudo-Gibbs phenomena: (e) the focus slicing of Fig. 2(a); (f) the same part of Fig. 2(d); (g) the image
difference of Figs. 2(e) and (f).

and multi-direction. The Curvelet transform can not only
work well on image edge, but also reduce nonlinear approx-
imation error of the different curves with the smooth
function [23]. Later, Candes and Donoho [27] and
Candes et al. [28] designed an improved version of Curvelet
transform for image fusion. The improved method is a fast
discrete realization method for Curvelet transform, called
fast discrete Curvelet transform (FDCT) [28]. The FDCT
is simpler, faster and less redundant than existing propos-
als, which is reported on a series of practical successes,
see [29]–[31]. However, the coefficients of FDCT are shrink
which is more complex compared to the input images.
This property of FDCT coefficients leads the frequency
selection difficult which troubles the application of FDCT.
Li et al. [32] used the average method for low frequency
coefficients and larger absolute values for high frequency
coefficients in FDCT domain. However, the common fusion
rule will reduce the contrast in the fusion results and is not
sensitive to the edges and directional features but signal
noise [23].

Based on above analysis, in this paper we present a hybrid
method for multi-focus image fusion. We first design a
frequency-based model to extract detailed information in a
set of input images. In this model, the pulse coupled neural
network (PCNN) and sum-modified-laplacian (SML) are pro-
posed to be the rules for fusing of low- and high frequency
coefficients in FDCT domain, respectively. Through this
model, the most important feature information is selected into
the fused coefficients. Secondly, we present a hybrid spatial-
based model using image difference to detect the focus and
defocus regions. Then the mathematical morphology tech-
nique is applied to repair the mistakes of detection. Finally,
we present a completed robustness evaluation process for
image fusion technique considering the misregistration, noise
error and conditional focus situations. Themain contributions
of this paper are as follows:
(1) To solve the difficulty of frequency selection in FDCT

domain. We present a fast frequency-based model based

on FDCT, which employs PCNN and SML to fuse of
low- and high frequency coefficients, respectively. This
proposal can extract the major detailed information from
input imageswith lower computational complexity com-
pared with other frequency domain methods.

(2) We present a robust spatial-based model based on the
detailed information and image difference. Since we got
a good primary fused image above, we didn’t need to
detect the focus or detail information from bottom-up.
We employed the image difference of primary fused
image and inputs to precisely detect the focus/detailed
information of original image and then got a decision
map which represents the focus attributes.

(3) We design a completed robustness evaluation process
including the misregistration, noise error and condi-
tional focus situations for image fusion techniques.

II. RELATED WORK
A. FAST DISCRETE CURVELET TRANSFORM (FDCT)
The early Curvelet transform uses the theory of Ridgelet
to analyze the image features. However, this algorithm is
complex with high redundancy. To overcome that drawback,
Candes et al. [28] proposed an improved version called
FDCT. FDCT adopts local Fourier transform for the fre-
quency domain decomposition [32]. Therefore, FDCT is of
high speed and small redundancy. Here, we only briefly list
the steps of the implementation of FDCT, and more details
can refer to [28]. The implementation of FDCT [33] via
wrapping is shown as follows:

(1) Apply two-dimensional Fast Fourier transform
(2D-FFT) for a given image to obtain Fourier coefficients as:

f̂ [x, y] , for −
N
2
≤ x, y ≤

N
2
, (2)

where f̂ [x, y] is the Fourier coefficients obtained by 2D-FFT,
representing the length of the side of square image.

(2) Resample (or interpolate) f̂ [x, y] to obtain sampled
values as, f̂ [x, y− x tan2l] for each scale j and angle l,
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FIGURE 3. Fast Discrete Curvelet decomposition. (a) The original image.
(b) FDCT decomposition coefficients.

where (x, y) ∈ Pi; P = (x, y) : n1,0 ≤ x ≤ n1,0+L1,j; n2,0 ≤
y ≤ n2,0 + L2,j, (n1,0, n2,0)is the index of the pixel at the
bottom-left of the rectangle, L1,j ≈ 2j, L2,j ≈ 2j/2.

(3) Multiply the interpolated (or sheared) object
f̂ [x, y− x tan2l] with the parabolic window Û [x, y], and
obtain f̂ [x, y] = f̂ [x, y− x tan2l] Û [x, y].
(4) Wrap f̂ [x, y] around the origin and then apply the

inverse 2D-FFT to the wrapping result, hence collecting the
discrete coefficients Cj0 (x, y),Cj,r (x, y)(j ≥ j0).

Fig.3 shows the Lena image and its FDCT decomposition
coefficients with five levels. As shown in Fig. 3, the center
area stores the low frequency (coarse scale) coefficients; the
area of Cartesian Loop stores the high frequency (fine scale)
coefficients; the outer the loop, the higher the coefficients.
Since FDCT has better sparse representation ability than
wavelet transform [32], FDCT based image fusion is able
to extract more features like edges and textures than wavelet
transform.

B. PULSE COUPLED NEURAL NETWORK
PCNN is a biologically inspired neural network based on
the work by Eckhorn et al. [34]. It has been proved that
PCNN is suitable for image fusion including spatial domain
techniques and frequency domain methods [35], [36]. Each
PCNN neuron consists of three parts: receptive field, modula-
tion field and pulse generator. However, this structure is non-
linear, and with too many uncertain parameters, leading to the
difficulty of the mathematical analysis to the network. In the
PCNN-based image fusion, we use a simplified model as
shown in Fig. 4(a). The neuron can be described as follows:

Fn(x, y) = Sn(x, y)
Ln(x, y) = exp(−αL)Ln−1(x, y)

+VL
∑

abWa,b(x, y)Ya,b(x, y)
Un(x, y) = Fn(x, y)[1+ β(x, y)Ln(x, y)]

Yn(x, y) =

{
1, Un(x, y) > θn(x, y)
0, otherwise

θn(x, y) = exp(−αθ )θn−1(x, y)+ VθYn(x, y),

(3)

where n denotes the current iteration, Sn(x, y) denotes the
pixel value of input image located at (x, y). Fn(x, y) is the

FIGURE 4. The schematic diagram of Pulse Coupled Neural
Network (PCNN). (a) Simplified model of PCNN neuron. (b) Connection
model of PCNN neuron.

primary input from the neurons receptive fields. The indexes
a and b refer to the dislocation in a symmetric neighbor-
hood around the one pixel, θ is a dynamic neuron threshold.
αF , αL and αθ are the decay constants of the PCNN
neuron. VF , VL and Vθ are the magnitude scaling terms.
The constant β(x, y) is the linking strength. Ln(x, y) is the
secondary input of lateral connections with neighboring
neurons. The Wa,b are the constant synaptic weight matrices
for Ln(x, y). The neuron will generate pulse when Un(x, y) >
θn(x, y). The sum of Yn(x, y) in iteration is called firing times
Tn(x, y) [37]. To represent image information, it is defined as
follow:

Tn(x, y) = Tn−1(x, y)+ Yn(x, y), (4)

The PCNN used for image fusion is a single-layer
two-dimensional array of laterally linked pulse coupled neu-
rons, as shown in Fig. 4(b) and all neurons are identical. The
number of neurons in the network is equal to the number of
pixels in the input image [38]. There is a one-to-one corre-
spondence mapping between the image pixels and network
neurons. Each neuron is connected with neighboring neurons
in linking range [39]. The output of each neuron results in
two states, namely firing (1 state) and non-firing (0 state).
Pulse output will be delivered to adjacent neurons. If adjacent
neurons have a similar intensity with the current neuron,
they will fire together because of pulse coupled action [38].
In this case, we recall that neuron to capture the adjacent
neurons. Finally, the neuron and the similar adjacent neurons
will emit synchronous pulses. Thus, PCNN has the global
coupling and pulse synchronization characteristics, which
benefit image fusion because they make use of local image
information.
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FIGURE 5. The schematic diagram of the proposed image fusion
algorithm.

TABLE 1. The proposed frequency-based model.

III. PROPOSED MULTI-FOCUS IMAGE
FUSION FRAMEWORK
The general framework of the proposed multi-focus image
fusion scheme is depicted in Fig. 5. The method consists
of two layers including frequency-based model and hybrid
spatial-based model, which are described in detail as below.

A. FREQUENCY-BASED MODEL
In this subsection, a novel FDCT based fusion, which applies
different fusion rules for low- and high-frequency coefficients
respectively, is described in Table 1.

1) LOW FREQUENCY FUSION RULE
The coefficients in the low frequency represent the approx-
imate information and contain the most energy of source
images. The widely used rule is to apply the averaging meth-
ods to produce the fused coefficients. However, this rule will
reduce the contrast in the fused images. It is known that the
Human Visual System (HVS) is highly sensitive to the edges
of image and is insensitive to real luminance at indepen-
dent positions [40]. The study shows that PCNN possesses
the global coupling and pulse synchronization characteris-
tics [41]. These characteristics for HVS based image fusion
in frequency domain include low frequency [41]. Therefore,
we propose PCNN to fuse the low frequency coefficients and
the fusion process is defined as follows:

CP
j0 (x, y) =


CA
j0
(x, y), if T An,j0 (x, y) > T Bn,j0 (x, y)

CB
j0
(x, y), if T An,j0 (x, y) < T Bn,j0 (x, y)

0.5(CA
j0
(x, y)+ CB

j0
(x, y)), Otherwise,

(6)

where T An,j0 (x, y) and T
B
n,j0

(x, y) are the firing times of low
frequency coefficients of the corresponding source images;
CP
j0
(x, y) represents the low frequency coefficients of the

primary fused image.

2) HIGH FREQUENCY FUSION RULE
For the high frequency coefficients, the most popular fusion
rule is to select the coefficients with larger absolute values.
However, this rule does not take consideration of the sur-
rounding pixels. Furthermore, this is inconsistent with the
characteristics of the HVS, which is sensitive to the edges
and directional features. According to the study [40] the
modified-laplacian (ML) can effectively represent the salient
features and sharp boundaries of image [42]. The SML oper-
ator represents the sum of the surrounding ML, which is
developed to provide local measures of the quality of image
focus [43]. It is proved that SML is more efficient than
ML in frequency domain, particularly in high frequency [44].
Therefore, we propose to use SML as the high frequency
fusion rule. The definition of SML is as follows:

SML(x, y) =
H∑

h=−H

W∑
w=−W

[ML(x + h, y+ w)], (7)

where [2H+1), (2W+1)] is the size of the window;ML(x, y),
representing the value of modified-laplacian located at (x, y),
is calculated as:

ML(x, y) = |2C(x, y)− C(x − s, y)− C(x + s, y)|

+ |2C(x, y)− C(x, y− s)− C(x, y+ s)|, (8)

where s is a variable spacing between coefficients and is
always equal to 1 [45]. C(x, y) denotes the pixel value of one
high coefficient located at (x, y). Therefore, the fusion rule
for the high-frequency coefficients based SML is defined as:

CP
jr (x, y) =

{
CA
jr (x, y), if SMLAjr (x, y) ≥ SML

B
jr (x, y)

CB
jr (x, y), Otherwise,

(9)
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FIGURE 6. The image difference. (a) The FDCT-based fusion result,
(b) One input image, (c) Image difference of Fig. 6(a) and (b).

where SMLAjr (x, y) and SML
B
jr (x, y) are values of SML of high

frequency coefficients at j level in the r orientation. CP
jr (x, y)

represents the high frequency coefficients of the primary
fused image at j level and r orientation.

B. HYBRID SPATIAL-BASED MODEL
After FDCT-based image fusion, we still find that there is
some important details cannot be extracted by the frequency
selection model. The reason is the scale shrinked in fre-
quency domain and thus the frequency-feature extraction in
FDCT domain cannot be fully successful in every coeffi-
cient. To address this problem, we present a spatial-based
model using a novel process based on the first layer. Detailed
description is described as below.

1) IMAGE DIFFERENCE
The image difference can be used for the fusion perfor-
mance evaluation [6]. Fig. 6 shows the generation of image
difference. From Fig. 6, we can easily find the defocus
region (highlighted by the red rectangular frame) in image
difference. The formula of image difference based onthe
result of first layer is below:

DA(x, y) = P(x, y)− A(x, y)
DB(x, y) = P(x, y)− B(x, y), (10)

where A(x, y), B(x, y) and P(x, y) denote the pixel located at
(x, y) of source images and initial fused image, respectively.
Then though comparing the absolute values of the difference
image, a binary mapM1(x, y) is achieved by:

M1(x, y) =

{
1, if |DA(x, y)| ≥ |DB(x, y)|
0, Otherwise.

(11)

2) MATHEMATICAL MORPHOLOGY TECHNIQUE
However, the binary map cannot fully represent the focus and
defocus regions because of the defective frequency selection
model. From Fig. 6(c), it can be seen that some information
of focus region have been lost (highlighted by the red ellipse).
According to the theory of imaging, the regions, either in
focus or out of focus, are always continuous. Therefore, we
design a final process based on mathematical morphology
technique described as below,

Ma(x, y) = bwareaopen(M1(x, y),Th)

Mb(x, y) = 1−Ma(x, y)

M2(x, y) = bwareaopen(Mb(x, y),Th), (12)

where Th is a threshold that is set to remove the holes smaller
than the threshold. Its value can be determined according
to reference [35]. Mathematical morphology technique is
employed to eliminate the defects of M1(x, y) which are
caused by the noise or undesired effects and then get a mod-
ified decision map M2(x, y). The final process can thus be
illustrated as below,

F(x, y) =

{
A(x, y), if M2(x, y) = 1
B(x, y), Otherwise,

(13)

where F(x, y) denotes the pixel located at (x, y) of the fused
image.

IV. THE EXPERIMENTAL RESULTS AND ANALYSIS
A. EVALUATION INDEX SYSTEM
In this study, we evaluate the performance of the pro-
posed algorithm by both objective and subjective meth-
ods [46], [47]. The objective metrics used for are as follows.

1) ROOT MEAN SQUARE ERROR (RMSE)
RMSE represents the cumulative squared error between the
fused and the referenced images [48]. which is defined as
follows:

RMSE =

√√√√√ M∑
x=0

N∑
n=0

[F(x, y)− R(x, y)]2

MN
, (14)

where M × N is the size of fused image, F(x, y) and R(x, y)
are the pixel values of the fused and referenced images at the
position (x, y), respectively. The lower the value of RMSE is,
the better performance the image fusion method is.

2) MUTUAL INFORMATION (MI)
MI can indicate how much information the fused image
conveys from the source images [47], which is defined as
follows [49]:

MI = MIAF +MIBF , (15)

in which

MIAF =
L∑
f=0

L∑
a=0

pAF (a, f ) log
(
pAF (a, f )
pA(a)pF (f )

)

MIBF =
L∑
f=0

L∑
b=0

pBF (b, f ) log
(
pBF (b, f )
pB(b)pF (f )

)
, (16)

where MIAF and MIBF denote the normalized MI between
the fused image (F) and the source images (A and B);
a, b and f ∈ [0,L]. pA(a), pB(b) and pF (f ) are the normalized
gray level histograms of source images and the fused image.
pAF (a, f ) and pBF (b, f ) are the joint gray level histograms
between the fused image F and the source images A and B.
The larger the value of MI is, the better performance the
image fusion method is.
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FIGURE 7. The data and fusion results of the artificial multi-focus images. (a-c) The experimental data: (a) the referenced image; (b) the image
blurred on the left; (c) the image blurred in the middle. (d-l) The fusion results of different methods: Fused by (d) PCA method; (e) GP based
method; (f) DWT based method; (g) FDCT based method; (h) NSCT-PCNN based method; (i) SCBG based method; (j) MWGF based method;
(k) the primary method; (l) the proposed method. (m-u) Transformation of pseudocolor on the difference images between the
nine fusion results Fig. 7(d)-(j) and Fig. 7(b).

3) EDGE BASED SIMILARITY MEASURE (QAB/F )
QAB/F is proposed by Xydeas and Petrovic [50], which gives
the similarity between the edges transferred from the input
images to the fused image. Mathematically, the definition is
given as:

QAB/F =

M∑
x=0

N∑
y=0

[QAF (x, y)wA(x, y)+ QBF (x, y)wB(x, y)]

M∑
x=0

N∑
y=0

wA(x, y)+ wB(x, y)]

,

(17)

in which

QAF (x, y) = QAFa (x, y)QAFg (x, y)

QBF (x, y) = QBFa (x, y)QBFg (x, y), (18)

where wA(x, y) and wB(x, y) are the corresponding
gradient strengths for images A and B, respectively.
QAFa (x, y),QAFg (x, y),QBFa (x, y) and QBFg (x, y) are the Sobel
edge strength and orientation preservation values at loca-
tion (x, y) for each source image. The larger the value the
QAB/F is, the better performance the image fusion method is.

B. EXPERIMENTS ON MULTI-FOCUS IMAGE FUSION
To evaluate the performance and robustness of the proposed
image fusion approach, we use two sets of experiments:
general and conditional testing. The test images are 2D gray
images. The proposed method is compared with existing
frequency-based and spatial-based methods. We use the fol-
lowing frequency-based methods of gradient pyramid (GP),
DWT based methods, the FDCT [32] and NSCT-PCNN [25];
the spatial-based methods are also used in the experiments,

including PCA and bilateral gradient-based sharpness crite-
rion (SCBG) [3]. In addition, we compared our proposed
method with a hybrid method based on Multi-scale weighted
gradient-based fusion (MWGF) [51]. The NSCT-PCNN,
SCBG and MWGF based fusion methods are open source
codes offered by corresponding authors.

The high-frequency coefficients and low-frequency coeffi-
cients of GP and DWT are merged by the widely used fusion
rule of selecting the coefficients with larger absolute values
and the averaging rule (average-maximum rule), respectively.
For DWT-based method, the images are decomposed using
DBSS (2, 2) wavelet and the decomposition level is three. For
implementing NSCT, the decomposition scale with 1, 2, or 8
directions and ’9-7’ filters and ’pkva’ filters are used as pyra-
midal and directional filters respectively [52]. Parameters of
PCNN is set as αL = 0.06931, αθ = 0.2, β = 0.2,VL =

1.0,Vθ = 20,W =

0.707 1 0.707
1 0 1

0.707 1 0.707

, and the maximal

iterative number is n = 200 [25]. All the experiments are
implemented inMATLABR2014a on an Intel (R) Core (TM)
i3-2330M CPU@2.2GHz computer (ASUS, Taipei, Taiwan)
with 4 GB RAM.

1) GENERAL TESTING
The general testing includes two parts: a set of artificial and
5 sets of natural multi-focus test images.

a: FUSION OF ARTIFICIAL MULTI-FOCUS IMAGES
The first experiment is conducted by using a set of artificial
multi-focus images. The sizes of these images are 256×256.
Figs. 7(a)-(c) show the referenced Lena image and two
blurred artificial images. The artificial images are generated
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by convolving the referenced image with a blurring filter
working on the left and the middle parts, respectively [49].
As shown in Figs. 7(a)-(c), the right part is the focus region
of Fig. 7(b) and 7(c), simultaneously; the middle part is the
focus region of Fig. 7(b) and the defocus region of Fig. 7(c);
and the left part is the focus region of Fig. 7(c) and the defocus
region of Fig. 7(b).
Subjective Evaluation: The fusion results of different

methods are shown in Figs. 7(d)-(l). In comparison, we add
the primary method with the fusion rule of selecting the low
frequency by PCNN and high frequency by SML, respec-
tively. For a clear comparison, we give the transformation
of pseudocolor on the difference images between the fused
results and Fig. 7(b). As seen in Fig. 7, the performance of
different image fusion algorithms is different and the perfor-
mance comparison is analyzed as follows.
(a) For the right area, the less information of the difference

images is, the more information has been transferred to
the fused images and hence the better performance the
corresponding method is [35]. The results of the spatial
domain methods including PCA and SCBG have less
information than other transform-based methods. The
reason is that the spatial domain method is a single-
scale fusion method. For example, in PCA method,
whichever the source images pixels are selected to
the result, the result would be focused in the right
area. However, for transform methods such as GP, and
FDCT, we can find some information in the right parts
(highlighted by red oval in Figs. 7(n) and 7(p), which
is lost by the fusion rules. From these results, we can
also clearly find that the results of the primary method
can retain almost all the focus information as well. The
reason is that the fusion rules of PCNN and SML can
effectively select the focus information from different
scales in FDCT domain and overcome the shortcoming
of the fusion rules in [32].

(b) For the middle area, the less information of difference
images is, the more information has been transferred
to the fused images and hence the better performance
the corresponding method is [35]. The results of the
spatial domain methods show the outline of the original
images. That is to say, these methods have lost the mid-
dle information of Fig. 7(b). This phenomenon appears
in GP-based method as well. Meanwhile, the results of
the DWT and FDCT methods lose a certain range of
information. However, we can find little information
from Figs. 7(s)-(u).

(c) For the left area, the more abundant the information of
difference images is, the better performance the result
is [35]. The results of the transform domain give the
detailed features such as the hairs as shown in the
Figs. 7(p)-(q),and 7(s)-(u). Conversely, the details of
Figs. 7(m) and 7(r) are relatively less.

Therefore, through the comparative analysis above, we can
find that the primary method is better than the DWT and
FDCT based methods. It is proven that the coefficient

selection methods proposed in this paper can overcome the
shortcoming of current methods and extract most focus infor-
mation from source images. The proposed algorithm and
MWGF are superior to other 7 methods since almost all of the
useful information of the source images has been transferred
to the fused images.
Objective Evaluation: In order to better evaluate the per-

formance of the proposed method, quantitative assessments
are then carried out. Table 2 depicts the comparison results
of different methods. It is easy to find that the RMSE value
of the proposed method is the smallest (3.2131) among the
compared methods. That is to say, compared with other
methods, the fused image from the proposed method is the
most close to the referenced image. Meanwhile, the RMSE
value of the primary method is the third smallest (4.3967),
which demonstrates that the coefficient selection method
proposed in this paper can extract more focus information
from source images tomake the fused imagemore close to the
referenced image and overcome the shortcoming of existing
methods. Compared with FDCT, NSCT-PCNN, SCBG and
MWGF methods, the RMSE values of the proposed method
are decreased by 27.90%, 28.24%, 62.51% and 15.11%,
respectively. In addition, the values of MI and QAB/F of the
proposed method also outperform other eight methods, as
shown in Table 2.

TABLE 2. Comparison on quantitative evaluations of different methods
for artificial multi-focus images.

From the above analysis, it is clearly to find that the
proposed method not only preserves the most characteristics
and information of the source images, but also improves the
definition and the spatial quality better than the existingmeth-
ods, which can be verified by the optimum values of objective
criteria. Meanwhile, the performance of the primary method
result is improved by the appropriate coefficient selection
method compared to the method in [32].

b: FUSION OF NATURAL MULTI-FOCUS IMAGES
The second experiment is conducted on 5 sets of non-
referenced multi-focus test images. These images are shown
in Fig. 8. The sizes of Fig. 8 (a)-(b) are 256 × 256, Fig. 8 (c)
are 640 × 480, Fig. 8 (d) are 480 × 360, Fig. 8 (e)
are 512 × 364. The comparison on quantitative evalua-
tion of different methods for natural multi-focus images is
shown in Table 3. The values of MI and QAB/F of the
proposed method results are all better than other methods.
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FIGURE 8. Natural multi-focus image database. (a) Cameraman images; (b) Clock images; (c) Desk images; (d) Leopard images;(e) Book images.

TABLE 3. Comparison on quantitative evaluations of different methods for natural multi-focus images.

TABLE 4. Comparison on quantitative evaluations of different methods
for misregistration multi-focus images.

Comparedwith the FDCT basedmethod, the values ofMI and
QAB/F of the proposed method are increased by 40.64% and
5.85%, respectively. From this analysis, we can also conclude
that the proposed method provides the best performance and
outperforms the other 7 algorithms.

2) CONDITIONAL TESTING
To test the robustness of proposed technique, we present
completed evaluations which consider three conditions:
(1) Misregistration: Some works may satisfy well for input
image with prefect registration. However, in case of image
misregistration, isolated local patches with significant details,
may also be selected during the fusion process. This leads

to undesirable effects in the fused image, for example, block
artifacts or spatial inconsistency. As well, misregistration
is often prevalent in some local regions within the set of
multi-focus images because of their different focal points or
object movement in VSN. Thus, the first conditional testing
is on a set of misregistration multi-focus images. (2) Noisy
environment: In VSN, the low-cost imaging sensors always
caused image with noise. Some techniques always select the
noise as the details for mistake. Thus, the second conditional
testing is on a set of multi-focus images with different noise
levels. (3) Conditional focus situations: In VSN, the shapes
and focus levels of multi-focus images are always affected by
the environment changed. This condition may influence the
fusion result, as well. Thus, the third conditional testing is on
two sets of multi-focus images with varied focus shapes and
levels.

a: FUSION OF MISREGISTRATION MULTI-FOCUS IMAGES
The experimental data and results are given in Fig. 9. The
sizes of Fig. 9 are 640×480. As shown in Figs. 9(a)-(b),
it is noticed that there is a slight shift of the student’s head
between the source images (marked by the red arrows).
As shown in Figs. 9(c)-(j), one can obviously find that the
fused image of the proposed method and MWGF are more
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FIGURE 9. The data and results of misregistration multi-focus images. (a-b) The experimental data: (a) the Lab image focused on background; (b) the Lab
image focused on foreground. (c-j) The fusion results of different methods: Fused by (c) PCA method; (d) GP based method; (e) DWT based method;
(f) FDCT based method; (g) NSCT-PCNN based method; (h) SCBG based method; (i) MWGF based method; (j) the proposed method.

FIGURE 10. Samples of multi-focus images in different level of noisy
environment. (a) 3%, (b) 7%, (c) 11%, (d) 15%.

natural than other methods in the region of the hair (high-
lighted by the red squares). Table 4 depicts the comparison on
MI andQAB/F of different methods. TheMI andQAB/F values
of the proposed method are 8.8424 and 0.7526, respectively.
Compared with FDCT, NSCT-PCNN, SCBG and MWGF
methods, the MI and QAB/F values of the proposed method
increase 29.59% and 6.71%, 13.81% and 6.01% , 3.07% and
29.67%, 8.84% and 0.14%, respectively. Therefore, we can
find that our proposed method is outperform other methods
when original images have misregistration.

b: FUSION OF IMAGES IN DIFFERENT LEVEL OF
NOISY ENVIRONMENT
To evaluate the noise-robustness of the proposed method, the
four groups of experiments are conducted on the artificial

multi-focus images as shown in Figs. 7(b)-(c), which are
additionally corrupted with different Gaussian noise, with a
standard deviation of 3%, 7%, 11%, and 15%, respectively
as shown in Fig. 10. Fig. 11 shows the fusion results of Lena
images with 7% noise for example.

A quantitative evaluation comparison of the different meth-
ods for Lena images with varied noise is shown in Fig. 12.
From Figs. 12(a)-(b), we can find that the MI and QAB/F val-
ues of the proposed method also outperform other methods.
That is to say, in different noise environments, the results of
the proposed method can get more useful information from
original images. From Fig. 12(c), the RMSE values of the
proposed method results are all the second lowest in the 8
methods. Although the RMSE of the proposed method is
a little higher than MWGF method, the values of MI and
QAB/F are obvious bigger. Through comprehensive analysis,
we can find that the proposed method can provide the best
performance in different noisy environments.

c: FUSION OF MULTI-FOCUS IMAGES WITH CONDITIONAL
FOCUS SITUATIONS
This experiment is conducted on multi-focus images with
varied focus shapes and levels.
Experiments on Multi-Focus Images With Varied Focus

Shapes: Fig. 13 shows the standard test image database
and the corresponding artificial multi-focus images with var-
ied focus shapes. We design three different focus shapes
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FIGURE 11. The example of the fusion of multi-focus images with 7% noise. (a1-a8) The fusion results of different methods: Fused by (a1) PCA method;
(a2) GP based method; (a3) DWT based method; (a4) FDCT based method; (a5) NSCT-PCNN based method; (a6) SCBG based method; (a7) MWGF based
method; (a8) the proposed method. (b1-b8) Transformation of pseudocolor on the difference images between the eight results and the top image
of Fig. 10(b).

FIGURE 12. Comparison on quantitative evaluations of different methods for multi-focus images in different noisy environments.

(including left-right focused, middle-two-sided focused and
center-around focused) into the standard images. Each class
including four image pairs as shown in Fig. 13. These images
are generated by convolving the test image with a 9×9 aver-
aging filter. The sizes of the test images are 512×512.

Fig. 14 shows the results of different methods of an exam-
ple of artificial multi-focus images with varied focus shapes,
and the corresponding difference images with pseudocolor.
From the difference images, it is clear to observe that the
FDCT basedmethod can extract more information from focus
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FIGURE 13. Dataset of multi-focus images with varied focus shapes. (a1)-(l1) Standard gray test images. (a2)-(d2) focus on right; (a3)-(d3) focus on left.
(e2)-(h2) focus on the two sides; (e3)-(h3) focus in the middle. (i2)-(l2) focus on the around; (i3)-(l3) focus on the center.

FIGURE 14. The example of the fusion of multi-focus images with varied focus shapes. (a1-a8) The fusion results of different methods: Fused by (a1) PCA
method; (a2) GP based method; (a3) DWT based method; (a4) FDCT based method; (a5) NSCT-PCNN based method; (a6) SCBG based method; (a7) MWGF
based method; (a8) the proposed method. (b1-b8) Transformation of pseudocolor on the difference images between the eight results and Fig. 13(i2).

TABLE 5. Execution time of different methods for Lena images.

region than GP and DWT based methods and the proposed
method can obtain better performance than FDCT (high-
lighted by the red ellipse area) and SCBG methods.

Fig. 15 shows the comparison on MI, QAB/F and RMSE of
different methods for varied focus shape images. Averagely,
comparing with FDCT, NSCT-PCNN, SCBG and MWGF
based methods, the RMSE values of the proposed method are
decreased by 32.56%, 40.81%, 78.97% and 62.16%, respec-
tively. From Fig. 15, it is seen that the result of the proposed
method is the most close to the standard images as its RMSE
value is the smallest. In addition, it is easy to find that for
12 sets of images, the MI, QAB/F and RMSE values of the
proposed method results outperform other fusion results.

Experiments on Multi-Focus Images With Varied Focus
Levels: Fig. 16 shows the traffic image and its corresponding
multi-focus images with varied focus levels. Fig. 17 shows
the results of different methods of the typical examples of the
fusion of traffic imageswith 7×7 averaging filter, and the cor-
responding difference images with pseudocolor. From the dif-
ference images, it is clear to see that the proposed method
can almost extract all of the focus area of source images and
outperform other fusion methods.

Fig. 18 shows the comparison on MI, QAB/F and RMSE
of different methods for traffic images with varied focus
level. As shown in Fig. 18, the MI, QAB/F and RMSE values
of the proposed method are all optimal except one QAB/F

value shown in Fig. 18(b). Although one QAB/F value of
the proposed method (with 3×3 averaging filter) is a little
smaller than PCA based method, the corresponding values of
RMSE and MI are obvious bigger than PCA based method.
Hence, from the overall assessments, we can conclude that
the proposed method is better than other fusion methods.

Finally, we compare the computational complexity of
the proposed method with the state-of-the-art methods.
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FIGURE 15. Comparison on quantitative evaluations of different methods for multi-focus images with varied focus shapes. L1-L4 represent the left-right
focus images showed in Figs. 13(a)-(d), respectively; M1-M4 represent the middle-two sides focus images showed in Figs. 13(e)-(h), respectively;
C1-C4 represent the center-around focus images showed in Figs. 13(i)-(l), respectively.

FIGURE 16. Multi-focus images with varied focus levels. (a) Standard traffic image; the multi-focus images are generated for
traffic image by convolving the test image with (b) 3×3, (c) 5×5, (d) 7×7, (e) 9×9, (f) 11×11 averaging filters. (top: focus on
the right; bottom: focus on the left)

A comparison of the execution time of FDCT, NSCT-PCNN
and SCBG based methods and the proposed method for the
Lena image sets is presented in Table 5. The execution time is
calculated by running all the codes on the same computer.

From Table 5, it can be seen that the NSCT-PCNN method
is time-consuming, and the computational complexity of
proposed and the FDCT-based method is lower than those
of the NSCT-PCNN and SCBG methods. Although the
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FIGURE 17. Fusion of multi-focus images with 7×7 averaging filter. (a1-a8) The fusion results of different methods: Fused by (a1) PCA method; (a2) GP
based method; (a3) DWT based method; (a4) FDCT based method; (a5) NSCT-PCNN based method; (a6) SCBG based method; (a7) MWGF based method;
(a8) the proposed method. (b1-b8) Transformation of pseudocolor on the difference images between the eight results and Fig. 16(d) (top image).

FIGURE 18. Comparison on quantitative evaluations of different methods for multi-focus images with varied focus level.

proposed method needs a little more execution time than the
FDCT method, the fusion performance including the above

qualitative and quantitative evaluations of our method have
been proved to be better than the FDCT method.
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V. CONCLUSION
In this paper, a FDCT based hybrid multi-focus image fusion
framework is presented. The potential advantages of the pro-
posed method include: (1) FDCT is more suitable for image
fusion in real-time applications because of merits of multi-
direction and fast properties; (2) The union fusion rules of
the PCNN and SML can be used to strengthen the effect
of FDCT; (3) Using the hybrid fusion procedure based on
the image difference and taking advantage of result of first
layer can not only reduce the computational complexity of
the method, but also increase the reliability and robustness
of the fusion results; (4) To evaluate the robustness of image
fusion techniques, extensive sets of multi-focus images,
including misregistration, noise error and conditional focus
images are designed for comprising existing fusion methods.
Various experiments can clearly prove the superior perfor-
mance of the proposed fusion framework. In addition, the
proposed method is more efficient than popular widely used
NSCT-PCNN and SCBG based methods, which means our
method is more suitable for VSN. The future work will
focus on extending the proposedmethod for colormulti-focus
images and other image fusion tasks such as visible-infrared
image fusion and multi-modal medical image fusion.

REFERENCES
[1] B. Yue, S. Wang, X. Liang, L. Jiao, and C. Xu, ‘‘Joint prior learning for

visual sensor network noisy image super-resolution,’’ Sensors, vol. 16,
no. 3, p. 288, 2016.

[2] Y. Charfi, N. Wakamiya, and M. Murata, ‘‘Challenging issues in visual
sensor networks,’’ IEEE Wireless Commun., vol. 16, no. 2, pp. 44–49,
Apr. 2009.

[3] J. Tian, L. Chen, L. Ma, and W. Yu, ‘‘Multi-focus image fusion using
a bilateral gradient-based sharpness criterion,’’ Opt. Commun., vol. 284,
no. 1, pp. 80–87, 2011.

[4] Y. A. V. Phamila and R. Amutha, ‘‘Discrete cosine transform based fusion
ofmulti-focus images for visual sensor networks,’’ Signal Process., vol. 95,
no. 2, pp. 161–170, 2014.

[5] Z. Chen and S. Muramatsu, ‘‘Multi-focus image fusion based on multiple
directional lots,’’ IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. E98.A, no. 11, pp. 2360–2365, 2015.

[6] Q. Zhang and M. D. Levine, ‘‘Robust multi-focus image fusion using
multi-task sparse representation and spatial context,’’ IEEE Trans. Image
Process., vol. 25, no. 5, pp. 2045–2058, May 2016.

[7] V. Aslantas, ‘‘A depth estimation algorithm with a single image,’’ Opt.
Exp., vol. 15, no. 8, pp. 5024–5029, 2007.

[8] Y. Liu, X. Chen, H. Peng, and Z. Wang, ‘‘Multi-focus image fusion with
a deep convolutional neural network,’’ Inf. Fusion, vol. 36, pp. 191–207,
Jul. 2017.

[9] Y. Yang, Y. Que, S. Huang, and P. Lin, ‘‘Multiple visual features mea-
surement with gradient domain guided filtering for multisensor image
fusion,’’ IEEE Trans. Instrum. Meas., vol. 66, no. 4, pp. 691–703,
Apr. 2017.

[10] E. Andreas, C. L. Pagliari, and E. A. B. da Silva, ‘‘Multiscale image fusion
using the undecimated wavelet transform with spectral factorization and
nonorthogonal filter banks,’’ IEEE Trans. Image Process., vol. 22, no. 3,
pp. 1005–1017, Mar. 2013.

[11] B. Yang and S. Li, ‘‘Multifocus image fusion and restoration with sparse
representation,’’ IEEE Trans. Instrum. Meas., vol. 59, no. 4, pp. 884–892,
Apr. 2010.

[12] M. Nejati, S. Samavi, and S. Shirani, ‘‘Multi-focus image fusion using
dictionary-based sparse representation,’’ Inf. Fusion, vol. 25, pp. 72–84,
Sep. 2015.

[13] J. Xiao, T. Liu, Y. Zhang, B. Zou, J. Lei, and Q. Li, ‘‘Multi-focus image
fusion based on depth extraction with inhomogeneous diffusion equation,’’
Signal Process., vol. 125, pp. 171–186, Aug. 2016.

[14] Q. Wang, Y. Shen, Y. Zhang, and J. Q. Zhang, ‘‘A quantitative method for
evaluating the performances of hyperspectral image fusion,’’ IEEE Trans.
Instrum. Meas., vol. 52, no. 4, pp. 1041–1047, Aug. 2003.

[15] V. Aslantas and R. Kurban, ‘‘Fusion of multi-focus images using differ-
ential evolution algorithm,’’ Expert Syst. Appl., vol. 37, pp. 8861–8870,
Dec. 2010.

[16] Y. Yang, D. S. Park, S. Huang, and N. Rao, ‘‘Medical image fusion via
an effective wavelet-based approach,’’ EURASIP J. Adv. Signal Process.,
vol. 2010, pp. 579341:1–579341:13, 2010.

[17] R. Singh and A. Khare, ‘‘Multiscale medical image fusion in wavelet
domain,’’ Sci. World J., vol. 2013, pp. 521034:1–521034:10, 2013.

[18] X. Bai,M. Liu, Z. Chen, P.Wang, andY. Zhang, ‘‘Multi-focus image fusion
through gradient-based decision map construction and mathematical mor-
phology,’’ IEEE Access, vol. 4, pp. 4749–4760, 2016.

[19] B. Aiazzi, L. Alparone, A. Barducci, S. Baronti, and I. Pippi, ‘‘Multi-
spectral fusion of multisensor image data by the generalized Laplacian
pyramid,’’ in Proc. IEEE Int. Conf. Geosci. Remote Sens. Symp., vol. 2.
Jun./Jul. 1999, pp. 1183–1185.

[20] V. S. Petrović and C. S. Xydeas, ‘‘Gradient-based multiresolution image
fusion,’’ IEEE Trans. Image Process., vol. 13, no. 2, pp. 228–237,
Feb. 2004.

[21] H. Li, B. S. Manjunath, and S. K. Mitra, ‘‘Multisensor image fusion using
the wavelet transform,’’ Graph. Models Image Process., vol. 57, no. 3,
pp. 235–245, 1995.

[22] L. Han, L. Shi, Y. Yang, and D. Song, ‘‘Thermal physical property-
based fusion of geostationary meteorological satellite visible and infrared
channel images,’’ Sensors, vol. 14, no. 6, pp. 10187–10202, 2014.

[23] Y. Yang, S. Tong, S. Huang, and P. Lin, ‘‘Dual-tree complex wavelet
transform and image block residual-based multi-focus image fusion in
visual sensor networks,’’ Sensors, vol. 14, no. 12, pp. 22408–22430, 2014.

[24] A. L. da Cunha, J. Zhou, and M. N. Do, ‘‘The nonsubsampled contourlet
transform: Theory, design, and applications,’’ IEEE Trans. Image Process.,
vol. 15, no. 10, pp. 3089–3101, Oct. 2006.

[25] X.-B. Qu, J.-W. Yan, H.-Z. Xiao, and Z.-Q. Zhu, ‘‘Image fusion algorithm
based on spatial frequency-motivated pulse coupled neural networks in
nonsubsampled contourlet transform domain,’’ Acta Autom. Sin., vol. 34,
no. 12, pp. 1508–1514, 2008.

[26] E. J. Candès and D. Donoho, ‘‘Curvelets: A surprisingly effective non-
adaptive representation for objects with edges,’’ in Curves and Surfaces,
C. Rabut, A. Cohen, and L. L. Schumaker, Eds. Nashville, TN, USA:
Vanderbilt Univ. Press, 2000.

[27] E. J. Candès and D. Donoho, ‘‘Recovering edges in ill-posed inverse
problems: Optimality of curvelet frames,’’ Ann. Statist., vol. 30, no. 3,
pp. 784–842, 2002.

[28] E. J. Candès, L. Demanet, D. Donoho, and X. Ying, ‘‘Fast discrete
curvelet transforms,’’Multiscale Model. Simul., vol. 5, no. 3, pp. 861–899,
Sep. 2006.

[29] C. Amiot, C. Girard, J. Chanussot, J. Pescatore, and M. Desvignes,
‘‘Curvelet based contrast enhancement in fluoroscopic sequences,’’ IEEE
Trans. Med. Imag., vol. 34, no. 1, pp. 137–147, Jan. 2015.

[30] Y. Alaudah and G. AlRegib, ‘‘A curvelet-based distance measure for seis-
mic images,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015,
pp. 4200–4204.

[31] S. Elaiwat, M. Bennamoun, F. Boussaid, and A. El-Sallam, ‘‘3-D face
recognition using curvelet local features,’’ IEEE Signal Process. Lett.,
vol. 21, no. 2, pp. 172–175, Feb. 2014.

[32] H. Li, L. Guo, and H. Liu, ‘‘Research on image fusion based on the second
generation curvelet transform,’’ Acta Opt. Sin., vol. 26, no. 5, pp. 657–662,
2006.

[33] S. Li and B. Yang, ‘‘Multifocus image fusion by combining curvelet and
wavelet transform,’’ Pattern Recognit. Lett., vol. 29, no. 9, pp. 1295–1301,
2008.

[34] R. Eckhorn, H. J. Reitboeck, M. Arndt, and P. Dicke, ‘‘Feature linking via
synchronization among distributed assemblies: Simulations of results from
cat visual cortex,’’ Neural Comput., vol. 2, no. 3, pp. 293–307, 1990.

[35] H. Li, Y. Chai, and Z. Li, ‘‘Multi-focus image fusion based on nonsub-
sampled contourlet transform and focused regions detection,’’Optik-Int. J.
Light Electron Opt., vol. 124, no. 1, pp. 40–51, 2013.

[36] Z. Baohua, L. Xiaoqi, and J. Weitao, ‘‘A multi-focus image fusion algo-
rithm based on an improved dual-channel PCNN inNSCT domain,’’Optik-
Int. J. Light Electron Opt., vol. 124, no. 20, pp. 4104–4109, 2013.

[37] Z. Wang, Y. Ma, F. Cheng, and L. Yang, ‘‘Review of pulse-coupled neural
networks,’’ Image Vis. Comput., vol. 28, no. 1, pp. 5–13, 2010.

14912 VOLUME 5, 2017



Y. Yang et al.: Hybrid Method for Multi-Focus Image Fusion Based on Fast Discrete Curvelet Transform

[38] T. Lindblad and J. M. Kinser, Image Processing using Pulse-Coupled
Neural Networks: Applications in Python. London, U.K.: Springer-Verlag,
1998.

[39] Z. Wang, Y. Ma, and J. Gu, ‘‘Multi-focus image fusion using PCNN,’’
Pattern Recognit., vol. 43, no. 6, pp. 2003–2016, 2010.

[40] Y. Chai, H. F. Li, and J. F. Qu, ‘‘Image fusion scheme using a novel
dual-channel PCNN in lifting stationary wavelet domain,’’ Opt. Commun.,
vol. 283, no. 19, pp. 3591–3602, 2010.

[41] Y. Chai, H. F. Li, and M. Y. Guo, ‘‘Multifocus image fusion scheme based
on features of multiscale products and PCNN in lifting stationary wavelet
domain,’’ Opt. Commun., vol. 284, no. 5, pp. 1146–1158, 2011.

[42] W. Huang and Z. Jing, ‘‘Evaluation of focus measures in multi-focus image
fusion,’’ Pattern Recognit. Lett., vol. 28, no. 4, pp. 493–500, 2007.

[43] S. K. Nayar and Y. Nakagawa, ‘‘Shape from focus,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, no. 8, pp. 824–831, Aug. 1994.

[44] X.-B. Qu, J.-W. Yan, and G.-D. Yang, ‘‘Multifocus image fusion method
of sharp frequency localized contourlet transform domain based on sum-
modified-laplacian,’’ Opt. Precision Eng., vol. 17, no. 5, pp. 1203–1212,
2009.

[45] Y. Chai, H. Li, and X. Zhang, ‘‘Multifocus image fusion based on features
contrast of multiscale products in nonsubsampled contourlet transform
domain,’’ Optik-Int. J. Light Electron Opt., vol. 123, no. 7, pp. 569–581,
2012.

[46] X. Y. Luo, J. Zhang, and Q. H. Dai, ‘‘Saliency-based geometry measure-
ment for image fusion performance,’’ IEEE Trans. Instrum. Meas., vol. 61,
no. 4, pp. 1130–1132, Apr. 2012.

[47] G. Bhatnagar, Q. M. J. Wu, and Z. Liu, ‘‘Directive contrast based multi-
modal medical image fusion in NSCT domain,’’ IEEE Trans. Multimedia,
vol. 15, no. 5, pp. 1014–1024, Aug. 2013.

[48] Y. Yang,W.Wan, S. Huang, F. Yuan, S. Yang, andY.Que, ‘‘Remote sensing
image fusion based on adaptive ihs and multiscale guided filter,’’ IEEE
Access, vol. 4, pp. 4573–4582, 2016.

[49] B. Yang and S. Li, ‘‘Pixel-level image fusion with simultaneous orthogonal
matching pursuit,’’ Inf. Fusion, vol. 13, no. 1, pp. 10–19, 2012.

[50] C. S. Xydeas and V. Petrović, ‘‘Objective image fusion performance mea-
sure,’’ Electron. Lett., vol. 36, no. 4, pp. 308–309, 2000.

[51] Z. Zhou, S. Li, and B. Wang, ‘‘Multi-scale weighted gradient-based fusion
for multi-focus images,’’ Inf. Fusion, vol. 20, pp. 60–72, Nov. 2014.

[52] S. Li, B. Yang, and J. Hu, ‘‘Performance comparison of different multi-
resolution transforms for image fusion,’’ Inf. Fusion, vol. 12, pp. 74–84,
Apr. 2011.

YONG YANG (M’13–SM’16) received the Ph.D.
degree in biomedical engineering from Xi’an Jiao-
tong University, Xi’an, China, in 2005. From 2009
to 2010, he was a Post-Doctoral Research Fellow
with Chonbuk National University, Jeonju, South
Korea. He is currently a Full Professor and the
Vice Dean of the School of Information Technol-
ogy, Jiangxi University of Finance and Economics,
Nanchang, China. His current research interests
include image fusion and segmentation, medical

image processing and analysis, and pattern recognition. He received the title
of Jiangxi Province Young Scientist in 2012.

SONG TONG (S’16) received the M.E. degrees
in logistics engineering from the JiangXi Uni-
versity of Finance and Economics, Nanchang,
China, in 2014. He is currently pursuing the Ph.D.
degree from the Department of Intelligence Sci-
ence and Technology, Kyoto University, Japan.
His current research interests include human per-
ception, cognition, computer vision, and cognitive
neuroscience.

SHUYING HUANG (M’14) received the Ph.D.
degree in computer application technology from
the Ocean University of China, Qingdao, China, in
2013. She is currently an Associate Professor with
the School of Software and Communication Engi-
neering, Jiangxi University of Finance and Eco-
nomics, Nanchang, China. Her current research
interests include image and signal processing, and
pattern recognition.

PAN LIN (M’16) received the Ph.D. degree
in biomedical engineering from Xi’an Jiaotong
University, Xi’an, China, in 2005. From 2007 to
2011, he was a Post-Doctoral Researcher with
the Center for Mind/Brain Sciences, University
of Trento, Italy. From 2013 to 2014, he was a
Research Fellow with Mclean Hospital, Harvard
Medical School, Boston, MA, USA. Since 2011,
he has been an Associate Professor with the Insti-
tute of Biomedical Engineering, Xi’an Jiaotong

University. His current research interests include multimodal MRI imaging,
medical image processing, image processing, and pattern recognition.

YUMING FANG (M’13) received the B.E.
degree from Sichuan University, Chengdu, China,
the M.S. degree from the Beijing University
of Technology, Beijing, China, and the Ph.D.
degree from Nanyang Technological University,
Singapore. He is currently a Professor with the
School of Information Technology, Jiangxi Uni-
versity of Finance and Economics, Nanchang,
China. He has authored or co-authored over
90 academic papers in international journals and

conferences in the areas of multimedia processing. His research interests
include visual attention modeling, visual quality assessment, image retar-
geting, computer vision, and 3-D image/video processing. He serves as an
Associate Editor of the IEEE ACCESS and is on the Editorial Board of Signal
Processing: Image Communication.

VOLUME 5, 2017 14913


