IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON BIG DATA ANALYTICS IN INTERNET OF

THINGS AND CYBER-PHYSICAL SYSTEMS

Received March 28, 2017, accepted May 15, 2017, date of publication May 19, 2017, date of current version June 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2706943

A Branch History Directed Heuristic Search for
Effective Binary Level Dynamic

Symbolic Execution

YAN HU', WEIQIANG KONG!, YIZHI RENZ2,

AND KIM-KWANG RAYMOND CHOO?, (Senior Member, IEEE)

ISchool of Software, Dalian University of Technology, Dalian 116023, China
2School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China

3Department of Information Systems and Cyber Security, The University of Texas at San Antonio, San Antonio, TX 78249-0631, USA

Corresponding author: Kim-Kwang Raymond Choo (raymond.choo @fulbrightmail.org)

This work was supported by the National Natural Science Foundation of China under Grant 61300017 and Grant 61572097.

ABSTRACT Heuristic search is an important part of modern dynamic symbolic execution (DSE) tools, as
heuristic search can be used to effectively explore the large program input space. Searching task remains
one of several research challenges due to the fact that the input space grows exponentially with the increase
of program size, and different programs may have very different structures. The challenge is compounded
in a cyber-physical system or cloud-based Internet of Things environment. In this paper, we propose a
novel heuristic search algorithm, which analyzes the program execution history and uses the refined history
information to inform the search. This paper is based on the observation that the branch and input history
generated during dynamic symbolic execution can help memorize the explored input space, and infer the
partial structure of the program. With a summarized branch history, the proposed heuristic search makes
informed (and better) decisions about which input area to search next for better efficiency. To evaluate
the search algorithm, we implement the core DSE engine, integrated with modules to perform execution
history collection and analysis. To make our method practical, we incorporate taint analysis and constraint
solving statistics to guide the search algorithm. Experimental results demonstrate that with the rich history
information, the new search algorithm can explore the input space more effectively, thus resulting in detecting
software defects faster.

INDEX TERMS Dynamic symbolic execution, branch history, test case generation, heuristic search, cyber-

physical system.

I. INTRODUCTION
Automated test case generation is an important technique in
software testing. As software systems become increasingly
complex (e.g. due to the need for more functionality and
features), it is challenging in practice to manually and com-
prehensively test the software. Testing automation is one
solution to dealing with the challenges in testing of large
complex software, such as those deployed in cyber-physical
systems and cloud-based Internet of Things environment
(also referred to as Cloud of Things [1], [2]). Random testing
and structural testing are two typical ways of automated
testing, which have been extensively studied by the software
engineering community.

Random testing [3]—[5] has been used in automatic unit test
generation, and proven to be rather effective in generating unit

test cases. In random testing, random inputs are generated and
given as input to the program under test in order to achieve
good coverage. A limitation of random testing is that it has
no knowledge of the program’s inner structure, and may not
be able to generate high coverage test cases.

Structural testing differs from random testing. As program
structures are important for testing [6] and security analy-
sis [7], [8], program structures are taken into consideration
during the test case generation process in structural testing.
The program control flow or data flow is observed, and
used to guide the generation of test inputs to explore dif-
ferent program paths. Dynamic symbolic execution (DSE)
is a typical structural testing technique. A DSE procedure
steers program execution path by manipulating and solving
symbolic path constraints. Therefore, DSE tools are able to

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

8752 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 5, 2017

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

IEEE Access

understand the program structure, and perform better struc-
tural testing. The studies in [6] and [9] demonstrated that DSE
can be rather effective, and scale to very large software code
base.

Software testing using dynamic symbolic execution has
been extensively explored in the literature [9]-[15]. For
example, the approach in [9] works by transforming source
code into bitcode [16], and performing dynamic symbolic
execution on the bitcode. CREST [17] relies on source
code instrumentation to retrieve branch conditions, and then
manipulates the path conditions to generate new inputs. Other
than DSE with source code transformation, researchers have
also attempted to apply dynamic symbolic execution directly
on binary code. By working directly at the binary level, the
complexity of manipulating source code is avoided. Binary
level analysis can be especially useful for security analy-
sis [18]. SAGE [12] and EXE [13] are two well known binary
level symbolic executors. Although binary level dynamic
symbolic execution tools are currently very popular in soft-
ware testing area, few of them are publicly available, with
Fuzzgrind [19] as an exception. Fuzzgrind is an open source
tool, based on Valgrind [20], the widely known Dynamic
Binary Instrumentation (DBI) tool. It is based on a dynamic
symbolic execution engine, and is able to generate exploits for
bugs in real-life applications. A depth-first search algorithm
is implemented in Fuzzgrind, and used in the process of input
space exploration.

During our preliminary evaluation of the original
Fuzzgrind, we determined that it suffers from repeated
constraint solving, and duplicate inputs; thus, rendering Fuz-
zgrind inefficient. In this work, we build our own Valgrind-
based dynamic symbolic executor (hereafter referred to
as DigEXE — Directed Input Generation with EXEcution
feedback). The enhancement we made in DigEXE is an
execution feedback component, which manages the execution
history collected during the symbolic execution process.
Based on DigEXE, we propose our new branch-history
guided search heuristics. Specifically, we regard the contri-
butions of this paper to be as follows:

1) We propose a branch history guided heuristic search.
We maintain the input pool and branch history during
the symbolic execution process. With the execution
history, we can prevent duplicate constraint solving,
and filter out duplicate inputs. The history information
is also used to prioritize the inputs in the input pool,
deciding which input is the best to be selected as seed
in the next round of input generation.

2) We design the DigEXE symbolic execution frame-
work, and integrate the new heuristic search algorithm.
As DigEXE is based on dynamic binary instrumen-
tation technique, it can perform symbolic execution
directly on compiled binary programs.

We then evaluate the branch history directed heuristic
search by analyzing real-world software projects with our
DigEXE implementation. The experimental results demon-
strate the effectiveness of the proposed search algorithm.

VOLUME 5, 2017

In the next section, we describe the preliminaries necessary
to understand the remainder of this paper.

Il. PRELIMINARIES

Program execution history is regarded as a source of feedback
in this paper. It can be carefully analyzed, and used to guide
the search process in automated test input generation. In this
section, we define the relevant notations, and explain the
concept of “execution feedback™.

We start from the most direct source of execution feedback,
namely: program trace (Definition 1). Each program run
generates a program trace, which is a sequence of operations.
The sequence of operations represents the program execution
under a certain input.

Definition 1 (Program Trace): A program trace is defined
as T =< 01,03, ...,0, >, Where o; is a program operation,
(I=i=mn.

A program trace is generated after each monitored run of
the test program. Definition 1 gives a generic definition of
program trace. In reality, program traces could be at different
abstract levels. At the finest granularity, a program trace can
contain details of every instruction level operation. A pro-
gram trace can also be as simple as an API call sequence.

Program traces are produced to help understand the run-
time behavior of a program under test. Dynamic program ana-
lyzers rely on program traces to construct a concrete vision
of the program behavior. Different program traces are used
in different analyzers. Light-weight analyzers use program
traces at a higher abstract level, which is not very precise
but is less costly. Analyzers of high precision use low level
program trace, which incurs additional cost in order to obtain
more detailed and precise program trace.

In practice, monitor codes are inserted into the program
to monitor program behavior, and generate program traces.
They are actually some control code at interesting program
locations. The insertion of monitor code is normally done
by program instrumentation, which is a common practice in
program analysis and software testing. The form of monitor
code is decided by the purpose of the analysis. For example,
if we wish to perform a basic block coverage analysis, moni-
toring code should be inserted at the basic blocks. If we wish
to perform deeper analysis, we may want to insert additional
code at each instruction, and monitor all the execution details
of each instruction.

If the analyzer requires analysis of detailed memory oper-
ations in the test program, then we should add monitor code
at memory access locations. During program execution, the
monitor code collects information about the address of the
accessed memory, the type of memory access (read or write),
and the location of the memory access in the program code.
The memory monitor can then log memory accesses, and per-
form further analysis on the collected memory accessing data
as a whole. Even a small program may have many memory
accesses. Therefore, it is very costly to observe every memory
access during program execution. Hence, data flow analysis
should be applied so that memory tracers could record only

8753

IEEE Access

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

those memory locations that are actually influenced by pro-
gram input. This is presented in more detail in Section V.

In order to identify each element in a program trace, we
explicitly define another notation: Program Location (see
Definition 2).

Definition 2 (Program Location): A program location is a
position in the test program.

A program location can be a tag to distinguish one program
operation from another. If source level information can be
obtained by the analyzer, then we may use line number in
a source file to mark a program location. When the analysis
is performed on program binaries without debugging infor-
mation, a specific program location can be identified by the
corresponding stack trace. Information of program location
is an important part of the history information, which will be
used to select appropriate path conditions to invert during the
dynamic symbolic execution process.

Program input(Definition 3) must be supplied to run the
test program.

Definition 3 (Program Input): A program input tuple is
input = < byteArray, state, sig, parent, depth >, where
byteArray is the actual input data, each input has a state, and
a signature sig.

In practice, input data can have different forms, like strings
from command line, environment variables, or binary stream
from a file. For simplicity, we take the program input as
a finite length sequence of byte data byteArray, stored in
an input file. Each input is given a state to indicate its
different usage during our history guided dynamic symbolic
execution process (to be explained in subsection III-B). After
program execution with the given input, a valid signature (see
Definition 4) will be generated and assigned to the input
structure as sig. If the input has a valid parent value, then
it means that the input is generated by inverting the path of
parent input at depth.

Definition 4 (Input Signature): An input signature is a
path prefix, Psig =< B, V,size >, where B is the vector
of branches in the path, V is the vector of Boolean values
indicating whether true or false branch is taken. size is an
integer representing the length of the input signature.

In our DigEXE tool, the input signature is used as a tag for
a specific program input. The signature is constructed from
the program trace after the program has been executed with
a given input. DigEXE use the input signatures to prioritize
and filter inputs in the input pool.

In the next section, we describe our proposed approach.

lIl. OUR PROPOSED APPROACH
The focus of our work in this paper is to design a method to
effectively monitor the dynamic symbolic execution process,
collect and process program traces into specific form of
feedback information, which is then used by the new search
algorithm to guide the search process.

Our approach is based on dynamic symbolic execution ,
which generally contains three major steps, namely:

8754

1) Prepare the initial input, and place the new input in the
list of input candidates.

2) Select one input from the candidates, execute it. If a
bug manifests in the execution or the stop criteria of
the search algorithm is met, then exit; otherwise, go to
the next step.

3) For each path depth, invert the corresponding branch
condition, solve the newly generated path constraints,
generate a new input and place it into the queue of input
candidates. Return to step 2.

We implement the dynamic symbolic execution engine in

our DigEXE framework. The search algorithm is integrated
with the input selection in step 2.

Initial Input

Execute and Observe <€

Path Data Branch Histroy

Generate Path Constraints Select Next Input

A

Y

generate new inputs

FIGURE 1. Workflow of DigEXE.

A. THE WORKFLOW OF DigEXE
The workflow of the branch history directed dynamic sym-
bolic execution process is illustrated in Fig. 1.

In the “Execute and Observe” component, an execution
monitor observes each program run, and records the program
trace with configured granularity. We use several monitors to
generate different types of program traces to meet the require-
ments of different analysis purposes. The execution monitor
can be injected into the test program with static or dynamic
instrumentation technique. Since DigEXE is designed to
work on unmodified binaries, we use dynamic instrumenta-
tion to inject the monitor code at appropriate program loca-
tions. The main advantage of dynamic instrumentation is that
we can do unobtrusive analysis of the program, and focus on
the designing of search strategies to explore the input space
of test programs.

A trace analyzer will process the generated program traces,
mainly to collect the conditional path information. We then
update the branch history with the information of each branch
in the recorded program path.

The “Generate Path Constraints” component is respon-
sible for producing path constraints from the collected pro-
gram trace. Path constraints are processed into the form of

VOLUME 5, 2017

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

IEEE Access

constraint solver queries. Next in the “Generate new inputs”
phase, the constraint query is used as a blueprint to generate
new queries that can lead to new inputs. The constraint query
is mutated at specific path depth, following the dynamic
symbolic execution principle.

New inputs generated are put into the candidate input
queue. The “Select Next Input” phase will select one input
from those candidates, execute it, and search its neighbor-
hood for more new inputs. The expanded inputs are usually
discarded in a standard dynamic symbolic execution imple-
mentation. In DigEXE, we still record the input data, and its
path signature, to help filter out duplicate inputs in the input
history. The expanded inputs information is also used to avoid
repeated flipping of a branching condition at the same input
depth of similar inputs.

The heuristic search algorithms play an important role in
the dynamic symbolic execution process. Starting from an
initial input, each input is executed and expanded, generating
several NEW inputs accordingly. Those NEW inputs are
called children of the EXPANDED input. The number of
child inputs depends on the length of execution path.

The inputs naturally form a tree structure. For real world
applications, the input tree can be very large. Exploring the
complete program space represented by the input tree is
impractical. However, heuristic search algorithms can help us
explore the most valuable / useful subspaces.

B. MAINTENANCE OF EXECUTION HISTORY

The search algorithm proposed in this paper uses the execu-
tion history to guide its search procedure. It keeps track of
two types of feedback information, namely: branch history,
and input repository.

The input repository remembers all the different inputs
generated. The execution of each DigEXE phase can affect
the state of a program input. Throughout the DigEXE exe-
cution loop, each program input may undergo several state
changes. The input repository is responsible for maintaining
the life cycle of program inputs, tracking and updating their
states.

In DigEXE, program inputs may be in any of the fol-
lowing states, namely: (1) NEW; (2) COV-ANALYZED;
(3) EXECUTED; (4) EXPANDED.

A program input is in the NEW state, when it has just been
constructed. In the NEW input, input variables are assigned
with meaningful initial values. The initial values could be
generated randomly (for the initial input), or obtained from
the solutions of the constraint solver.

DigEXE uses a light-weight profiler to generate coverage
data. With light-weight coverage monitors, the test program
executes with a given program input, and generates coverage
information. After that, the state of the program input changes
from NEW to COV-GENERATED. The state transfer process
is shown in Fig. 2. The coverage information is used as one
factor when selecting the next input to be expanded.

We rely on a heavy-weight execution monitor to generate
detailed memory traces. After the heavy-weight analysis,

VOLUME 5, 2017

COV-ANALYZED

A

NEW »| EXECUTED

EXPANDED

Y

FIGURE 2. Input state transfer diagram.

a program trace is generated. We then update the state of the
input to EXECUTED. The detailed program trace contains all
program operations of interest, including memory accesses.

The state of the input transfer from EXECUTED to
EXPANDED, after the DSE procedure has tried every
possible branch inversion. With the detailed program trace
associated with an EXECUTED input, DigEXE can then flip
one of the path conditions, build a query for constraint solver,
and solve the query to generate new inputs. After our DSE
tool tried all possible flippings of path conditions, the state of
the input is changed to EXPANDED.

Based on the input repository, we also calculate impor-
tant accumulative information, namely: (1) branch statistics;
(2) program location statistics. We extract branch information
from an EXECUTED input, and update the branch coverage
count, branch flipping counts. Those information is kept in a
separate branch history.

IV. DESIGN OF SEARCH STRATEGIES

In this section, we describe the search strategies in our
DigEXE framework presented in the preceding section, and
explain how we use program execution history to guide
the search process. We revisit the baseline search algorithm
(DFS algorithm), before presenting our new history directed
search algorithm.

A. DFS ALGORITHM
The DFS algorithm (see Algorithm 1) is the same as the one
implemented in Fuzzgrind [19].

In Algorithm 1, an initial input is first created with a
random input seed file (line 1). A memory tracer is then
created (line 2) to generate detailed program traces (see
Definition 1) required by the dynamic symbolic execution.
The memory tracer is executed to generate a program trace for
the selected input (line 7). It is a Valgrind plugin that follows
the program execution path, recording memory accesses and
path conditions. The trace is then expanded in the for loop
(lines 8-12), following the standard dynamic symbolic execu-
tion procedure. The invertAndSolve procedure(line 9) is the
core part, which inverts a branch condition at certain depth
in the path and solves the resulting new path condition to
generate new inputs. After completing the expansion iteration
of one input, several new inputs are generated and inserted
into the input queue. The updated input queue is then sorted
in decreasing order of the invert depth of each input’s parent
input (line 13), and the new input at the head of input queue
is chosen as the next candidate for input expansion (line 6).

The Fuzzgrind tool implements Algorithm 1 as the main
search algorithm. This DFS algorithm may create duplicates

8755

IEEE Access

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

Algorithm 1 DFS Search Algorithm

Algorithm 2 DFS-i Search Algorithm

Input: initialFile = the input seed file for the input
search process
input = new Input(intialFile) ;
memTracer = new MemoryTracer();
inputQueue.append(input);
looplter = 0;
while not allBranchCovered do
input = inputQueue.popFront();
memTracer .exec(input);
for depth = 0; depth < pathLen(input) do
newlnput = invertAndSolve(input, depth);
if newInput != NULL then
inputQueue.append(newlnput);
L write the content of newlnput into input file;

[R 7 I NV SR

T =
N = O

13 sortByDepth(inputQueue);

14 looplter = looplter + 1;

15 if looplter < MAX _LOOP then
16 L break;

in the input queue, which relies on the input signature to
filter out duplicate inputs. In this case, we first attempt to
improve the DFS search process with the input repository as
the execution feedback. We name the enhanced DFS search
algorithm DFS-i (The “i” means “input”).

The DFS-i algorithm is described in Algorithm 2. DFS-i
keeps all the expanded inputs in a separate queue. Before
an input is placed in the queue of the expanded inputs,
DFS-i checks its input signature against those already in the
queue, and only adds it to the expanded queue when there is
no input with the same signature in the queue.

In DFS-i, when we attempt to invert an input (line 11),
we first check that the inversion has not been tried before,
by calling match(input, elnput, depth) for each elnput in the
expanded queue (lines 13-15). The match procedure checks
if input.sig and elnput.parent.sig have the same prefix with
length depth. In this way, DFS-i avoid repeated solving of
the same inverted path condition. When an input has been
fully expanded, and if its signature is different from all the
signatures of inputs in expandedInputQueue, then we add it
to the expandedInputQueue (lines 24-25).

Considering the performance of DSE tool, we use fast
but not very accurate taint analysis. In this case, the path
condition supplied to the DSE tool may be incomplete, and
the DFS algorithm may generate duplicate inputs. As the
DFS-i algorithm eliminates the possibility of duplicate inputs,
it is clear that the DFS-i algorithm is more efficient than the
DEFS algorithm.

B. BHHS - BRANCH HISTORY BASED HEURISTIC SEARCH
We now present the new heuristic search BHHS (see
Algorithm 3), which uses both input repository and branch
history as the guidance information.

8756

1 input = new Input(intialFile) ;

2 memTracer = new MemoryTracer();

3 newlnputQueue.append(input);

4 expandedInputQueue = { };

5 looplter = 0;

6 while not allBranchCovered do

7 input = newInputQueue.popFront();

8 memTracer.exec(input);,

9 path = memTrace.getProgramPath(input);
10 for depth = 0; depth < len(path) do

11 expandCandidate = invert(path, depth);
12 isExpanded = false;

13 for elnput in expandedInputQueue do
14 if match(input, elnput, depth) then
15 L isExpanded = true;

16 if /isExpanded then

17 newlnput = solve(input, depth);
18 if newlnput == NULL then

19 L continue;
20 newlnput .parent = input;
21 newlnput .invertDepth = depth;
22 newlnputQueue.append(newlnput);
23 sortByDepth(inputQueue);
24 if lexpandedInputQueue.hasMatch(input .sig) then
25 L expandedInputQueue.append(input);
26 looplter = looplter + 1;
27 if looplter < MAX_LOOP then
28 L break;

In our BHHS algorithm, we establish the mapping between
program inputs and branch information. The map biMap is
initialized at line 6. A memory tracer is still required to
monitor the program execution and generate detailed program
traces containing memory accesses. The tracer MemTracer is
initialized at line 7 in BHHS.

The executed input is expanded by trying to invert branch
condition at each depth in the program path. Each newly
generated input is going to be added to the new input queue,
waiting to be selected for execution and expansion.

Before actually solving the inverted path, the expand-
Candidate is checked against the expandedInputQueue
(lines 16-18). If the expandCandidate (line 14) does not
match any signature of any expanded inputs in expanded-
InputQueue, then we start solving the inverted query (line 20).
If the constraint solving is not successful, then the variable
newlnput is set to NULL. This case is handled in lines 21-22.
If the constraint solving successfully emits a valid newInput,
then we associate the newInput with the inverted branch by
adding the newInput into the biMap (lines 29-31), and update
the branch inversion count (line 31). After the current input

VOLUME 5, 2017

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

IEEE Access

Algorithm 3 BHHS Heuristic Search

1 input = new Input(intialFile);
2 covTracer = new CoverageTracer();
3 covTracer.exec (input);
4 covTracer updateBranchHistory();
5 input.state = COV-ANALYZED;
6 biMap = new BranchInputMap();
7 memTracer = new MemoryTracer();
8 expandedQueue = { };
9 while frue do
10 memTracer.exec(input);,
11 input .state = EXECUTED;
12 path = memTrace.getProgramPath(input);
13 for depth = 0; depth < len(path) do
14 expandCandidate = invert(path, depth);
15 isExpanded = false;
16 for elnput in expandedInputQueue do
17 if match(input, elnput, depth) then
18 | isExpanded = true;
19 if /isExpanded then
20 newlnput = solve(input, depth);
21 if newlnput == NULL then
22 L continue;
23 covTracer.exec (newlnput);
24 covTracer.updateBranchHistory();
25 newlnput.state = COV-ANALYZED;
26 newInput.parent = input;
27 newInput.parentInvertDepth = depth;
28 lastInvertedBranch = input.path[depth];
29 inputs =
biMap[lastlnvertedBranch].invertedInputs;
30 inputs.insert(newInput);
31 biMap[lastlnvertedBranch].invertedTimes++;
32 expandedInputQueue.insert(input);
33 if stopCriteriaMet () == true then
34 L break;
35 branch = getBestBranch(biMap);
36 newlInputs = biMap[branch].invertedInputs;
37 sortedInputs = sortByInvertDepth(newInputs);
38 input = getFirst(sortedInputs);
39 biMap[branch].remove(input);

is fully expanded, it is inserted into expandedInputQueue
(line 32).

When a NEW input is created, BHHS uses a light-weight
coverage analyzer covTracer to analyze the branch coverage
information, and incrementally updates the branch history
(covTracer.updateBranchHistory(), as in line 4 and line 24).

When BHHS starts the next input selection, it first chooses
the most appropriate branch by its own standard (line 35).

VOLUME 5, 2017

In the current implementation, we choose the newly covered
branch as the best branch candidate. If there is no newly
covered branche, then we choose the branch with the least
inversion count (minimal biMap[branch].invertedTimes).
With the selected branch, BHHS then choose one input with
the largest invert depth as the next input to be executed and
expanded (lines 36-39).

V. IMPLEMENTATION
In this section, we briefly describe the implementation of
BHHS algorithm on our DigEXE framework.

A. DYNAMIC BINARY INSTRUMENTATION

The execution monitor of DigEXE is implemented as the
plugin of Valgrind [20]. Valgrind is a popular dynamic binary
instrumentation (DBI) tool. DBI tools are widely used in
program analysis, software profiling, testing, and computer
security research. Valgrind, Dynamorio [21] and PIN [22] are
three most popular DBI tools, which act as the basic program
analysis platform. With their plugin system, it is easy to build
customized dynamic binary analysis tools such as program
property checkers or profilers.

We implement the light-weight coverage analysis plugin to
collect coverage statistics. The coverage monitoring checks
only at the basic block level, with less runtime overhead than
the heavy-weight memory access monitor.

As DigEXE is built upon Valgrind, it is able to analyze
binary program without the need for modification.

B. SYMBOLIC EXECUTION

Our work in this paper is based on symbolic execution [11],
which is an effective program analysis technique. It is widely
used in the area of program verification, and software testing.
Static symbolic execution is widely used in verification of
program properties, while dynamic symbolic execution is
more suited for software testing.

The input generation procedure of our DigEXE tool
uses dynamic symbolic execution. It uses STP constraint
solver [23] to solve path constraints. A heavy-weight memory
access monitor captures detailed program traces, and con-
structs STP solver queries.

Path explosion is the main challenge of applying sym-
bolic execution to real world software. When program size
increases, we will see an exponential increase in program
paths. Therefore, generating inputs to cover all those paths
is impossible. Heuristic search is integrated into dynamic
symbolic symbolic execution tools to alleviate the problem.
In DigEXE, We implemented search algorithms, trying to
help generate high quality test cases within reasonable time.

C. TAINT ANALYSIS IN DigEXE

We can track the whole data flow of the test program, and
obtain a precise view of the program behavior. However,
if we do so, we will have to use heavy-weight execution
observer, whose execution is time consuming. In this case,
a very lengthy program trace will be generated, and require

8757

IEEE Access

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

more time to process the trace and retrieve useful information.
In practice, it is unnecessary to record detailed behavior of
each instruction.

When exploring the input space using the DSE technique,
we are more interested in memory variables that depend on
the input data which may affect branching conditions. Taint
analysis is a good choice to handle such situation.

Taint analysis [24], [25] is a dataflow analysis technique
that is commonly used in computer security research. The
main purpose of taint analysis is to detect malicious infor-
mation flow that can cause the leakage of confidential data in
a security-sensitive program.

Taint analysis tool tracks the def-use chain initiated by
tainted variables. It can be considered a testing method, which
observes and checks the program information flow rather
than verifying the non-interference property. Taint analysis
is somewhat similar to program dependence analysis in pro-
gram slicing.

In the implementation of DigEXE, we use taint analysis to
reduce the program traces, and speed up the DSE procedure.
Initially, we track and taint all the input data. Then, the taint
analysis is applied to help us focus on the propagation of
tainted input data in the program flow. Only operations on
tainted memories and tainted branch statements are recorded
in the program trace. Thus, program elements that are not
affected by the input data will not be recorded in the trace.

Taint analysis in DigEXE is integrated with the heavy
weight execution monitor responsible for generating program
traces containing detailed memory accesses. For performance
reasons, we consider taint propagation on dataflow, and
ignore control flow taint propagation.

DigEXE mainly uses a input file as the program input.
Its taint tracking process relies on the observation of file open
and read system calls. The content of the file is read into a
memory buffer, which then acts as the tainted source. Input
data is then propagated via load/store operations, assignment
and other operations that can cause dataflow.

We maintain a tainted set of memory addresses and reg-
isters. For each binary operation, we update the tainted set
accordingly. Therefore, after execution of the last statement in
the basic block, we obtain a new map of tainted variables. The
tainted information at the basic block exit is used to decide
whether the following branching statement is tainted (or not).
We then track only branches dependent on tainted memory or
registers.

VI. EVALUATION

We implemented the branch history directed heuristic search
algorithm in our DigEXE tool, which is based on the Valgrind
dynamic instrumentation framework. The flexible plugin sys-
tem of Valgrind makes it easy to develop and integrate various
profilers and analyzers together, which is a basic requirement
to drive the history directed input generation process. Tracers
of different granularity are implemented to conduct tasks
from light-weight profiling to heavy-weight path analysis.
Tracers and branch history maintainer work together with

8758

TABLE 1. Description of selected benchmarks.

benchmark | Description

cjpeg jpeg processing library and utilities
convert image conversion

js Mozilla JavaScript interpreter

1d GNU program loader

qtdump movie dumper

readelf read elf file format, from GNU binutils
tiffinfo tiff format parser

the constraint solving component to generate inputs. The
constraint solver used in our work is the STP solver [23].

A. EXPERIMENT SETUP

All experiments were conducted using a 32bit Ubuntu Linux
10.04 system (Intel Core Duo T7100, 4G memory) on real
world open source projects - see TABLE 1.

As previously discussed, DFS-i is the improved version
of the standard DFS algorithm implemented in Fuzzgrind.
As DFS-i prunes already attempted inputs from been
expanded and executed, we can be assured that DFS-i out-
performs DFS. We now compared between both BHHS and
DFS-i algorithms.

B. COVERAGE STATISTICS

Branch coverage is the main criteria for evaluating BHHS
performance. The comparative summary of the BHHS heuris-
tic and DFS-i heuristic is given in Fig. 3, which demonstrates
that BHHS outperforms DFS-i and achieves better coverage
with the given 50 execute-and-expand iterations.

We also checked the pool of generated inputs, and found
that BHHS can steadily generate more variant new inputs that
DFS-i. This is mainly because BHHS prioritizes the search
towards most recently covered new branches. For details on
the input growth, we refer the reader to Fig. 4.

C. CAPABILITY OF BUG DETECTION
We also compared the bug detection capabilities of the two
search algorithms implemented in our DigEXE framework.
DigEXE with our BHHS heuristic successfully generated a
few error inducing inputs with the 50 execute-and-expand
iterations. It shows that BHHS heuristic also outperfoms
DFS-i in terms of error detection capability (see TABLE 2).
For benchmarks such as convert, js, 1d, and readelf, the
input file formats are complex and carry extra semantic infor-
mation. In the future, we will integrate grammar directed
input generation techniques [26] to improve DigEXE error
detection capability.

VII. RELATED LITERATURE
Heuristic search has wide applications in machine learn-
ing [27], [28], image processing [29], etc.. In this paper, we
explore the application of search algorithms to the task of
automatic test input generation.

RANDOOP [30] is a unit testing framework for Java pro-
grams. This is an example of a random search algorithm used

VOLUME 5, 2017

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

IEEE Access

« - dfs growth
80f|m-a bhhs growth R

of branches covered
N ow o
[R-] 3
L]
Ll

-
S

/
!
/

o

e - dfs growth - momeme
160 m- & bhhs growth .
- 7 N

140f o

©
3

of branches covered
o
3

19-0-0-0-0 0o 0-9-0-0-0-0 -0 0 9-0-0-0 -0
I

s
S

N
S

)

runs

©

bmmq
5 g 3 3
-
e
gs
g3
zZ
Q 3
3 =
£s
g
H
:
"
e
H

of branches covered
w
)
=

20

(O]

200

o - dfs growth K
=@ bhhs growth ,=®

150 pu""

100

of branches covered

II-.
n888ece oo
5 10 15 20 25 30 35 40 45
runs

900
o -o dfs growth -
800\ |m @ bhhs growth ssnsumassasasansn®®
700 ;
mana
T 600 b
o ssamsmgagtnen®
H ne cocooe
5 500}
4
£ i
2 |
§ 400!
2 i
5 |
& 3000,
i
i
200
I
i
100 f
0
5 10 15 20 25 30 35 40 45

runs

(d

140

o - dfs growth
120/ |®® bhhs growth EammEEEEEEEE
e EEEEEEE

o
s

H0000000000000000000000000000
1

@
3

of branches covered
o
3

IS
s

i
I
!
i
I
!
|
i
|
|

S

I
I

o

FIGURE 3. Branch growth satistics of the benchmark programs. (a) cjpeg. (b) convert. (c) js. (d) Id.

(e) readelf. (f) tiffinfo.

TABLE 2. The number of error inducing inputs generated.

benchmark | DFS-i | BHHS
cjpeg 0 2
convert 0 0
js 0 0
1d 0 0
qtdump 0 3
readelf 0 0
tiffinfo 0 0

in unit test generation, and has been shown to be capable of
generating high coverage unit test cases.

CREST [17] integrates different search algorithms, and
the authors conducted an empirical study using DFS, ran-
dom, and a control-flow directed heuristic search algorithms.

VOLUME 5, 2017

CREST relies on source level instrumentation, modifying
the code to log information related to branches in the test
program. The better performing heuristic search depends on
the control flow information which is difficult to retrieve from
binary programs.

JCUTE [31] is a Java symbolic execution engine that inte-
grates different search algorithms.

DSE, the foundation of CREST, JCUTE and our DigEXE
framework, has been widely used in automatic test case
generation. The technique has evolved over the years, and
more recently it has been used in the testing of dynamic web
applications [32] and mobile applications [33]. SAGE [12]
is a typical dynamic symbolic execution engine that is capa-
ble of detecting bugs in real world software. It performs

8759

IEEE Access

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

450

o -e dfs growth
400f m- @ bhhs growth «”

350 e
°
8 300 o’
5 »
£ 250 - ~
< N
- ~ m-
3 200 ks
2 K "
b K =
S 150 - w
* d L3 -
100 . a
L L) =
. m
50 o s
o gm
ma
obn-af®®
5 10 15 20 25
#runs
(@)
1200
o -e dfs growth
=@ bhhs growth
1000 .
e
L
5 o
g 800 e
5 .e
g -~
= -
£ 600 o
g o’
g -
S 400 ’,’
* . @
° s -
e e ® L
200 o ~ o " ="
- °” a- =
g m
a8
0
0 5 10 15 20
runs
(©
900
o -o dfs growth
800 m @ bhhs growth o
u
o
700 "
u
5 "
2 600 i
5 o
0
£ 500 u
< o
5 Lot
3 400 ._-
£ -
S 300 o0
#* .-
200
-" .m.nﬂ"
o c000000°°%°
100 o8 00000
"ug:....-""
0 hmnn@B®®
10 20 30 20 50
runs
(e

1000

e -o dfs growth ;
m-m bhhs growth .-
.
800]
"
f L]
: "
:]
5 600 .
: o
: o
£ .
2 B
E JI
£ 400 ot
s -
"
* =
-"
200
r
"
L
=
s 0000000
850 mo..mooomoo.uonon
0
5 10 15 20 25 30 R a—
runs
1000
e -o dfs growth
°
= & bhhs growth .
.
800 "'
o
- e
] .
: o
g
o
2 600 ‘l'/."
< .
@ .
35 - -
2 . .
£ 400 - .
5 R L
o -
* o°]
I ma®
°
°]
200 o® ...
o® L4
° =
° 'l
"
.':lll..
0 5 10 15 20 25 30 e
runs
180
o -o dfs growth .
160 m- @ bhhs growth . P
" °
140 . .)"
] . .
g 120 -
H I
£ 100 - .
£ . .
9 . .
3 80 . Y
a . .
€ .
b . .
e e
40 we e
oon?
o &
20 on”
am
o -
5 10 15 55 5 J
runs

FIGURE 4. Input variety statistics of benchmark programs. (a) cjpeg. (b) convert. () js. (d) Id.

(e) readelf. (f) tiffinfo.

optimizations mainly by looking at the syntactic features of
path conditions in a program. SAGE uses branch condition
flipping count as an hint for optimization purposes.

There have been other studies on the usage of runtime
information to enhance the input space search process.
DyTa [34] demonstrates the usage of static verification results
to boost dynamic symbolic execution. In [11], length-k path
is used to guide the searching algorithm in dynamic symbolic
execution, and evaluate the mutant killing capabilities of the
new method. The work in [35] addresses the problem of
finding a path of a program which satisfies a regular property
with guided dynamic symbolic execution.

However, our BHHS search algorithm works differently,
that is improving search process by leveraging the refined
execution history. While we would like to implement our

8760

proposed search algorithm in SAGE, the latter is not pub-
licly available. Therefore, we compare the new BHHS
search with an improved version of DFS search of the open
source Fuzzgrind [19], which has very similar functionality
with SAGE.

VIil. CONCLUSION

Software applications will play an increasingly important
role in our data-driven society (e.g. in in Internet-of-Things
environment and cyber-physical systems such as those found
in smart cities and smart nations). In the rush to design
software offering more complex features, it is highly unlikely
to find a perfectly designed or bug-free software; hence, the
need for effective bug detection approaches, bug reproduction
productivity tools, and test case generation approaches.

VOLUME 5, 2017

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

IEEE Access

In order to effectively generate high quality test cases,
a branch history directed heuristic search was presented in
this paper. We integrated the directed search algorithm within
a dynamic symbolic execution engine. We also implemented
a history directed depth first search, which is an improved
version than the version of algorithm in the baseline DSE
tool Fuzzgrind. We then evaluated our new BHHS search
algorithm on a set of real world applications. The findings
demonstrated that with the history directed heuristics, more
branches can be covered with reduced solving time. There-
fore, our method outperforms the improved DFS search.

In this paper, the input history and branch history were
used to guide the search for high quality test inputs. However,
the refined execution history could also serve as a database
of program input and runtime data. We would also be able
to extract useful features from the history information, com-
bining other related statistics. Therefore, these features could
be used to classify inputs into different clusters, model the
program behavior for similar inputs, etc. This will form the
basis of our future work.

REFERENCES

[11 M. Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of things in smart
agriculture: Intelligent irrigation monitoring by thermal imaging,” IEEE
Cloud Comput., vol. 4, no. 1, pp. 10-15, Jan. 2017.

[2] Y. Kong, M. Zhang, and D. Ye, “A belief propagation-based method
for task allocation in open and dynamic cloud environments,” Knowl.-
Based Syst., vol. 115, pp. 123-132, Sep. 2017. [Online]. Available:
http://dx.doi.org/10.1016/j.knosys.2016.10.016

[3] J. Xuan, H. Jiang, Z. Ren, Y. Hu, and Z. Luo, “A random walk based
algorithm for structural test case generation,” in Proc. 2nd Int. Conf. Softw.
Eng. Data Mining (SEDM), Jun. 2010, pp. 583-588.

[4] L. Zhang, B. Yin, J. Lv, K. Cai, S. S. Yau, and J. Yu, “A history-based
dynamic random software testing,” in Proc. IEEE 38th Annu. Comput.
Softw. Appl. Conf. Workshops (COMPSAC) Vasteras, Sweden, Jul. 2014,
pp. 31-36.

[5]1 R.Ramler, K. Wolfmaier, and T. Kopetzky, “A replicated study on random
test case generation and manual unit testing: How many bugs do profes-
sional developers find?” in Proc. 37th Annu. IEEE Comput. Softw. Appl.
Conf. (COMPSAC) Kyoto, Japan, Jul. 2013, pp. 484-491.

[6] V. Chipounov, V. Kuznetsov, and G. Candea, “The S2E platform: Design,
implementation, and applications,” ACM Trans. Comput. Syst., vol. 30,
no. 1, p. 2, 2012.

[7] P.P.F Chan, L. C. K. Hui, and S. Yiu, “Heap graph based software theft
detection,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 1, pp. 101-110,
Jan. 2013.

[8] S.Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti, “Employing
program semantics for malware detection,” IEEE Trans. Inf. Forensics
Security, vol. 10, no. 12, pp. 2591-2604, Dec. 2015.

[9] C.Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in Proc.
8th USENIX Symp. Oper. Syst. Design Implement. (OSDI), San Diego, CA,
USA, Dec. 2008, pp. 209-224.

[10] J. P. Galeotti, G. Fraser, and A. Arcuri, “Extending a search-based test
generator with adaptive dynamic symbolic execution,” in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA), San Jose, CA, USA, Jul. 2014, pp. 421-424.

[11] Y.Li, Z. Su, L. Wang, and X. Li, ““Steering symbolic execution to less trav-
eled paths,” in Proc. ACM SIGPLAN Int. Conf. Object Oriented Program.
Syst. Languages Appl. (OOPSLA), Indianapolis, IN, USA, Oct. 2013,
pp. 19-32.

[12] P. Godefroid, M. Y. Levin, and D. A. Molnar, “Automated whitebox fuzz
testing,” in Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS), San Diego, CA,
USA, Feb. 2008, pp. 1-16.

VOLUME 5, 2017

(13]

(14]

[15]

[16]

[17]

(18]

[19]
(20]
[21]

[22]

(23]

[24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE:
Automatically generating inputs of death,” ACM Trans. Inf. Syst. Secur.,
vol. 12, no. 2, pp. 1-10, 2008.

N. Chen and S. Kim, “STAR: Stack trace based automatic crash repro-
duction via symbolic execution,” IEEE Trans. Softw. Eng., vol. 41, no. 2,
pp. 198-220, Feb. 2015.

J. Song, H. Kim, and S. Park, “Enhancing conformance testing using
symbolic execution for network protocols,” IEEE Trans. Rel., vol. 64,
no. 3, pp. 1024-1037, Mar. 2015.

C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. 2nd IEEE Int. Symp. Code
Generat. Optim. (CGO), San Jose, CA, USA, Mar. 2004, pp. 75-88.
Crest, accessed on May 26, 2017. [Online]. Available:
https://code.google.com/p/crest

X. Zhai et al., “A method for detecting abnormal program behavior on
embedded devices,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 8,
pp. 1692-1704, Sep. 2015.

Fuzzgrind, accessed on May 26, 2017. [Online]. Available: http://esec-
lab.sogeti.com/pages/Fuzzgrind

Valgrind, accessed on May 26, 2017. [Online]. Available:
http://valgrind.org
Dynamorio, accessed on May 26, 2017. [Online]. Available:

http://www.dynamorio.org

C. Luk ef al., “Pin: Building customized program analysis tools with
dynamic instrumentation,” in Proc. Conf. Program. Language Design
Implement. (ACM SIGPLAN), Chicago, IL, USA, Jun. 2005, pp. 190-200.
V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” fin Proc. 19th Int. Conf. Comput. Aided Verification (CAV),
Berlin, Germany, Jul. 2007, pp. 519-531.

X. Wang, L. Zhang, T. Xie, H. Mei, and J. Sun, “Locating need-to-
externalize constant strings for software internationalization with gen-
eralized string-taint analysis,” IEEE Trans. Softw. Eng., vol. 39, no. 4,
pp. 516-536, Apr. 2013.

K. Chen, D. Feng, P. Su, and Y. Zhang, “Black-box testing based on
colorful taint analysis,” Sci. China Inf. Sci., vol. 55, no. 1, pp. 171-183,
2012.

R. Majumdar and R.-G. Xu, “Directed test generation using symbolic
grammars,” in Proc. 22nd IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE),
Atlanta, GA, USA, Nov. 2007, pp. 134-143.

B. Gu, V. S. Sheng, K. Y. Tay, W. Romano, and S. Li, “Incremental support
vector learning for ordinal regression,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 26, no. 7, pp. 1403-1416, Jul. 2015.

B. Gu, V. S. Sheng, Z. Wang, D. Ho, S. Osman, and S. Li,
“Incremental learning for vv-support vector regression,” Neural
Netw., vol. 67, pp. 140-150, Jul. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.neunet.2015.03.013

Y. Zheng, J. Byeungwoo, D. Xu, Q. M. J. Wu, and H. Zhang, ‘“‘Image seg-
mentation by generalized hierarchical fuzzy C-means algorithm,” J. Intell.
Fuzzy Syst., vol. 28, no. 2, pp. 961-973, 2015.

C. Pacheco and M. D. Ernst, ‘“Randoop: Feedback-directed random test-
ing for java,” in Proc. Companion 22nd Annu. Conf. Object-Oriented
Program., Syst., Languages Appl. (ACM SIGPLAN OOPSLA), Montreal,
Quebec, Canada, Oct. 2007, pp. 815-816.

K. Senand G. Agha, “CUTE and jCUTE: Concolic unit testing and explicit
path model-checking tools,” in Computer Aided Verification (Lecture
Notes in Computer Science), vol. 4144, T. Ball and R. Jones, Eds. Berlin,
Germany: Springer, 2006, pp. 419—423.

K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective record-
replay and dynamic analysis framework for javascript,” in Proc. 9th Joint
Meeting Found. Softw. Eng. (ESEC/FSE), New York, NY, USA, Sep. 2013,
pp. 488-498.

S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proc. ACM SIGSOFT 20th Int. Symp.
Found. Softw. Eng., New York, NY, USA, 2012, pp. 59:1-59:11.

X. Ge, K. Taneja, T. Xie, and N. Tillmann, “Dyta: Dynamic symbolic
execution guided with static verification results,” in Proc. 33rd Int. Conf.
Softw. Eng. (ICSE) Honolulu, HI, USA, May 2011, pp. 992-994.

Y. Zhang, Z. Chen, J. Wang, W. Dong, and Z. Liu, ‘“Regular property
guided dynamic symbolic execution,” in Proc. 37th IEEE/ACM Int. Conf.
Softw. Eng. (ICSE), vol. 1. Florence, Italy, Sep. 2015, pp. 643-653.

8761

IEEE Access

Y. Hu et al.: Branch History Directed Heuristic Search for Effective Binary Level DSE

8762

YAN HU received the B.Sc. and Ph.D. degrees in
computer science from the University of Science
and Technology of China, China, in 2002 and
2007, respectively. He is currently an Assistant
Professor with the School of Software, Dalian Uni-
versity of Technology, China. His research inter-
ests include model checking, program analysis,
and security testing.

WEIQIANG KONG received the bachelor’s and
master’s degrees in computer science from Wuhan
University, China, in 2000 and 2003, respectively,
and the Ph.D. degree in information science from
the Japan Advanced Institute of Science and Tech-
nology in 2006. He is currently a Professor with
the Dalian University of Technology, China. His
research interests focus on formal methods, in
particular, formal verification with hybrid model
checking techniques for software analysis.

YIZHI REN received the Ph.D. degree in computer
software and theory from the Dalian University of
Technology, China, in 2011. From 2008 to 2010,
he was a Research Fellow with Kyushu Univer-
sity, Japan. He is currently an Associate Professor
with the School of Cyberspace, Hangzhou Dianzi
University, China. His current research interests
include: network security, complex data/network,
evolutionary game theory, and trust management.

KIM-KWANG RAYMOND CHOO (SM’15)
received the Ph.D. degree in information security
from the Queensland University of Technology in
2006. He currently holds the Cloud Technology
Endowed Professorship with The University of
Texas at San Antonio. He was named one of
10 Emerging Leaders in the Innovation category
of The Weekend Australian Magazine/Microsofts
Next 100 series in 2009, and Cybersecurity
Educator of the Year—APAC (Cybersecurity
Excellence Awards are produced in cooperation with the Information Secu-
rity Community on LinkedIn) in 2016. In 2015, he and his team won the
Digital Forensics Research Challenge organized by Germany’s University
of Erlangen-Nuremberg. He was a recipient of the ESORICS 2015 Best
Research Paper Award, the Highly Commended Award from Australia
New Zealand Policing Advisory Agency in 2014, the British Computer
Society’s Wilkes Award, the Fulbright Scholarship in 2009, and the 2008
Australia Day Achievement Medallion. He is also a fellow of the Australian
Computer Society.

VOLUME 5, 2017

