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ABSTRACT Owing to the signal structure difference between the filter bank multicarrier with offset
quadrature amplitude modulation (FBMC/OQAM) and the orthogonal frequency-division multiplexing
(OFDM) systems, the existing technologies to reduce the peak-to-average power ratio (PAPR) for OFDM
systems are not suitable for the FBMC/OQAM systems. This paper considers the problem of PAPR in the
FBMC/OQAM systems, and to reduce the PAPR of the FBMC/OQAM signal, we propose an improved
joint optimization scheme combined with the linear (i.e., partial transmit sequence (PTS)) and nonlinear
(i.e., clipping and filtering (CF)) methods, named improved bilayer partial transmit sequence and iterative
clipping and filtering (IBPTS-ICF) scheme. The main idea of this joint optimization scheme is clipping
and filtering the processed FBMC/OQAM signal, whose probability of the peak value has been reduced
by the IBPTS technique. Meanwhile, aided by the knowledge of convex optimization, the IBPTS-ICF joint
optimization scheme can effectively reduce the signal distortion. The excellent PAPR reduction performance
of the proposed scheme has been confirmed in our simulations.

INDEX TERMS FBMC/OQAM, bilayer PTS, clipping and filtering, PAPR reduction, joint optimization.

I. INTRODUCTION
Attributable to its capability to efficiently cope with fre-
quency selective channels, multicarrier modulation (MCM)
has become the key physical layer transmission technology
adopted in wireless communications. As one of the most
prominent MCM techniques, Orthogonal Frequency Divi-
sion Multiplexing (OFDM) has been widely used in the
present broadband multicarrier communications, including
digital television and audio broadcasting, wireless networks,
powerline networks, and the Fourth-Generation (4G) wire-
less communications. By dividing the total bandwidth into
many narrow subchannels, OFDM offers a considerably high
spectral efficiency and multi-path delay spread tolerance.
However, the adoption ofOFDM in the Fifth-Generation (5G)
cellular networks is not taken for granted [1]. OFDM also
presents some limitations. More precisely, the insertion of

redundant cyclic prefixes (CPs) in OFDM implies a reduction
of spectral efficiency, and the use of rectangular pulse shape
on each subcarrier leads to high out-of-band radiation [2].

OFDM is not exempt of defects, and it may be an undesir-
able solution in many future communication systems. As one
of the most credited alternatives to OFDM, Filter Bank
Multicarrier with Offset Quadrature Amplitude Modulation
(FBMC/OQAM) has recently attracted an increasing amount
of attention, particularly in multiple access and cognitive
radio networks [3], [4]. Compared with the conventional
OFDM, the use of FBMC/OQAM for 5G cellular networks is
mainly recommended for the ability to avoid distortion from
asynchronous signals in adjacent bands. Furthermore, with-
out the need of a guard interval (GI) or CP, FBMC/OQAM
has the potential of achieving higher spectral efficiency of
transmission. And FBMC/OQAM requires orthogonality for
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the neighbouring subchannels only, and can be designed with
arbitrarily small side lobes [5]–[7].

Similar to the OFDM systems, some challenging issues
still remain unresolved in the design of FBMC/OQAM sys-
tems. One of the major drawbacks is the high Peak-to-
Average Power Ratio (PAPR) of the transmitted signal.The
high PAPRmay result in significant distortion when traveling
through a nonlinear device, such as a transmit power ampli-
fier. Moreover, the high PAPR may have a detrimental effect
on battery lifetime inmobile applications and outweigh all the
potential benefits of FBMC/OQAM systems [8]. Therefore,
in order to utilize the technical features of FBMC/OQAM,
it is important and necessary to focus on how to reduce
the PAPR.

A number of approaches have been proposed to deal
with the PAPR problem in OFDM systems. Considering the
similarity between the OFDM and FBMC/OQAM systems,
it is natural to research how to employ the PAPR reduc-
tion schemes for OFDM systems to reduce the PAPR of
FBMC/OQAM signal [9]. Over the past few decades, var-
ious PAPR reduction schemes for OFDM systems have been
proposed. The techniques included clipping [10], [11], cod-
ing [12]–[15], nonlinear companding transforms [16]–[18],
active constellation extension (ACE) [19], [20], tone reserva-
tion (TR) [21], partial transmit sequences (PTS) [22]–[26],
and selected mapping (SLM) [27], [28]. However, owing
to the overlapping of adjacent data blocks, the con-
ventional PAPR reduction techniques cannot be directly
applied to FBMC/OQAM systems. Some improved PAPR
reduction schemes for FBMC/OQAM systems have been
proposed on the foundation of these OFDM PAPR reduc-
tion schemes. Qu et al. [9] proposed an improved PTS
scheme by employingmulti-block joint optimization (MBJO)
for the PAPR reduction of the FBMC/OQAM signal.
Although the improved MBJO-PTS scheme provided good
results, the complexity of utilizing a trellis diagram for the
MBJO-PTS optimization problem would increase computa-
tional complexity, and might make the MBJO-PTS scheme
infeasible in practice. Kollár et al. [29] presented a clipping
based PAPR reduction scheme to reduce the PAPR of FBMC
signal. By employing sliding window for the PAPR reduction
of FBMC/OQAM signal, an improved TR technique was
proposed in [30]. While the PAPR was reduced by the pro-
posed TR technique without additional complexity, it costed
the reduced data rate since the additional peak reduction
tones (PRTs) were required.

In this paper, we propose an improved bilayer PTS and iter-
ative clipping and filtering (IBPTS-ICF) joint optimization
scheme to reduce the PAPR of FBMC/OQAM signal. The
main contributions of this paper are listed as follow:

1) Unlike the existing conventional PAPR reduction
schemes of OFDM system, this paper exploits the over-
lapping structure of the FBMC/OQAM signal, and the
iterative clipping and filtering (ICF) algorithm to min-
imize distortion is proposed after the improved bilayer
PTS (IBPTS) processing.

2) Compared with the conventional PTS algorithm,
the penalty factors and bilayer structure are introduced
into the IBPTS algorithm, and the computational com-
plexity can be significantly reduced. In order to further
reduce the PAPR of FBMC/OQAM signal, the optimal
ICF algorithm is presented. Considering the in-band
signal distortion caused by the clipping method, filter-
ing and iterative compensation are introduced into the
ICF algorithm.

3) The accuracy of the analytical results is demon-
strated through numerical simulation. The proposed
IBPTS-ICF scheme has a remarkable PAPR reduction
performance than the conventional PTS and clipping
methods.

The rest of this paper is organized as follows. Section II
describes the FBMC/OQAM modulation. In Section III,
the IBPTS-ICF joint optimization scheme is proposed.
Section IV presents simulated results for characterizing the
proposed PAPR reduction scheme. Finally, conclusions are
drawn in Section V.
Notations : we use bold font variables to denote matri-

ces and vectors. (·)T denotes the transpose, and ‖·‖2
denotes the two-norm. E [·] denotes the expectation operator,
and j =

√
−1.

II. FBMC/OQAM MODULATION
Fig. 1 illustrates the FBMC/OQAM transmitter structure,
which consists of N subcarriers. In the transmitter, a serial-
to-parallel (S/P) converter is introduced at the output of the
QAM symbol Sm, and the complex input symbol is written as:

snm = anm + jb
n
m, (1)

with Sm = [s0m, s
1
m, · · · , s

N−1
m ]T , 0 6 n 6 N − 1, and

0 6 m 6 M − 1, where M represents the number of
data blocks. anm and bnm are the real and imaginary parts of
the mth symbol on the nth subcarrier, respectively.
Attributable to the complex input symbols of the FBMC/
OQAM system can be assumed statistically independent and
identically distributed (i.i.d.), anm and bnm are uncorrelated
with each other. In the following, the i.i.d. Gaussian random
variables of anm and bnm are assumed. The real and imaginary
parts of each symbol are then transmitted on a subcarrier,
respectively. A specially designed prototype filter is applied

s [k] =
∞∑

q=−∞

N−1∑
n=0

(
θnanqh [k − qN ]+ θn+1bnqh

[
k − qN −

N
2

])
× ejn(k−qN )

2π
N (2)
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FIGURE 1. A block diagram of FBMC/OQAM transmitter.

FIGURE 2. The structure of FBMC/OQAM signal [31].

for each subcarrier, and the prototype filter fulfils the Nyquist
property [6].

The real and imaginary parts of the OQAM symbols
are staggered with a time offset of half a symbol dura-
tion (i.e., T/2, T is the symbol period). The structure of
FBMC/OQAMsignal is shown in Fig. 2.With the objective to
reduce the computational complexity, after the prototype fil-
ter and phase modulation, the OQAM symbols are processed
by the inverse fast fourier transform (IFFT) and polyphase
network (PPN) [7].

The modulated signal for the FBMC/OQAM transmitter at
sample k is given by (2) shown at the bottom of the previous
page, where

θn =

{
1, if n is even;
j, if n is odd.

(3)

h [k] is the prototype filter, and the PHYDYAS prototype
filter is adopted in this paper [6]. Due to the advantageous
properties of the prototype filter, an FBMC signal will have a
better adjacent channel leakage ratio (ACLR) than an OFDM
signal [10].

In practice, it is not straightforward to measure the PAPR
for the continuous-time baseband signal, and most of the
existing PAPR reduction schemes are implemented for the
discrete-time baseband signal. However, the PAPR for the
discrete-time baseband signal s[k] may not be the same as
that for the continuous-time baseband signal [8]. In order
to approximate the true PAPR of the FBMC/OQAM signal,
the s (t) is β-times oversampled where β > 4 [32].

Attributable to the overlapping structure of FBMC,
we define a frame containing M overlapping FBMC data
blocks. The length of the frame is

(
M + β − 1

2

)
N , and the

length of each block is
(
β + 1

2

)
N . The PAPR of a frame

containing M data blocks can therefore be defined with s[k]
in dB as [33]:

PAPR
(
sf
)
dB = 10log10


max

06k6
(
M+β− 1

2

)
N−1

∣∣{sf }k ∣∣2
E
[∣∣sf ∣∣2]


(4)

where sf =
[
s [0] , · · · , s

[(
M + β − 1

2

)
N − 1

]]T
.

III. PROPOSED IBPTS-ICF JOINT OPTIMIZATION SCHEME
FOR THE PAPR REDUCTION OF FBMC/OQAM SIGNAL
A. CONVENTIONAL PTS TECHNIQUE
In the conventional PTS technique for OFDM systems,
the input data block S is partitioned into V disjoint sub-
blocks Sv, and v = 1, 2, · · · ,V . The discrete-time domain
signal can then be written as:

S =
[
S0,S1, · · · ,Sv, · · · ,SV

]T
, (5)

where Sv are consecutively located and also are of equal size.
The subcarriers in each subblock are independently rotated

by phase factors, and the phase factors are selected to
combine the partial transmit sequences to minimize the
PAPR. The set of the phase factors as a vector is b ={
bv = ej2π l/W

∣∣ l = 0, 1, · · · ,W − 1
}
and W is the number

of allowed phase factors. In order to reduce the search com-
plexity, the selection of the phase factors is limited to a set
with finite number of elements.

As shown in Fig. 2, based on the overlapping nature of
FBMC/OQAM signals, it is obvious that the mth data block
overlaps with the next β − 1 data blocks. Applying the
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conventional PTS technique for the FBMC/OQAM system,
block Sm is divided into V subblocks. Let svm[k] denote the
discrete-time domain sequences of the vth subblock, then
svm[k] is given by [9]:

svm[k] =
(
sv,0m [k], sv,1m [k], · · · , sv,nm [k], · · · , sv,N−1m [k]

)
, (6)

where sv,nm [k] = snm[k], if n
th symbol belongs to subblock v.

The signal of subblock v can be denoted as:

svm[k] =
N−1∑
n=0

sv,nm [k]. (7)

Therefore, the discrete-time domain signal of the mth data
block with phase factor vector bvm is given by:

sm[k] =
V∑
v=1

bvms
v
m[k]. (8)

By choosing the optimal phase vector, the PAPR can be
minimized, which is expressed as follows:[
b̃1m, · · · , b̃

V
m

]
= arg min

[b1m,··· ,bVm]

(
max

(m−1)N6k6(β+m− 1
2 )N−1

∣∣∣∣∣
V∑
v=1

bvms
v
m [k]

∣∣∣∣∣
)
.

(9)

Thus the corresponding discrete-time domain signal with the
lowest PAPR can be represented as [34]:

s̃m[k] =
V∑
v=1

b̃vms
v
m[k]. (10)

In the conventional PTS scheme, the phase rotation oper-
ation is only used for the current data block. However,
due to the overlapping structure of FBMC/OQAM signal,
the optimization performance achieved by the conventional
PTS scheme will be debased.

B. CONVENTIONAL CLIPPING TECHNIQUE
The simplest way to reduce the PAPR of an FBMC/OQAM
signal may be clipping [35]. However, because nonlinear
effects are introduced, and clipping may cause significant in-
band signal distortion, resulting in BER performance degra-
dation, and out-of-band interference, reducing the spectral
efficiency.

A predefined threshold Amax limits the peak envelope of
the discrete-time domain FBMC/OQAM signal. That is:

scm[k] =

{
sm[k], if |sm[k]| 6 Amax

Amaxejϕ(sm[k]), if |sm[k]| > Amax,
(11)

where ϕ(sm[k]) is the phase of sm[k]. The most important
parameter, which affects the system performance, is charac-
terized by the clipping ratio (CR) γ denoted as:

γ =
Amax

σ
, (12)

where σ is the root mean square (RMS) power of the
FBMC/OQAM signal.

The distortion caused by amplitude clipping can be viewed
as another source of noise, named clipping noise. And the
clipped signal can be expressed as:

scm[k] = εsm[k]+ dm[k], 0 6 k 6 K , (13)

where dm[k] is the clipping noise, which is uncorrelated with
sm[k] [36]. Moreover, the attenuation factor ε is a function of
the clipping ratio γ , which is given by [10]:

ε = 1− e−γ
2
+

√
π

2
γ erfc (γ ). (14)

Therefore, the clipped signal at the nth subcarrier after
the K -point discrete fourier transform (DFT) is written as
follows:

S̃n =
1
√
K

K−1∑
k=0

scm [k] e−j2π(n/K )k

= ε
1
√
K

K−1∑
k=0

sm [k] e−j2π(n/K )k︸ ︷︷ ︸
Snm

+
1
√
K

K−1∑
k=0

dm [k] e−j2π(n/K )k︸ ︷︷ ︸
Dnm

, (15)

where Dnm denotes the complex nonlinear distortion term
falling on the nth subcarrier. According to the central limit
theorem, as the number of subcarriers increases, the Dnm
approaches Gaussian random variables with a zero mean.

The performance of the clipping algorithm is measured
by the signal-to-distortion ratio (SDR), and the SDR of
the nth subcarrier is given by:

SDRn =
ε2E

[∣∣Snm∣∣2]
E
[∣∣Dnm∣∣2] . (16)

C. IBPTS-ICF JOINT OPTIMIZATION SCHEME
For the PAPR reduction of FBMC/OQAM signal, we pro-
pose an IBPTS-ICF joint optimization scheme. The block
diagram of IBPTS-ICF algorithm is shown in Fig. 3. The joint
optimization scheme exploits the overlapping structure of
FBMC/OQAM signal and aims to reduce overlapping effect.
The main ideas of the proposed IBPTS-ICF scheme are listed
as follows:
• by utilizing the IBPTS algorithm to reduce the search
complexity of conventional PTS algorithm. In the
IBPTS algorithm, the bilayer structure is introduced and
the weighting phase factors are constrained to a finite
range. To further reduce the computational complexity,
we then propose a simplified and suboptimal IBPTS
algorithm where the penalty factors is introduced.
Although the system performance is slightly affected,
the computational complexity is greatly reduced.
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FIGURE 3. Block diagram of the IBPTS-ICF algorithm.

• by using the optimal ICF algorithm to restore the per-
formance of FBMC/OQAM signal. The proposed ICF
algorithm aims to further reduce the PAPR. However,
the clipping technique can cause clipping noise which
falls both in-band and out-of-band. In order to improve
the performance and counter the effects of clipping,
filtering after clipping is introduced. However, filtering
can only reduce out of band radiation after clipping,
and it is unable to reduce in-band distortion. Therefore,
the iterative compensation strategy is applied to solve
this problem.

• by combining the best of IBPTS and ICF algorithms to
minimize the PAPR.

FIGURE 4. Structure of the improved bilayer PTS algorithm.

In the PTS process, the frame containing M overlapping
FBMC data blocks noted by Sm, and 0 6 m 6 M − 1.
Applying the adjacent partition method, data block Sm is
divided into V subblocks, that is:

Sm =
V∑
v=1

Svm. (17)

As shown in Fig. 4, the optimal vector of phase fac-
tors bm =

[
b̃1m, · · · , b̃

v
m, · · · , b̃

V
m

]
then combines with

theV subblocks. According to (10), the optimization problem

of the FBMC/OQAM system could be written as:

min
bm

{
max
k
|s̃m[k]|

2
}

(18a)

s.t. s̃m[k] =
V∑
v=1

b̃vms
v
m[k] (18b)

bvm =
{
ej2π l/W

∣∣∣ l = 0, 1, · · · ,W − 1
}

(18c)

1 6 v 6 V (18d)

0 6 n 6 N − 1 (18e)

For the optimization problem of PTS scheme, the compu-
tational complexity consists of three parts [24]:

i) Overlapping factor β;
ii) Weighting phase factors b̃m;
iii) PAPR computation and the number of data

blocks M .

For part i), the overlapping factor β is suggested to be 4,
the PAPR of the sampled signals can then approximate to
the true PAPR of the continous-time signal very well. So the
computational complexity in ii) and iii) is mainly considered.
In order to reduce the search complexity of the PTS algo-
rithm, a simplified and suboptimal PTS algorithm is proposed
at the cost of system performance. Firstly, the weighting
phase factors b̃m are constrained to {−1, 1}withW = 2 for all
v and m, and the computational complexity has a significant
reduction. Sequently, the penalty factors µp and ωp are then
introduced for finding the suboptimal solution b∗m of (18).

Like the conventional clipping algorithm, the IBPTS algo-
rithm also introduces a special threshold, named penalty
factors. The introduction of penalty factors is for reducing the
number of candidate data blocks which need to be searched,
and the computational complexity is then reduced. Different
from the threshold which can cause the distortion of FBMC
signal in clipping algorithm, the penalty factors will not cause
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FIGURE 5. Structure of the clipping algorithm after PTS process.

any distortion. Let

µp =
1
√
2
max
k
{|s [k]|}. (19)

It is assumed that ξ is the number of |sm [k]| > µp
with (m− 1)N 6 k 6 (β + m− 1

2 )N − 1 in the mth data
block Sm, which can be expressed as:

ξ = num
(
|sm[k]|>µp

∣∣∣∣(m−1)N 6k6 (β+m−
1
2
)N−1

)
.

(20)

Once ξ > ωp or

max
k

{
|sm [k]|2

}
>

1
√
2
max
k

{
|s [k]|2

}
(21)

holds in the mth data block, we will punish this data block,
and the phase factors search method in Algorithm 1 is exe-
cuted; otherwise, the subblock Svm performs no action.

Algorithm 1 The Phase Factors Search Algorithm

1: Set b̃m = [1, 1, · · · , 1] and index = 1, and compute the
PAPR of the combined signal, named PAPR0;

2: while index < V + 1 do
3: b̃m [index] = −1;
4: Recompute the PAPR, named PAPRindex ;
5: if PAPRindex 6 PAPR0 then
6: Retain b̃m [index] as part of the final set of phase

factors;
7: else
8: b̃m [index] = 1;
9: end if
10: index = index + 1;
11: end while

After the suboptimal PTS algorithm, we obtain the sub-
optimal signal, and let s[k] denote the suboptimal signal.
As shown in Fig. 5, clipping is directly used to the processed
FBMC/OQAM signal s[k]. According to (16), in order to
reduce nonlinear effects of clipping, the clipping problem can
be formulated as follows:

max
D(`)∈CN

SDR(`)
=

ε2E
[∣∣S(`)∣∣2]

E
[∣∣D(`)

∣∣2] (22a)

s.t. Ŝ(`)0 = Ŝ(`) · H (22b)

s(`+1) = IFFT
(
Ŝ(`)0

)
K

(22c)

d (`+1) = ŝ(`) − εs(`+1) (22d)

d (`+1) = IFFT
(
D(`+1)

)
K

(22e)∥∥ŝ(`)∥∥
∞∥∥ŝ(`)∥∥2/√K 6 γ (22f)

where ` = 1, 2, · · · denotes the iteration number, and H is
the filter for removing the out-of-band spectral, which can be
written as follows:

H (i) =

{
1, 1 6 i 6 N
0, N + 1 6 i 6 K .

(23)

The problem (22) is a non-convex problem; owing to the
inequality constraint (22f) is non-convex. However, the opti-
mization problem (22) can be transformed into a convex
problem by a transformation of the objective and inequality
constraint functions.

According to (11), the non-convex (22f) can be trans-
formed to a convex constraint:∥∥∥ŝ(`)∥∥∥

∞

6 A(`)max. (24)

Moreover, according to (12), the threshold Amax can be
expressed as follows:

A(`)max = σ
(`)
· γ

=
1
√
K

∥∥∥ŝ(`)∥∥∥
2
· γ. (25)

Then according to (24) and (25), we have:∥∥∥s(`+1)∥∥∥
2
6
∥∥∥ŝ(`)∥∥∥

2
. (26)

With the substitution of (25) and (26) into (22), we can
express the optimization problem (22) in the form:

min
t∈R

t (27a)

s.t. σ (`)
=

1
√
K

∥∥∥s(`)∥∥∥
2

(27b)

A(`)max = σ
(`)
· γ (27c)

Ŝ(`)0 = Ŝ(`) · H (27d)
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s(`+1) = IFFT
(
Ŝ(`)0

)
K

(27e)

d (`+1) = ŝ(`) − εs(`+1) (27f)
D(`+1)

= FFT
(
d (`+1)

)
K

(27g)

S(`+1) = FFT
(
s(`+1)

)
K

(27h)∥∥∥D(`+1)
∥∥∥
2
6 ε

∥∥∥S(`+1)∥∥∥
2
t (27i)∥∥∥s(`+1)∥∥∥

2
6
∥∥∥ŝ(`)∥∥∥

2
(27j)

With these modifications, the optimization problem (27)
can be formulated as a special type of convex optimization
problem known as second-order cone program (SOCP) and
efficiently calculated by using the standard interior-point
methods.

D. BIT ERROR RATE OF THE CLIPPING
WITHOUT CHANNEL CODING
In this subsection, the bit error rate (BER) of the clipping sig-
nal without channel coding are analysed. As shown in Fig. 5,
let Pin = σ 2 be the input power, and the output power Pout
can be expressed as [37]:

Pout =
(
1− e−γ

2
)
Pin. (28)

Furthermore, after the clipping process, the effective output
signal power Pt can be expressed as follows:

Pt = ε2E
[
‖s‖2

]
= ε2Pin = KγPout . (29)

Then according to (28), we have:

Kγ =
ε2

1− e−γ 2
, (30)

where Kγ is a normalized attenuation factor.
According to (13) and (15), the signal-to-noise-plus-

distortion ratio (SNDR) is given by:

SNDR =
ε2E

[
‖s‖2

]
E
[
‖d‖2

]
+ E

[
‖w‖2

] , (31)

where w is the additive white Gaussian noise (AWGN) com-
ponent with zero-mean and variance σ 2

W . Additionally,

E
[
‖d‖2

]
= Pout − Pt . (32)

Then the SNDR can be rewritten as follows:

SNDR =
ε2Pin

(Pout − Pt)+ σ 2
W

=
KγPout(

1− Kγ
)
Pout + σ 2

W

. (33)

As mentioned before, the distortion term can be seen as
Gaussian for large N , then after clipping, the BER of κ-ary
square quadrature amplitude modulation (κQAM) in the case
of an AWGN channel can be expressed as follows [38]:

BERAWGN
κQAM =

2
(√
κ − 1

)
√
κlog2 (κ)

erfc

[√
3log2 (κ)
2 (κ − 1)

· SNDR

]
.

(34)

Without loss of generality, we assume that xn is the i.i.d.
random variable with zero-mean and variance σ 2 = E

[
|xn|2

]
.

For the κQAM/FBMC signal,

xn = A [(2m1 − 1)+ j (2m2 − 1)], (35)

where A is a constant of the normalized statistical average
power P, and A > 0, m1,m2 ∈

{
−
κ
2 + 1, · · · , κ2

}
(κ > 2).

Then the upper and lower bounds of the κQAM-FBMC signal
can be represented as:

3
κ2−1

6 PAPRκQAM - FBMC 6
3N (κ − 1)
κ + 1

. (36)

According to (36), we can obtain that the upper bound of
PAPR is proportional to the number of subcarriers N for
large κ .

E. COMPLEXITY ANALYSIS
For the IBPTS algorithm, the computational complexity
depends on the selection of penalty factors µp and ωp.
The computational complexity is O

(
MWV

)
in the worst

case. For the ICF algorithm, the cost of solving the SOCP
problem in (27) is O

(
N 3
)
in the worst case [39]. Fur-

thermore, the extra fast fourier transform (FFT) or IFFT
pair with O

(
K log2K

)
complexity needs to be performed

in each iteration. With the maximum iteration num-
ber 0, the computational complexity of the clipping algo-
rithm is O

(
N 3
+ 30K log2K

)
. For this reason, the com-

plexity of the IBPTS-ICF joint optimization scheme is
O
(
MWV

+ N 3
+ 30K log2K

)
in the worst case.

Compared with the conventional clipping method, after
the clipping and filtering operations, the iterative compen-
sation strategy is applied in the proposed ICF algorithm,
and the the signal distortion can be effectively reduced.
Although the computational complexityO

(
N 3
)
is introduced

in the process of solving the optimization problem, it should
be noted that the computational complexity O

(
N 3
)
is the

complexity upper bound for solving the SOCP optimization
problem (27). Designing a customized interior-point method
for problem (27) can significantly reduce the computational
complexity [40].

IV. NUMERICAL RESULTS
In this section, simulation results are conducted to investigate
the PAPR reduction performance of the proposed IBPTS-ICF
joint optimization scheme in case of FBMC/OQAM signal.
The number of the subcarriers N is set to 128 and 4 QAM
modulation is adopted for the FBMC/OQAM system. The
oversampling factor is β = 4, and the number of candidate
phases for a subblock is W = 2.

In the conventional PTS technique, the known subblock
partitioning methods can be classified into three categories:
pseudo-random partition, interleaved partition and adjacent
partition [41]. Fig. 6 displays the complementary cumulative
distribution function (CCDF) comparison of different PTS
partition methods with V = 4 in the FBMC/OQAM system.
It shows the system performance of pseudo-random partition
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FIGURE 6. Comparison of different subblock partitioning methods in
FBMC/OQAM system, V = 4.

FIGURE 7. CCDFs of the FBMC/OQAM signal with the IBPTS algorithm,
ωp = 2 and V = 4.

method is obviously more superior to the other two methods.
However, the pseudo-random partition method has some
uncertainty and variability, leading to instability or unaccept-
able system performance.

Fig. 7 plots the relationship of CCDF and PAPR with vary-
ing numbers of subblocksM after the IBPTS processing in the
IBPTS-ICF joint optimization scheme. Due to the uncertainty
and variability of the pseudo-random partition method, the
adjacent partition method is selected for the IBPTS-ICF
joint optimization scheme based on the simulation results
of Fig. 6. The plot has been generated with the penalty
factor ωp = 2, and the number of the subblocks V = 4 in
the mth subblock. Compared with the conventional
PTS (CPTS) algorithm, the IBPTS processing with different
M in the proposed scheme can effectively reduce the PAPR
of the FBMC/OQAM signal. Moreover, with the increasing

FIGURE 8. The optimal value t∗ versus the number of iteration, γ = 1.2.

FIGURE 9. BER performance with the IBPTS-ICF joint optimization
scheme.

number of subblocks M , the effectiveness of reducing the
PAPR has an evident degradation.

The SOCP (27) has a global optimal solution t∗, and
global optimality ensures that any other solution satisfying
the constraints of (27) must have t > t∗. The optimal
value t∗ versus the number of iteration with the clipping ratio
γ = 1.2 is illustrated in Fig. 8.We can clearly observe that the
optimal value t∗ converges to a global optimum solution with
increasing iterations. In order to reduce the computational
complexity of the proposed scheme, the number of iteration
0 = 5 is chosen in the follow-up simulations.

In Fig. 9, we show the BER performance of the proposed
scheme with clipping ratio γ = 1.2 in the AWGN channel.
It can be observed that the clipping method can heavily
degrade the overall system performance if it is not com-
pensated. With 5 iterative compensation, the proposed ICF
algorithm can efficiently improve the system performance.
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FIGURE 10. Power spectral density effects of the proposed IBPTS-ICF
scheme.

FIGURE 11. CCDFs of the FBMC/OQAM signal with the IBPTS-ICF joint
optimization scheme, V = 4.

The comparison of PSD with clipping ratio γ = 1.2 is
shown in Fig. 10. It is clear that, the clipped signal without
iterative compensation contains high out-of-band component,
and the processed signals by the proposed ICF algorithm have
much lower out-of-band radiation than the conventional clip-
ping method. For example, the average out-of-band radiation
reaches −90dB at the frequency 0 MHz, while that of the
conventional clipping method reaches −45dB.
Fig. 11 shows the CCDF of the PAPR, and four different

PAPR reduction schemes (i.e. the CPTS algorithm, the con-
ventional Clipping algorithm, the IBPTS algorithm, and the
IBPTS-ICF joint optimization scheme) are compared. The
clipping ratio γ = 1.2, the penalty factor ωp = 2, M = 4,
andV = 4. As can be revealed in Fig. 11, the IBPTS-ICF joint
optimization scheme significantly outperforms the CPTS
scheme and the conventional clipping scheme. What is worth

mentioning is that the IBPTS-ICF joint optimization scheme
can effectively decrease the signal distortion by the intro-
duction of the penalty factors µp and ωp, as well as the
ICF algorithm. Therefore, the IBPTS-ICF joint optimization
scheme is more suitable for the requirements of the PAPR
reduction when compared to other schemes.

V. CONCLUSION
In this paper, an IBPTS-ICF joint optimization scheme has
been proposed for the PAPR reduction of the FBMC/OQAM
system. Using the IBPTS and the ICF algorithms, the PAPR
reduction performance of the FBMC/OQAM system has a
remarkable improvement. Conducted simulation results show
that an FBMC/OQAM systemwith the IBPTS-ICF joint opti-
mization scheme is able to perform better in PAPR reduction
than the other conventional schemes.
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