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ABSTRACT Conventional error detection schemes, such as the repetition code, parity bit, and Hamming
code, have been used to detect bit errors in data. These conventional schemes require the insertion of
additional bits to detect bit errors, but the code rate decreases in proportion to the number of additional
bits. In order to avoid this problem, in this paper, we introduce three special bit patterns in Lempel–Ziv–
Storer–Szymanski (LZSS) compressed data. In addition, based on the three bit patterns, we propose a novel
error detection algorithm for LZSS compressed data, which does not need to use additional bits to detect
bit errors. In the simulation, it is demonstrated that the compression ratio and running time of the proposed
algorithm are better than those of the conventional schemes, such as repetition code, parity bit, and Hamming
code. In addition, it is shown that when more than/equal to seven bit errors occur, the proposed algorithm
nearly always detects the presence of errors in the LZSS compressed data.

INDEX TERMS Error detection, Lempel-Ziv-Storer-Szymanski (LZSS), lossless data compression.

I. INTRODUCTION
Recently, a deluge of data from both the Internet and sensors
has led to an increasing demand for efficient data storage and
transmission [1]–[3]. To this end, several data compression
methods have been studied. These data compression meth-
ods can be categorized into two groups: lossy and lossless
compression. Lossy compression is commonly used in appli-
cations such as image, video, and audio compression, where
some loss of information is acceptable [4], [5]. In contrast,
lossless compression is mainly used in text and deoxyri-
bonucleic acid (DNA) data compression, where any loss of
information is unacceptable [6], [7].

Abraham Lempel and Jacob Ziv, who were pioneers in the
field of lossless data compression, developed what we call the
Lempel-Ziv-77 (LZ77) algorithm in 1977 [8]. Many variants
of the LZ77 algorithm have since been developed [9]–[12].
One of the most popular derivatives of the LZ77 algo-
rithm is the Lempel-Ziv-Storer-Szymanski (LZSS) algo-
rithm [10], which was proposed in 1982 by James Storer and
Thomas Szymanski. To date, the LZSS algorithm has been
used in various file archiving programs such as ARJ, LHA,
PKZip, RAR, and ZOO. In addition, the LZSS algorithm has
been used in text [13] and heart sound compression [14],
parallel processing for general-purpose computing on graph-
ics processing units (GPGPU) [15], and a 5G-enabled internet
of things (IoT) gateway design [16].

FIGURE 1. Example of lossless data compression using LZSS algorithm
when text data stream of ‘‘AAAABCAAAB’’ is input. The sizes of the
look-ahead and search windows are set to 4 and 5, respectively. The
predefined minimum length M is set to two. The underlined digits
indicate one-bit flags.

Fig. 1 shows an example of text data compression using
the LZSS algorithm. Look-ahead and search windows are
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utilized in the LZSS algorithm. When a text data stream is
input to the LZSS algorithm, the algorithm finds the longest
matching length of letters stored in the look-ahead and search
windows. If the longest matching length is greater than or
equal to the predefined minimum length M , the algorithm
outputs (d,m), where d is the distance between the start of
the matched letters in the search window and the end of the
search window, and m is the matching length. If the longest
matching length is less thanM , the algorithm outputs the first
letter l stored in the look-ahead window. When the algorithm
outputs (d,m) or l, the look-ahead and search windows move
by m or 1, respectively. The processes discussed above are
repeatedly performed until the look-ahead window becomes
empty. In addition, after the processes are completed, each
output is converted into a binary form. Notably, because
the LZSS algorithm outputs (d,m) or l, depending on the
longest matching length, it uses one-bit flag f to signify
whether the next bits represent (d,m) or l. If the algorithm
outputs (d,m) (l), f is set to 1 (0). In such a case, f is inserted
in front of the corresponding binary form, as shown in Fig. 1.
Therefore, LZSS compressed data are stored or transmitted
according to the structure shown in Fig. 2.

FIGURE 2. Structure of LZSS compressed data. f is inserted in front
of l or (d , m). Therefore, LZSS compressed data consists of several
‘‘f , l ’’ and ‘‘f , (d , m)’’ pairs.

II. RELATED WORKS AND MOTIVATION
Unfortunately, in practical applications, errors can occur in
LZSS compressed data for a variety of reasons. For example,
dirt on the storage media can cause errors during a memory
write or read operation. In addition, errors in LZSS com-
pressed data can be generated by unpredictable interference
and noise during transmission.

In order to detect such errors, error detection and recovery
methods for LZSS compressed data have been studied [17].
The proposed method in [17] encodes an error sensitive
part of the LZSS compressed data by using unary coding.
In addition, the method copies the encoded part, and moves
it to the beginning of the LZSS compressed data. Then, the
method inserts a synchronization sequence into the LZSS
compressed data. The errors in the error sensitive part are
detected by searching the synchronization sequence, and are
recovered by using a copy of the part. However, the proposed
method increases the size of LZSS compressed data, and has
a limitation that it cannot detect bit errors which occur outside
of the part. In addition, only the compression ratio and error
recovery capability performances were provided. Moreover,
since the performance comparison with other relatedmethods
is not found in [17], the effectiveness of the proposed method
remains unverified.

In [18], an unequal error protection scheme for LZSS com-
pressed data has been proposed. In addition, towards this goal,

a novel structure, which requires an insertion of additional
redundancy, for the output data of the LZSS algorithm is
introduced in [18]. However, in [18], the proposed scheme
is only focused on minimization of error propagation during
the decoding process of the LZSS algorithm. In addition, it
is stated that error detection is performed by using the Reed-
Solomon code [19], [20]. However, the error detection perfor-
mance and performance comparison with other schemes are
not provided.

For error detection in LZSS compressed data, conventional
error detection schemes including repetition code, parity
bit, and Hamming code [21] can be also used. However,
these conventional error detection schemes also require the
insertion of additional bits for error detection. Therefore, if
the conventional error detection schemes are used for LZSS
compressed data, the code rate decreases. The code rate is
defined as

code rate =
Lc

Lc + La
, (1)

where Lc is the bit length of a compressed data and La is the
total bit length of additional bits, which are inserted in the
compressed data for error detection of the compressed data.

This led us to search for a means to detect errors in LZSS
compressed data without the need to insert additional bits.
Toward this goal, we investigated the output binary sequences
generated by the LZSS algorithm. During this investigation,
we found three unique patterns in the LZSS compressed data.
In addition, we realized that these three patterns could be
utilized as error check conditions. In this paper, based on the
three conditions, we propose an error detection algorithm for
LZSS compressed data under the assumption that the receiver
know the type of the compression algorithm in advance. The
proposed algorithm detects the presence of errors in data
without the need to insert additional bits. A detailed descrip-
tion of these three conditions and the proposed algorithm is
presented in the next section.

III. PROPOSED ERROR DETECTION ALGORITHM
FOR LZSS COMPRESSED DATA
Let H and S be the sizes of the look-ahead and search win-
dows, respectively. In the LZSS algorithm, the binary code
lengths for d and m are the same. In this paper, d and m are
each encoded with L bits. Then, the total length of (d,m)
is 2L. In addition, L is determined to satisfy the condition
given by

2L−1 ≤ S < 2L . (2)

As shown in Fig. 1, if S is set to 5, the L that satisfies the con-
dition in (2) is determined to be 3. Therefore, in this case, the
binary code of (d , m) is represented with 6 bits. In contrast,
regardless of L, l is encoded with 8 bits based on the Ameri-
can standard code for information interchange (ASCII).

Let P be the set of (d , m) pairs in the LZSS compressed
data. In the description of the three error check conditions,
we use the expression (di, mi), where i ∈ P, to distinguish
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each (d ,m) pair in the LZSS compressed data. Then, the three
conditions for the LZSS compressed data can be described as
follows:

• di is greater than or equal to mi because the number
of matched letters is upper bounded by the distance
between the start of thematched letters in the searchwin-
dow and the end of the search window. This condition
can be represented as follows:

di ≥ mi, ∀i ∈ P. (3)

• Based on its definition di, di is less than or equal to the
size of the search window S, as follows:

di ≤ S, ∀i ∈ P. (4)

• Based on its definition mi, mi is less than or equal to the
size of the look-ahead window H , as follows:

mi ≤ H , ∀i ∈ P. (5)

If no errors occur in the LZSS compressed data, the
LZSS compressed data must satisfy the three conditions
in (3)-(5). In addition, this means that if at least one of the
three conditions is not satisfied, there exist some errors in the
LZSS compressed data. Therefore, the three conditions can
be utilized for detecting the presence of errors in the LZSS
compressed data.

FIGURE 3. Flow chart of proposed algorithm.

Fig. 3 shows the flow chart of the proposed error detection
algorithm. Because the LZSS algorithm uses a one-bit flag
to signify whether the next bits represent (d,m) or l, the

proposed algorithm reads one bit first in the LZSS com-
pressed data. If the value of the flag f is 1, this means that the
next eight bits represent the binary code of l. As previously
described, l is encoded with 8 bits based on ASCII. In addi-
tion, only 7 out of 8 bits are used to contain the information
of l, while the remaining bit is used as a parity bit. Therefore,
in the proposed algorithm, when the value of f is 1, parity
bit checking is performed to detect the presence of errors
in the LZSS compressed data. In contrast, if the value of f
is 0, the algorithm reads 2L bits, which represent the binary
code of (d,m). The first L out of 2L bits is the binary code
of d , and the remaining L bits are the binary code of m.
After reading 2L bits, the algorithm checks whether d and m
satisfy the three conditions in (3)-(5). These procedures are
repeatedly performed until the look-ahead window becomes
empty. During the procedure, if at least one of the three
conditions is not guaranteed or a parity error is detected,
the algorithm determines that some errors exist in the LZSS
compressed data.

TABLE 1. Simulation parameters.

IV. SIMULATION RESULTS
In this section, we evaluate the performance of our proposed
algorithm. Towards this goal, we use a desktop computer
with 2.60 GHz CPU and 256 GB RAM memory. In addi-
tion, we utilizes text and data files from the two publicly
available databases, namely the Calgary and Canterbury
corpora [22], [23]. By referring to [24], we set the sim-
ulation parameters as shown in Table 1. To benchmark
the proposed algorithm, the following three conventional
error detection schemes, which are implemented by using
MATLAB R2016a, are simulated:
• Repetition code: The main idea of this scheme is to just
repeat the bit sequence r times and check whether the
repeated bit sequences are equal to each other. The code
rate of this scheme with r repetitions becomes 1/r .

• Parity bit: In this scheme, the presence of errors is
determined by the number of 1-bits in the bit stream,
including the parity bit. The value of the parity bit is
set to either ‘‘1’’ or ‘‘0’’ to maintain an odd number of
1-bits in the bit stream, including the parity bit. If the
number of 1-bits in the bit stream, including the parity
bit, is even, it is determined that a bit error occurs. If a
parity bit is inserted at every n bits, the code rate of this
scheme becomes n/(n+ 1).

• Hamming code [21]: To determine the presence of errors
in the bit stream, this scheme uses multiple parity bits.
The Hamming code with h parity bits can handle a
bit stream with a length of 2h − h − 1. The code
rate of the Hamming code with h parity bits becomes
(2h − h− 1)/(2h − 1).
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TABLE 2. Compression results using the LZSS algorithm for the Calgary corpus.

TABLE 3. Compression results using the LZSS algorithm for the Canterbury corpus.

A. COMPRESSION RATIO PERFORMANCE
In order to evaluate the performance, we compress each
corpus by using the LZSS algorithm with differentM values.
Tables 2 and 3 represent the compression results using the
LZSS algorithm for the Calgary and Canterbury corpora,
respectively. Then, we calculate the compression ratio, which
is defined as

compression ratio =
compressed size
uncompressed size

. (6)

TABLE 4. Length of the binary code of the matched letters for M = 4, 5, 6
according to the number of the matched letters.

Fig. 4 shows the compression ratio of the LZSS algorithm.
As shown in Fig. 4, it is observed that the optimal value ofM ,
which minimizes the compression ratio, is 5. The reason of
this can be found in Table 4. As described in Table 1, d and
m are encoded with L = 17 bits, respectively. Therefore, the
total length of the binary code of (d,m) is 34 bits. Considering
that l is encoded with 8 bits regardless of L, it is not preferable
to set the value ofM to 4 or less. If the value ofM is set to 4,
the matched four letters are encoded with 34 bits in a binary
form of (d,m). However, if the value of M is set to 5 or 6,
the matched four letters are encoded with 8 bits, respectively.
Then, the total length of the binary code of the four letters
becomes 32 bits. Therefore, in this case, the letters can be
further compressed by setting the value of M to 5 or 6 as

shown in Table 4. Similarly, when the number of the matched
letters is 5, the lengths of the binary code of the matched
five letters for M = 4, 5, 6 become 34, 34, and 40 bits,
respectively. In this case, in order to compress the matched
five letters more efficiently, it is desirable to set the value of
M to 4 or 5. In addition, the lengths of the binary code of
the matched letters for M = 4, 5, 6 are the same when the
number of the matched letters is any value other than 4 and 5
as shown in Table 4. Therefore, the optimal value of M is 5
for L = 17.

TABLE 5. Compression ratio of the LZSS algorithm with M = 5 for the
Calgary corpus after each error detection scheme is applied.

To detect errors in LZSS compressed data, the conventional
schemes insert additional bits into the LZSS compressed
data, as previously mentioned. However, our algorithm uses
no additional bits to detect the presence of errors in LZSS
compressed data. As a result, the length of the output bit
stream of each of the other schemes is longer than that of our
proposed algorithm. Tables 5 and 6 show the compression
ratio of the LZSS algorithm with M = 5 for the Calgary
and Canterbury corpora after each error detection scheme
is applied. As shown in Tables 5 and 6, applying the con-
ventional schemes to the LZSS compressed data leads to a

VOLUME 5, 2017 8943



B. Kwon et al.: Novel Error Detection Algorithm for LZSS Compressed Data

FIGURE 4. Compression ratio of the LZSS algorithm for (a) the Calgary
and (b) Canterbury corpora.

TABLE 6. Compression ratio of the LZSS algorithm with M = 5 for the
Canterbury corpus after each error detection scheme is applied.

decrease in compression efficiency of the LZSS algorithm
due to the insertion of additional bits. By contrast, the pro-
posed algorithm, which does not need any additional bits, has
the best compression ratio on the two databases.

B. ERROR DETECTION PERFORMANCE
In order to evaluate the error detection performance of each
scheme, we define the error detection rate as

error detection rate =
Nd
Nt
× 100(%), (7)

where Nd is the number of all correctly detected corrupted
data and Nt is the total number of corrupted data.
The error detection rate of our proposed algorithm depends

on both a parity check for the binary code of l and a check of
the three conditions in (3)-(5) for (d,m). In the structure of
the LZSS compressed data shown in Fig. 2, the percentage
of l and (d,m) can change according to M . It means that the
error detection rate of the proposed algorithm may change
according to M .

FIGURE 5. Error detection rate performance of the proposed algorithm
for the Calgary and Canterbury corpora according to M.

Fig. 5 shows the error detection rate performance of our
proposed algorithm for the Canterbury corpus according
to M . To clearly see the performance of the proposed algo-
rithm according to M , a single bit error is assumed in this
simulation. From the figure, it is seen that the error detection
rate of the proposed algorithm is improved when the value
of M is set to a relatively large value. When the value of M
is set to a relatively large value, the small matched letters
are not encoded in a binary form of (d,m). Instead, the
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matched letters are encoded with 8 bits in a binary form
of l, respectively. Therefore, the percentage of l in the LZSS
compressed data increases with the value of M as shown
in Table 7. Accordingly, the probability that a bit error is
present in the binary code of l increases as the value of M
increases. In addition, if a single bit error occurs in the binary
code of l, the number of 1-bits in the binary code, including
the parity bit, becomes even. In this case, the parity check
perfectly detects the bit error. Therefore, if the value of M is
set to a relatively large value, the error detection rate of the
proposed algorithm for a single bit error is improved.

TABLE 7. Numbers of f , l , and (d , m) of the LZSS compressed data
for ‘‘grammar’’ and ‘‘xargs’’ files in the Canterbury corpus.

Fig. 6 shows the error detection rate performance of the
proposed algorithm for the Calgary and Canterbury corpora
according to the number of bit errors, when the value ofM is
set to 5. In the simulation, it is assumed that multiple bit errors
occur randomly and independently in the LZSS compressed
data. For performance comparison, we also evaluate the error
detection rate for Repetition code with r = 2, Parity bit
with n = 4, and Hamming code with h = 6. In Repetition
code with r = 2, the bit sequence is repeated twice for error
detection. In Parity bit with n = 4, a parity bit is inserted at
every four bits, and a parity check is performed at every five
bits, including the parity bit. In Hamming code with h = 6,
six parity bits are inserted at every fifty-seven bits to detect a
bit error.

However, we omit the results of Repetition code with
r = 2, Parity bit with n = 4, and Hamming code with h = 6
for each corpus. In the simulation for Fig. 6, it is observed that
the error detection rates of the conventional schemes for all
the corpora are always 100%. The reason of this is as follows.
In Repetition codewith r = 2, the error detection may fail if a
bit and its corresponding repeated bit are both flipped. How-
ever, the two bits are rarely both flipped because bit errors
do not occur sequentially but randomly and independently
in the simulation. As a result, Repetition code with r = 2
detects the bit error in almost all cases. However, because the
code rate of Repetition code with r = 2 is smallest among
the schemes, the compression ratio of Repetition code with
r = 2 is also the worst as shown in Tables 5 and 6. In Parity
bit with n = 4, when an even number of bits, including a
parity bit, are flipped as a result of error, the scheme cannot

FIGURE 6. Error detection rate of the proposed algorithm for the Calgary
and Canterbury corpora according to the number of bit errors, when the
value of M is set to 5.

detect the presence of errors. In the simulation, it is observed
that the parity check, which is performed at every five bits,
nearly always detects the presence of errors because an even
number of bits are rarely flipped simultaneously in the five
bits. In addition, Hamming code with h = 6, which uses
multiple parity bits, also nearly always detects the presence of
errors in the bit stream. For this reason, in Fig. 6, we omit the
results of Repetition code with r = 2, Parity bit with n = 4,
and Hamming code with h = 6 for each corpus.

In Fig. 6, it is observed that the proposed algorithm falls
behind from the other schemes, when the number of bit errors
is smaller than or equal to 6. The reason of this is that the
check of the three conditions in (3)-(5) does not always detect
the bit error. For example, let us assume that the original
binary code of (d,m) is ‘‘110100.’’ The decimal values of d
andm are 6 and 4, respectively. Therefore, the condition in (3)
is satisfied. However, if this six-bit stream is read or received
as ‘‘110101’’ - where the single bit error occurs in the last bit
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- the decimal values of d andm become 6 and 5, respectively.
However, because the condition in (3) is still satisfied, this bit
error is not detected by the proposed algorithm. However, it is
observed that when the number of bit errors is greater than or
equal to 7, the proposed algorithm nearly always detects the
presence of errors in the bit stream. In addition, as previously
mentioned, Repetition codewith r = 2, Parity bit with n = 4,
and Hamming code with h = 6 utilize additional bits, which
degrades compression efficiency of each scheme as shown
in Tables 5 and 6. In contrast, our proposed algorithm does
not use any additional bits for error detection. Therefore, the
utility of the proposed algorithm can be greater than those of
the conventional schemes, when the number of bit errors is
greater than or equal to 7.

TABLE 8. Running time (in seconds) of each scheme for the Calgary
corpus, when the value of M is set to 5.

TABLE 9. Running time (in seconds) of each scheme for the Canterbury
corpus, when the value of M is set to 5.

C. RUNNING TIME PERFORMANCE
To evaluate the running time performance of each scheme,
we separately calculate the running time of each scheme by
using the TIC and TOC functions in MATLAB R2016a. The
TIC function records the current time, and the TOC function
measures the time elapsed from the time recorded by the
TIC function. Tables 8 and 9 show the running time of each
scheme for the Calgary and Canterbury corpora, respectively.
In this simulation, the value ofM is set to 5. In Tables 8 and 9,
it is observed that the proposed algorithm performs best on
all the corpora. One of the reasons for this is that the length
of the bit sequence of the compressed data for each corpus
increases due to the insertion of additional bits, when the
conventional schemes are applied. The running time of each
scheme depends on the length of bit sequence. In general,
the running time increases as the length of bit sequence
increases. These results are consistent with the compression
ratio performances as shown in Tables 5 and 6.

V. CONCLUSION
Existing error detection schemes, like repetition code, parity
bit, and Hamming code, require the use of additional bits for
error detection. Therefore, if these conventional schemes are
used for LZSS compressed data, a degradation of the code
rate of the compressed data occurs. In order to avoid this
problem, in this paper, we proposed a novel error detection
algorithm for LZSS compressed data. Toward this goal, we
introduced three error check conditions that stemmed from
the unique bit patterns in LZSS compressed data. These
three conditions allow the proposed algorithm to detect the
presence of errors in LZSS compressed data. Because our
proposed algorithm used no additional bits for error detection,
it could outperform the conventional schemes in terms of
compression ratio and running time. The proposed algorithm
fell behind from the conventional schemes when the num-
ber of bit errors is smaller than or equal to 6. However, it
was demonstrated that the proposed algorithm could nearly
always detect the presence of errors when the number of bit
errors is greater than or equal to 7. Therefore, the utility of
the proposed algorithm can be greater than those of the con-
ventional schemes, when the number of bit errors is greater
than or equal to 7.
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