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ABSTRACT Blind source extraction (BSE) is often posed as the maximization of a statistical criterion
under a unitary constraint. This paper addresses the convergence problem of a kurtosis-based criterion in
the presence of noise. We present the stationary points of such criterion, and show that these extrema are
simplified as the minimum mean square error (MMSE) solutions with some approximations. Moreover,
we introduce a robust preprocessing approach, which allows one to find the MMSE separation matrix up to
an orthogonal factor. The excellent performance of the BSE algorithm based on this preprocessing approach
shows that the analysis of the stationary point is reliable.

INDEX TERMS Blind source extraction (BSE), blind source separation (BSS), kurtosis maximization,
Gaussian noise.

I. INTRODUCTION
Blind source separation (BSS) has received considerable
attention because of its applicability to various fields, such
as communication signal analysis, image processing, texture
modelling, and others [1]–[4]. Blind source extraction (BSE)
is a special class of BSS methods, which extracts one
source or a selected number of the sources at a time [5].
A large number of BSE algorithms have been proposed
over the past decades that are mostly derived from search
methods aiming to maximize statistical criteria that typically
reflect some known structural properties of the transmitted
signals [6], [7].

The most widely used statistical criteria in the BSE are
the kurtosis-based ones. Then, an important question is
whether the stationary points of such a criterion will yield
an ‘‘approximate’’ extraction. The existing studies of station-
ary points are usually proposed under the assumption of no
noise. In such cases, a convergence proof was provided by
Ding and Nguyen in [8], which shows that all extrema will
extract a single source while rejecting all the interference.
However, the bias caused by the noise, which may be present
in many applications, will affect the convergence behavior of
the systems.

The BSE algorithms based on the kurtosis-type criteria
are known to provide good results. However, the stationary
points in the presence of noise are not as clearly under-
stood as the noiseless alternates. This paper addresses this
difficult problem. We introduce the Lagrange multiplier

approach to present the stationary points of such criterion.
Moreover, we show that these extrema are simplified as the
minimum mean square error (MMSE) solutions with some
approximations.

Many of the algorithms that have been proposed for
the noisy data produce the zero-forcing solution [9], [10].
However, such solution does not correspond to the MMSE
criterion. Inspired by the above study of the stationary points,
we employ a robust preprocessing approach in [11], which
allows one to find the MMSE separation matrix up to an
orthogonal or unitary factor. The simulations show that the
algorithm based on the robust preprocessing step provides
excellent performance. This result supports our analysis of
the stationary points.

II. PROBLEM FORMULATION
Consider the typical model where the observed mixtures
are expressed as a linear mixing of independent sources.
Denoting the observed mixtures by x(k) = [x1(k),
x2(k), . . . , xm(k)]T , then, the signal model is described by

x(k) = As(k)+ n(k) (1)

where s(k) = [s1(k), s2(k), . . . , sn(k)]T is the source vector,
A=[a1, a2, . . . , an] is an unknown mixing matrix, and n(k)
is a Gaussian noise vector. Moreover, without loss of gener-
ality, we assume that the sources have a zero mean and unit
variance.

To retrieve one of the source signals, we apply an extrac-
tion operation given by the demixing vector w to the
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mixtures x[k], which yields the recovered signal y(k),
given by

y(k) = wHx(k) =
n∑
i=1

gisi(k)+ wHn(k) (2)

where gi = wHai is a coefficient of the source si. Assuming
that the sources are second order circular signal, then the
kurtosis of a random signal y[k] is defined as [12]

kt(y(k)) = E{|y(k)|4} − 2E2
{|y(k)|2} (3)

where E{·} denotes the statistical expectation. In addition,
it is noted that the kurtosis-based BSEmethods cannot extract
the source signal with zero kurtosis. Therefore, we assume
that the sources of interest always have non-zero kurtosis.

III. STATIONARY POINTS OF A KURTOSIS
MAXIMIZATION CRITERION
In the BSE, the kurtosis-based technology is one of the
most common methods. The kurtosis-type criterion usually
requests that the output variance is bounded. Considering this
constraint, we obtain the optimization problem described by

max J1(w) = kt(y(k)),

subject to J2(w) = E{|y(k)|2} = 1. (4)

The kurtosis of the signal y(k), can be expressed as the sum
of the individual kurtosis by considering that the kurtosis of
a Gaussian signal is zero and the properties of kurtosis for
linear mixing systems, and can be expressed as

J1(w) = kt(y(k)) =
n∑
i=1

|gi|4kt(si(k)) (5)

where kt(si(k)) denotes the kurtosis of si(k). Otherwise, if the
objective source has a negative kurtosis, we simply change the
sign of J1. Therefore, without loss of generality, we assume
that the objective source has a positive kurtosis.

Our goal is to obtain the stationary points of the constrained
optimization problem described in (4). To this end, we first
introduce the Lagrange multiplier method to transform it into
an unconstrained optimization problem

J (w, λ) =
n∑
i=1

|gi|4kt(si(k))+ λ(1− wHRxw) (6)

whereRx is the covariance matrix of x(k), and λ is a Lagrange
multiplier. It is well known that a stationary point is located
where the gradient of the function equals to zero

∇wJ (w, λ) =
n∑
i=1

2kt(si(k))|gi|2aiaHi w−λRxw = 0. (7)

To obtain the solution of this equation, we take the variable
2kt(sh(k))|gh|2ahaHh w on the one side of the equal sign, and
the rest on the other side, Then, we obtain the solution that
makes the equation tenable, and which is given by

whopt = bh(Rx −
n∑

i=1,i 6=h

αiaiaHi )
−1ah (8)

where bh (h = 1, 2, . . . , n) is a non-zero coefficient that
will not influence our conclusion, and αi=2kt(si(k))|gi|2/λ
is a coefficient depending on the vector w. The subscript h
indicates that this stationary point extracts the h-th source
signal.

The existing study have shown that when a signal is
received in the presence of noises with zero kurtosis (such
as Gaussian noise), the kurtosis maximum algorithm (KMA)
will converge to the capturing of the signal with MMSE
setting [8]. From the solution in (8), we have that our
result supports such conclusion, but has a more general
significance.

In order to further analyze the stationary points of the
model, we expand the expression of the solution in (8), and
simplify it with some suitable approximations. According to
the property of matrix inversion, we have formula as follows

(Rx −
n∑

i=1,i 6=h

αiaiaHi )
−1ah

= R−1x ah+
n∑

i=1,i6=h

n∑
j=1,j 6=h

cijdjhR−1x ai (9)

where djh = aHj R
−1
x ah and cij are scalar coefficients.

The scalar djh denoting the interference comes from
the h-th source signal when extracting the j-th source under
the MMSE framework is typically a relatively small quantity.
The coefficients cij often contains the factors dij(i 6= j), which
makes the second part on the RHS of (9) contain some second
order of the small quantity. Neglecting this small quantity,
we obtain the pre-simplification of the stationary point in (8),
given by

(Rx−
n∑

i=1,i 6=h

αiaiaHi )
−1ah ≈ R−1x ah +

n∑
i=1,i 6=h

αiβidihR−1x ai

(10)

where βi=1/(1−αidii) is a scalar parameter. In order to intu-
itively illustrate the above approximation process, we employ
a simple case as the example, in which the source’s number n
is set as 3. Then, we have the following equation

(Rx − αiaiaHi − αjaja
H
j )
−1ah

= R−1x (ah + αiβidihai
+α2i αjβ

2
i βijdijdjidihai+αiαjβiβjdijdjhai + αjβjdjhaj

+αiα
2
j β

2
j βjidjidijdjhaj + αiαjβiβjdjidihaj) (11)

where βij = 1/(1−αjdjj−αiαjβidijdji) is a scalar coefficient.
We find that the result in (11) is consistent with the above
analysis, and that can be approximated as the expression
in (10). It should be noted that a similar example is achieved
for more source signals but is not presented here.

Substituting the pre-simplification described in (10) into αi
and neglecting the above 3-order terms of dij (i 6= j), we find
that αi is the second order of dij(i 6= j), which makes the sec-
ond part on the RHS of (10) a third order of the small quantity
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dij(i 6= j) that can be neglected. Therefore, the stationary point
given by (8) can be further simplified as

whopt ≈ R−1x ah (12)

which is the MMSE solution of the system. Therefore, it can
be concluded that, if the mutual interference is small enough
under the MMSE framework, the stationary points of the
constrained optimization problem described in (4) would be
approximately equals to the MMSE solutions.

IV. ROBUST-FASTICA ALGORITHM
Some algorithms for blind extraction require prewhitening of
mixed signals. After prewhitening, the BSE problems usually
become somewhat easier and well posed. The additive noise
needs to be taken into account in many practices. And then
the quasi-whitening process is developed in the literatures.
Before presenting this preprocessing, we first review the
eigenvalue decomposition of the covariance matrix Rx

Rx = E{x(k)xH (k)} = U3UH (13)

where 3 = diag{λ1 > λ2 . . . > λm} contains the m
eigenvalues, and U = [u1, u2, . . . , um] is the eigenvec-
tors matrix. It is well known that the matrix U can be
divided into Us = [u1, u2, . . . ,un] contains the eigenvec-
tors that correspond to the n principal eigenvalues of 3s =

diag{λ1 > λ2 . . . > λn}, and Un = [un+1, . . . ,um] contains
the m-n eigenvectors. Then, the preprocessing matrix that is
applied in the quasi-whitening processing is given by

Pqua = (3s − σ
2I)−1/2UH

s (14)

where σ 2 is the noise variance. This preprocessing allows
one to find the zero-forcing separation solution up to an
orthogonal factor. It well known that such solution is able to
suppress the mutual interference of source signals.

The analysis of the stationary points shows that the
kurtosis- based BSE algorithms approximately converge to
the MMSE separation solutions. Thus, the quasi-whitening
preprocessing, which is proposed for the zero-forcing sepa-
ration solution, is not suitable for such a condition. In this
section, we employ the robust preprocessing proposed in [11],
which can overcome the above problem. The preprocessing
matrix that is applied in the robust preprocessing is given by

Prob = (3s − σ
2I)1/23−1s UH

s . (15)

The mixed signal after robust preprocessing is z(k) =
Probx(k). From [11], we have that the only difference between
the MMSE separation solution and the robust preprocessing
matrix is an orthogonal transformation. This condition means
that one can find the MMSE solution up to an orthogonal
factor. The MMSE solution can not only suppress the mutual
interference of source signals, but also reduce the effect of
noise.

The following BSE method is to design a demixing vec-
tor w such that y(k)=wH z(k) can recover one of the source
signals. Our starting point is a Newton’s approach based

on the Lagrangian function. The second term on the RHS
of (3) is ignored owing to the unity-variance constraint. Then,
the Lagrange function for the optimization problem in (4) is
given by

J (w, λ) = J3(w)+ λ(1− J2(w)) (16)

where J3 = E{|y(k)|4} is the simplified contrast function,
J2 is the constraint in (4), and λ is a Lagrange multiplier. The
Newton update to this Lagrangian is given by [13]

1w = −(HwJ3 + λRz)−1(∇wJ3 + λRzw) (17)

where ∇wJ3 andHwJ3 are the gradient and the Hessian of the
function J3, respectively. Using the result of [12], we obtain
that the gradient is ∇wJ3 = 2E{|y(k)|2y(k)∗z(k)}, and the
Hessian is HwJ3 = 4E{|y(k)|2}Rz. Substituting these results
into (17) and simplifying, we obtain the fixed-point update as

w+ = 2E{|y(k)|2}w+ R−1z E{|y(k)|2y(k)∗z(k)}

w+ = w+/((w+)HRzw+) (18)

Note that if the preprocessing is the whitening (that is
Rz = I), this update is exactly the method proposed in [12].
This update can be extended to the estimation of all the source
signals. To prevent different vectors from converging to the
same ones, the demixing vectorw should be decorrelated after
every update. One way to accomplish this is given by [12]

wp+1 = wp+1 −
p∑
j=1

wjwHj wp+1 (19)

After this deflation scheme, we obtain the orthogonal demix-
ing matrix W=[w1, w2, . . . ,wn]. Combining the robust pre-
processing and this fast fixed-point algorithm (FastICA),
we then obtain the robust-FastICA method used in this paper.

V. SIMULATIONS
In this section, some simulation examples are carried out to
illustrate the validity of the stationary point analysis. We take
the communication signal processing under consideration.
An eight-element uniform linear array is employed. The dis-
tance is set to half of the carrier wavelength of the sources.
Each of the sensor signals is polluted by an additive noise.

In the first example, the source signals are assumed as four
QPSK modulated signals. These independent sources have a
zero mean and a unit variance with the length of 8000 sam-
ples each. The directions of arrival of the sources were set
θ1 = 0◦, θ2 = 10◦, θ3 = 20◦, and θ4 = 30◦. Fig. 1 shows the
beam patterns of theMMSE extractor and our robust-FastICA
algorithm when the input SNR is fixed at 5 dB.

From Fig. 1, we find that the beam pattern of the pro-
posed algorithm is similar to that of the MMSE extractor.
This result is consistent with our analytical result that the
stationary points of the optimization problem described in (4)
are approximately equal to the MMSE extraction solutions.
It should be noted that only the beam pattern for the third
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FIGURE 1. The beam pattern of the MMSE extractor and the
robust-FastICA algorithm.

source signal is presented in this example. Similar perfor-
mance is achieved for extracting the other sources but is not
presented here.

In the second example, we compared the performance
of the robust-FastICA algorithm and the KMG algorithm
based on the quasi-whitening proposed in [14]. To evalu-
ate the performance of the algorithms, we take the signal-
to-interference-plus-noise ratio (SINRi) as the performance
index defined as

SINRi = |gik |2/(
n∑
j=1

|gij|2 + σ 2
m∑
j=1

|sij|2 − |gik |2) (20)

where gij is the ij-th element of the matrix G=WPA, sij is
the ij-th element of the matrix S=WP, and gik = max{gi1,
gi2, . . . , gin}. This criterion indicates the degree of inhibition
of the objective signal to interference signal plus noise, and
is suggested as the most meaningful performance criterion.

This simulation example employs the same parameters
as those used in example 1, except that the source signals
arrive at the sensors from the angles θ1 = −6◦, θ2 = 0◦,
θ3 = 9◦, and θ4 = 16◦. Fig. 2 presents the SINRi of the
separated signals after the convergence of the algorithms.
Note that the MMSE-bound in Fig. 2 shows the upper limit
of the performance corresponding to the MMSE separation
matrix.

From Fig. 2, we find that the separation performance of
the robust-FastICA algorithm approaches the MMSE-bound
for all the four output signals. However, the performance of
the KMG method only approaches the MMSE-bound for the
first output signals. Note that the criterion employed in the
KMG algorithm is also the kurtosis maximization ones. For
the rest of the output signals, the performance degradation
of the KMG algorithm is due to the bias from the quasi-
whitening step. The excellent performance of the robust-
FastICA algorithm shows that the analysis of the stationary
point is reliable.

To further illustrate the performance of the algorithms,
the input SNR is set as 0-15 dB, and 16 experiments are
conducted under different SNRs, where 100 Monte Carlo

FIGURE 2. SINRi of 4 separated signals using the MMSE extractor,
the robust-FastICA algorithm, and the KMG algorithm.

FIGURE 3. Average SINR over 100 independent runs for the MMSE
extractor, the robust-FastICA algorithm, and the KMG algorithm.

experiments are performed for each SNR case. The averages,
SINR (the mean of SINRi), are presented in Fig. 3.

From Fig. 3, we find that the robust-FastICA algorithm
has an improved separation performance than the contrast
method, and closely approaches the MMSE-bound under all
considered SNRs. This simulation demonstrates the superior
performance of the robust-FastICA algorithm. This result
also shows the reliability of the stationary point analysis.

VI. CONCLUSION
In this paper, we have provided a convergence analysis for the
kurtosis maximization criterion in the presence of Gaussian
noise. We have shown that if the mutual interference is small
enough under the MMSE framework, the stationary points of
such criterion can be simplified as the MMSE solutions with
some suitable approximations. Moreover, we have proposed
a FastICA method based on robust preprocessing to illustrate
the correctness of the convergence analysis. The simulation
results support our theoretical analysis.
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