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ABSTRACT Trusted hardware sharing (THS) system can provide multiple trusted execution environ-
ments (TEE) via sharing the trusted hardware (e.g., sharing trusted platform module via virtualization)
for stand-alone and isolation scenarios. However, the trusted function requests (TFRs) sent to the trusted
hardware are emitted by multiple TEEs, which have to be processed by THS. Since different applications
in different TEEs have different security requirements, the data in TFRs need to be protected from being
leaked or modified in an unauthorized manner. To address this issue, we present a secure scheme for THS
systems based on an information flowmodel that protects the sensitive data in TFRs. Each TFR is assigned a
security level according to their owner, and processed in isolated environments with different security levels.
We implement the prototype and conduct the experiments in both shared memory and isolated environments.
The results indicate that the introduction of security mechanisms can lead to more time consumption
on processing TFRs with the increase in the dimension of security levels. However, this degradation in
performance is still acceptable and can be mitigated in the real world, because intensive TFR requests are
not present as they are in the experimental environment.

INDEX TERMS Trusted hardware sharing, trusted computing, information flow, security level, lattice.

I. INTRODUCTION
For a long time, software-based security hardening (SSH)
solutions, such as antivirus products and software firewalls,
have been adopted to provide a protection mechanism for
computing systems. However, there is no guarantee that
SSH measures themselves can avoid being victims of cyber-
attacks or being intentionally misused by malware. Because
of this, SSH solutions alone do not always provide trust.
To compensate for the lack of SSH, hardware supported
security measures are proposed to provide trust enhancement
for computing systems, such as personal computer, servers
and embedded systems. Currently, the most popular hardware
supported security hardening is the Trusted Platform Mod-
ule (TPM) [1], which relies on a dedicated microprocessor to
establish trust between communication partners. It comprises
secure storage for cryptographic keys and cryptographic co-
processors to provide reliable integrity measurement and
remote attestation services.

With the help of TPM, computing system can establish a
trusted execution environment (TEE) for OS and applications

from system startup. With the upgrading of hardware perfor-
mance of computing systems, the virtualization technique is
widely adopted to provide multiple execution environments
with various configurations on a single hardware. For embed-
ded system, hardware can support multiple virtualized and
isolated execution environment, such as MILS in avionic sys-
tem [2]–[6]. However, an issue arises on how aTPMhardware
serves multiple virtualized execution environments (VEE).
To address this problem, current research works (refers to
section II) concentrate on building a virtualized TPM for each
VEE via the virtualization technique to achieve the goal of
sharing one TPM hardware among multiple VEEs.

Figure 1 shows a typical example of the architecture
of TPM sharing in a virtualization environment. The key
component is the ‘‘virtualized TPM service (vTPMSvc)’’
module, which performs as an agent of the TPM hardware
and is implemented in hypervisor. A vTPM is implemented
as a virtual hardware device in each VM, which is managed
by the vTPMSvc module. When an invocation to trusted
function (also called a trusted function request, TFR, such as
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FIGURE 1. A typical scenario of TPM sharing in virtualization
environment.

requesting cryptographic keys, integrity measurement,
remote attestation services) occurs in a VM, the vTPM needs
to deliver the invocation to the vTPMSvc module, which
continuously hands over the request to the TPM hardware.
When the TPM hardware finishes processing the request,
the results are sent back to the VM. When multiple TFRs
arrive at vTPMSvc, it needs to schedule the requests for either
performance or security requirements.

With the virtualization technique, TPM functions are actu-
ally extended into each VM (or VEE) running on a single
physical device. Thus, the trusted chain can be extended
from the physical device to each nested virtualized envi-
ronment, which guarantees the VEE can establish a TEE
for itself. In cloud computing, multiple VMs are running
as virtual servers providing services, such as web service
and database service, on one physical machine with a TPM
sharing mechanism. These services provided by VMs have
different security requirements according to the service type,
e.g., cryptographic services for different users or applications
on particular security level. Hence, the TFRs invoked by VM
also have security requirements, e.g., VM needs to request
cryptographic keys from TPM via vTPM, and this procedure
should be protected from being leaked. In this procedure, the
TFR data should be prevented from unauthorized disclosure
and modification. Moreover, the processing of continuous
service data should not cause leakage or modification of
sensitive data. To address both of the problems, we propose a
security scheme based on information flow control to protect
the trusted hardware sharing systems (THS).

Our threat model is one where the VEE may contain
software with unintentional bugs, malicious codes or Trojan
horses that cause information leakage. E.g., malicious codes
may be injected into TFR by malware hidding in VEEs,
which can be invoked while TFRs are being processed and
can access other TFRs illegally. We focus on how TFR data
generated by the VEE can be processed in a secure manner

so that they are protected against unauthorized disclosure
and modifications. Meanwhile, users can deliberately obtain
information that they are not authorized to access.

In our paper, we first establish information flow constraints
for the processing of TFR data. We formalize the information
flow constraints in the THS environment and demonstrate
how TFRs are processed with these information flow con-
straints. We also give the scheduling policy for the vTPMSvc
module, which can improve the performance of request pro-
cessing. We implement a prototype to demonstrate the fea-
sibility of our approach and show how the performance is
impacted by the security scheme as well as the improvement
in vTPMSvc performance with our scheduling policy.

The rest of the paper is organized as follows. In Section II,
we mention a few related works. In Section III, we conduct a
brief discussion on TFR processing and introduce the security
level to this procedure. In Section IV, we present our security
model based on information flow control, and discuss TFR
processing in detail. Moreover, our scheduling policy for the
vTPMSvc is also discussed in this section. To prove the feasi-
bility of our scheme, we propose the system implementation
and evaluation in Section V. Finally, we conclude the paper
in Section VI.

II. RELATED WORK
As mentioned before, different VEEs have different secu-
rity requirements, e.g., the VEE providing critical services
has higher security requirements than that providing nor-
mal services; hence, devices/VEEs security requirements
need to be taken seriously when delivering a trust function
request (TFR) in distributed environment. However, most
recent work focus on how to share the single hardware TPM
among multiple devices or VEEs, which lacks consideration
of the security requirements of devices/VEEs.

For a virtualized environment, the hardware TPM is
usually shared among VEEs via creating multiple virtu-
alized TPMs (vTPMs), which extend TPM functionalities
into VEEs. In [7], TPM is introduced to the virtualization
platform as the trusted root, which can provide an authen-
tication mechanism for both VMs and access users. The
hardware TPM and the trust service are deployed on a
Trust Validation Server (TVS). Trust service is virtualized
into multiple instance (vTPM service) for servers containing
virtual machines. Virtual machines are assigned virtualized
TPMs (vTPMs) by sharing the single hardware TPM via
vTPM services. This approach realizes the extension of the
hardware TPM function and enhances the security of the
virtualization platform. However, Sule et al. [8] designs and
deploys a trusted cloud computing for power system applica-
tions. The hardware TPM is used as the trust root to establish
the chain-of-trust for the infrastructure of the cloud platform.
When all the software components of the cloud infrastructure
are successfully measured, a software based TPM (vTPM)
within the VMbuilds a new chain-of-trust for the components
of the VM. Wang et al. [9] proposes the Trusted Cloud
Platform, which also extends the security mechanism from
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the hardware TPM to the VM and VMmonitor (VMM).With
this architecture, the host OS, VMM and the VM images can
be measured before startup, which achieves the establishment
of the chain-of-trust from the hardware to the applications
running in VMs.

For sharing the hardware TPM among devices,
Feng et al. [10] propose Trusted Execution Environment
Module (TEEM), a portable Trusted Computing module that
can provide trusted computing functionalities for various
computing platforms such as desktop machines and mobile
devices. TEEM is designed as a secure TPM service run-
ning in the secure world of TrustZone, and a prototype is
implemented on a general ARM SoC development board.
To pave the way for utilizing TPM in cross-device scenarios,
Chen et al. [11] proposes cTPM, which extends the original
TPM design by adding an additional root key to the TPM and
making that root key available for sharing with the cloud.
This approach actually achieves TPM sharing by extending
the scope of the root key utilization. Raj et al. [12] proposes
firmware-TPM (fTPM), an end-to-end implementation of a
TPM using ARMTrustZone, for ARM-basedmobile devices.
fTPM is actually a software defined TPM that relies on
the security features of the ARM processor. Hence, fTPM
can also be considered as the hardware security mechanism
that is shared by applications via a virtualized TPM. To
address the lack of trusted hardware for mobile devices,
Proskurin et al. [13] proposes a secure element based TPM
(seTPM) for trust establishment in mobile devices. seTPM
is actually a software deployed in a GlobalPlatform-defined
secure element, which can be shared by multiple applications
in the mobile device via a seTPM driver embedded in the
host OS kernel. Constantin et al. [14] presents a trusted
architecture for a partitioned multicore processor based on
TPM. A trusted component is designed in the OS kernel
(trusted kernel), which can virtualize the hardware TPM into
multiple vTPMs for different partitions. In this architecture,
the trusted kernel achieves TPM sharing and acts as a vTPM
manager.

III. TRUSTED FUNCTION REQUEST PROCESSING
Figure 2 shows the security requirement for each VEE, and
the processing of TFR in the THS environment. Services,
applications or guest OS can invoke TFRs, such as requesting
cryptographic key and VEE validation, via vTPM module
in VEE. As the figure shows, A TFR denoted as TFRSLiVEE1.svcm
(i and m represent the label of the security level and service
respectively), issued by VEE1.svcm (a service application
inVEE1) is transferred to vTPM,which continuously delivers
the request to the vTPMSvc module. After vTPMSvc fin-
ishes processing TFRSLiVEE1.svcm

(including TFR security level
verification and the scheduling procedure), the TFR is sent
to the TPM hardware (path 1©). Finally, the TFRSLiVEE1.svcm
is completed in the TPM hardware, and the resulting data,
RSLT SLiVEE1.svcm

, are delivered back to the VEE1.svcm in the
reverse path (path 2©).

FIGURE 2. Security requirements in VEEs and the processing of TFR in the
THS environment.

Let us consider the security requirements, as shown in
Figure 2, we assume that VEE1 andVEE3 are in security level
SLi and VEE2 is in security level SLj (The security level of
VEE refers to that of TFRs invoked by the VEE).Without loss
of generality, we assume SLi 4 SLj, which means level SLi
is dominated by level SLj (the domination relation of security
is discussed in section IV-A). Considering a trusted function
request, TFRSLiVEE1.svcm

, generated in VEE1, is to be transferred

to the vTPM module of VEE1. TFRSLiVEE1.svcm
indicates that

the TFR is from service application svcm, and is in security
level SLi, which is inherited from the VEE1. vTPM then
sends the request to the vTPMSvc module of the hypervi-
sor. vTPMSvc provides isolation for the TFR from different
VEE in different security levels. Thus, TFR processing is
constrained in a particular processor in vTPMSvc, named
the TFR processing unit (TPU), which can process TFR in
a required security level (a TPU has multiple TFR processing
queues to satisfy the requirement of processing TFRs in
various security levels). Finally, TFRSLiVEE1.svcm

is completed
in the hardware TPM.

When the hardware TPMfinishes processingTFRSLiVEE1.svcm
,

the result RSLT SLiVEE1.svcm
is generated. Then, the result data

RSLT SLiVEE1.svcm
, including the status information (successful

or failed) and result data, are sent back to the vTPMSvc
module, which finally transfers the result to VEE1.svcm.
During this procedure, RSLT SLiVEE1.svcm

is also handled in
security constraints, including secure queues in the vTPMSvc
module.

According to the discussion above, the most significant
mechanism in vTPMSvc is the isolation among TFR process-
ing queues (TPQ) in various security levels. All the TPQs
are managed by a TPQ Monitor (TPQM), which provides
isolation for TPQs. If one TFR contains malicious code, it
cannot access TFRs in the other TPQs. Moreover, each TFR
in TPQ is encrypted, thus, TFR data will not leak to other
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TFRs in the same TPQ (the same security level). Besides,
the whole TPU, including TPQs and TPQM, is also isolated
from other modules, which prevents the TPU from being
attacked by malicious code. The implementation of TPU will
be further discussed further in section V.

IV. SECURITY MODEL
In this section, we demonstrate the design details of our
security scheme. First, the information flow control approach
is introduced, and then, according to this, our constraints
for TFR processing are proposed. Secondly, we present the
procedure of TFR processing with our security constraints.
Finally, to demonstrate how to improve the performance
of vTPMSvc in processing requests generated by multiple
VEEs, our request scheduling policy is proposed.

A. INFORMATION FLOW CONTROL
In the following, we present an information flow model for
the THS system to protect against improper leakage and
disclosure. An information flow model adapted from the
lattice [15], [16] structure is used to establish our model.
A THS system has multiple VEEs providing services,

which can be partitioned into conflict of interest (COI) classes
according to the type of services they provide. The VEEs
providing the same type of service are in direct competition
with each other. Thus, preventing the sensitive information in
TFRs with different security requirements from being leaked
during processing is significant. The definition of the CoI is
given in the following.
Definition 1: The VEEs providing the same type of ser-

vices are partitioned into a number of conflict of inter-
est classes denoted by Φ1, Φ2, . . . , Φn. Each CoI contains
VEEs providing the same type of service, which can be
denoted as CoIi = {VEE1,VEE2, . . . ,VEEm}, where m ≥ 1
and 1 ≤ i ≤ n.
According to Definition 1, a CoI set, e.g., Φk , repre-

sents a type of service, which consists of VEEs provid-
ing this service. For example, there are three CoI sets
Φ1 = {VEE1,VEE2,VEE3},Φ2 = {VEEa,VEEb,VEEc} and
Φ3 = {VEE1,VEEb,VEE2}, and we have Φ1 ∩ Φ2 = ∅,
which means no VEE provides both service Φ1 and Φ2.
Moreover, Φ1 ∩ Φ3 = {VEE1,VEE2} 6= ∅ which means
both VEE1 and VEE2 provide the same service Φ1 and Φ3.

In addition, some VEEs may provide different services
from one another, which are also not in direct competition
with each other. These VEEs are considered as the ones
providing complementing services in the THS system. We
define the notion of complementing interest (CI) class and
discuss its significance.
Definition 2: The VEEs providing complementing services

are represented as an n-element vector Ω = [VEE1,
VEE2, . . . ,VEEn], where VEEk ∈ Φk ∪ {⊥} and 1 ≤ k ≤ n.
The vector Ω is a CI class. VEEk = ⊥ signifies that the
CI class does not contain services from any VEE in Φk .
VEEk ∈ Φk indicates that the CI class contains services from
the corresponding VEE in COI class Φk .

From both Definition 1 and 2 we can obtain that if VEEk ∈
Φk , Φk may not be unique. For example, referring to the
example above, VEEb provides services Φ2 and Φ3, assum-
ing a CI class Ωp containing VEEb, thus, VEEb ∈ Φ2 ∨

VEEb ∈ Φ3, which means one VEE may provide multiple
services. Moreover, assuming Ωp = [VEE1,VEE2], thus,
VEE1 and VEE2 have to provide complementing services.
However, both VEE1 and VEE2 are inΦ1, which means VEE1
and VEE2 are in the same COI class, which contradicts our
assumption. Hence, Definition 2 forbids multiple VEEs that
are part of the same COI class from being assigned to the
same CI class.

In the following, we define the security model for the THS
system. As mentioned in Section III, each TFR is associated
with a security level that captures its sensitivity. Security level
associated with a TFR indicates which entities (user, appli-
cation, TFR processing queue, etc.) can access or modify it.
Since VEEs have different security levels, VEEs in the same
COI class may have different security levels. E.g., assuming
VEEi and VEEj are in different security levels, however,
both of them provide the same service Φp; thus, we have
Φp = {VEEi,VEEj} with two elements in different security
levels. Moreover, VEEs in the same CI class may have the
same security levels. E.g., we assume that VEEi and VEEj
have the same security level and provide complementing ser-
vices, which can be denoted by a vectorΩp = [VEEi,VEEj].
VEEi provides different services from VEEj, but they are in
the same security level. Next, we show how security levels
are represented.
Definition 3: A security level is denoted as an n-element

vector [s1, s2, . . . , sn], where sj ∈ Φj ∪ {⊥} ∪ {>} and
1 ≤ j ≤ n. sj ∈ Φj indicates that the TFRs are generated
by corresponding VEE in Φj; sj = ⊥ signifies that the TFRs
are generated by the VEE not in Φj; sj = > signifies that the
TFRs are generated by more than one VEEs in Φj.

According to Definition 3, the security level vector sig-
nifies which VEE generates the TFR, and which COI class
the VEE belongs to. Assuming we have three COI classes
denoted as Φ1 = {VEE1,VEE2,VEE3}, Φ2 = {VEEa,
VEEb,VEEc} and Φ3 = {VEE1,VEEb,VEE2}. The TFR
generated by VEEa in Φ2 has a security level of SLΦ2.VEEa =

[⊥,VEEa,⊥]. Similarly, the TFR generated by VEE3 in Φ1
has a security level SLΦ1.VEE3 = [VEE3,⊥,⊥].

Considering a cloud system established based on SOA
architecture, one service may consist of multiple services
running in multiple VEEs. Thus, one TFR can contain infor-
mation regardingmultiple VEEs. For example, the serviceΦ1
in VEE1 requests service Φ2 in VEEb, in order to ver-
ify the identity of VEE1, VEEb has to request the TPM
to execute the verification. Thus, the verification request
can be packed as a TFR denoted as TFRVLD[VEEb.Φ2,VEE1.Φ1]

,
where the superscript VLD indicates the TFR type, and
[VEEb.Φ2,VEE1.Φ1] indicates the source (VEEb.Φ2) and
target (VEE1.Φ1) entities. VEE1.Φ1 means VEE1 belongs
to COI class Φ1. Although TFRVLD[VEEb.Φ2,VEE1.Φ1]

is gen-
erated by VEEb, it also contains information about VEE1
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(Because VEE1 will send some information to VEEb when
it requests service Φ2). In this case, the security level of
TFRVLD[VEEb.Φ2,VEE1.Φ1]

is [VEE1,VEEb,⊥]. Moreover, when

service Φ1 in VEE1 requests services Φ2 in VEEb and ser-
vice Φ3 in VEE2, both of VEEb.Φ2 and VEE2.Φ3 have to
verify VEE1.Φ1 via the TPM. Thus, the verification TFR has
the form of TFRVLD[[VEEb.Φ2,VEE2.Φ3],VEE1.Φ1]

, where the source

part of the subscript is a list consisting of two VEEs. Since
the TFR contains information of VEE1,VEE2 and VEEb
as well as the information of the corresponding services
Φ1, Φ2 and Φ3, the security level of the TFR has the form
of [VEE1,VEE2,VEEb].
More generally, assuming VEE1.Φ1 and VEE2.Φ2 request

the same trusted function of the TPM simultaneously (E.g.,
requesting the TPM to generate a key), their TFRs can be
combined as TFRFx[[VEE1.Φ1,VEE2.Φ2],·]

. Fx denotes one type

of function of the TPM (VLD is actually one type of Fx),
and the source part of the subscript is a list containing both
of VEE1.Φ1 and VEE2.Φ2, whereas the target part is deter-
mined by Fx (e.g., when Fx is VLD, the target part is the
VEEs being verified). Thus, the security level of the TFR is
[VEE1,VEE2,⊥]. Moreover, the RSLT data have the same
security level as the corresponding TFR.
Definition 4: Assuming SL is the set of security levels,

which is denoted as SL = {SL1, SL2, . . . , SLn}. We say
security level SL1 is dominated by SL2, denoted as SL1 4 SL2,
if the following equation holds: ∀ik = 1, 2, . . . , n, (SL1[ik ] =
SL2[ik ]) ∨ (SL1[ik ] = ⊥) ∨ (SL2[ik ] = >). Considering any
two levels SLi, SLj ∈ SL, if neither SLi 4 SLj, nor SLj 4 SLi,
they are incomparable.

As described in definition 4, SLx[ik ] refers to the ik th
element (such as VEE, ⊥ or >) in the level SLx , which is
denoted as a vector. (SL1[ik ] = SL2[ik ]) implies that the
corresponding elements in the two arrays are equal in security
levels (two identical vectors). SL1[ik ] = ⊥ refers to a level
[⊥,⊥, . . . ,⊥], which is public to SL2. However, SL2[ik ] = >
signifies that SL2 is trusted, which refers to the top secu-
rity level. Thus, we can obtain that the level [>,>, . . . ,>]
(known as the ‘‘trusted’’ level) dominates all the other levels,
whereas the level [⊥,⊥, . . . ,⊥] (the ‘‘public’’ level) is dom-
inated by all levels, and each security level is dominated by
itself. For example, level [VEE2,⊥,VEEb] is dominated by
[VEE2,VEEc,>] which is then dominated by [VEE2,>,>].
[VEE2,>,>], which is dominated by [>,>,>]. Thus, we
have:

[VEE2,⊥,VEEb] 4 [VEE2,VEEc,>] 4

[VEE2,>,>] 4 [>,>,>].

However, for example, [VEE2,⊥,VEEb] and [VEE3,⊥,
VEEa], [⊥,⊥,>] and [VEE3,>,VEE1] are incomparable.
As mentioned before, RSLT data are the result of the cor-

responding TFR and generated by the hardware TPM. Hence,
RSLT inherits the security level from the corresponding TFR.
When the RSLT data arrives at the vTPMSvc, it will be
put into the resulting queue (part of the RSLT processing

unit) with the same security level and waits to be sent to the
corresponding VEE. Since all TFRs are finally processed by
the hardware TPM, the hardware TPM is the trusted entity
with level [>,>,>], which means the TPM hardware is
always in the top level.
Note that, based on the dominance relation among security

levels, entities (VEE, TPU, etc.) can only process the data
(such as TFR/RSLT data) with dominated security levels.
Assuming a service set 8 containing n types of services,
VEEx provides only one type of service Φk (1 ≤ k ≤ n),
we have VEEx ∈ Φk . Thus, VEEx has the security level with
the form of SL{Φk .VEEx } = [⊥,⊥, . . . ,VEEx , . . . ,⊥], where
‖SLΦk .VEEx‖ = n and VEEx is the kth element of the vector,
and the subscript {Φk .VEEx} indicates that VEEx provides
serviceΦk . The level SLΦk .VEEx implies that when VEEx pro-
vides service Φk , it can only access the TFR data generated
by itself and receive the corresponding RSLT data. Moreover,
according to the definition 1, a VEE can provide two or more
services; thus, a VEE may appears in multiple CoI classes.
AssumingVEEx provides two servicesΦp andΦq, its security
level has the form of

SL{Φp.VEEx ,Φq.VEEx } = [⊥, . . . ,⊥,VEEx ,

⊥, . . . ,⊥,VEEx ,⊥, . . . ,⊥],

where the two VEEx are the pth and the qth elements in the
vector. Thus, when VEEx provides services Φq and Φq, it
can access its own TFR data and the corresponding RSLT
data. Particularly, if VEEx begins to provide a new serviceΦγ
(without loss of generality, we assume Φγ ∈ 8), its security
level must be updated to:

SL{Φp.VEEx ,Φq.VEEx ,Φγ .VEEx } = [⊥, . . . ,⊥,VEEx ,

⊥, . . . ,⊥,VEEx ,⊥, . . . ,⊥,VEE∗x ,⊥, . . . ,⊥]

where the new added element VEE∗x is the γ th element.
Conversely, if a VEE stops to provide an existing service, the
corresponding security level vector has to be updated. Note
that, security level vector also indicates what types of service
the VEE provides, e.g., SL{Φp.VEEx ,Φq.VEEx ,Φγ .VEEx } signifies
that VEE with this level provides services Φp,Φq and Φγ .
On the other hand, CoI classes Φp,Φq and Φγ contain VEEx .
Hence, after updating the security level, the corresponding
CoI classes also have to be updated.
Definition 5: Assuming SLi and SLj (SLi 6= SLj∨‖SLi‖ =
‖SLj‖) are two security levels, a security combination of SLi
and SLj is defined as SLi

⊕
SLj. The binary operator

⊕
denotes the combination of two security levels. Thus, we have
SLi 4 SLi

⊕
SLj and SLj 4 SLi

⊕
SLj.

Note that, according to definition 5, the constraint ‖SLi‖ =
‖SLj‖ is indispensable, for the security level with smaller
length has fewer types of service so that it can not be
combined with the level having a larger length. For exam-
ple, assuming Φ1 = {VEE1,VEE2,VEE3}, Φ2 = {VEEa,
VEEb,VEEc} and Φ3 = {VEE1,VEEb,VEE2}, two security
level vectors SLi = [VEE2,VEEc,⊥] and SLj = [>,
VEEa,VEE1], thus, SLi

⊕
SLj = [>, [VEEa,VEEc],VEE1].
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FIGURE 3. Cycle of TFR/RSLT data processing.

We have SLi 4 [>, [VEEa,VEEc],VEE1] and SLj 4
[>, [VEEa,VEEc], VEE1].
From the example above, we can obtain that X

⊕
Y =

X (i)
⊕

Y (i), where X ,Y ∈ {Φx} ∪ {⊥} ∪ {>}, and i indi-
cates the ith element of security level X and Y . Particu-
larly, ⊥

⊕
X = X , where X ∈ {Φx} ∪ {⊥}. Conversely,

>
⊕

X = >, where X ∈ {Φx} ∪ {>}. Moreover, X
⊕

Y
is the least upper bound of X and Y . Operator ‘‘

⊕
’’ can be

used in combination with two similar security levels. E.g.,
services VEE1.Φ1 and VEEb.Φ2 request service VEE2.Φ3,
and their TFRs have security levels [VEE1,⊥,VEE2] and
[⊥,VEEb,VEE2], respectively. Since service VEE2.Φ3 is
the common requesting target, both security levels can be
combined into [VEE1,VEEb,VEE2]. Hence, through security
level combination, TFRs can be combined for higher process-
ing performance.

B. TFR/RSLT DATA PROCESSING
In this section, we discuss the details of TFR/RSLT
data processing with the security mechanism. As shown
in figure 3, the processing of TFR/RSLT data can be divided
into two parts, TFR (right part in figure 3) and RSLT process-
ing (left part in figure 3). The dotted box in the figure indi-
cates that these procedures are conducted in the vTPMSvc
module, which are protected by the hypervisor.

First, the TFRs are generated by VEEs and sent to the
‘‘Tag’’ procedure, which checks each TFR and tags it with
the properties of the corresponding VEE and service, such as
VEE/service ID/name, service type, priority, IP address and
VEE/service owner information. Next, each TFR is assigned
a security level by the ‘‘Security Level’’ procedure based

on the database storing the security level information of the
VEEs. After that, TFRs are scheduled by the ‘‘TFR Schedul-
ing’’ procedure, (the details regarding TFR scheduling are
discussed in section IV-C). During scheduling, the scheduler
checks the security level of each TFR, and decides in which
TPQ the TFR should be enqueued. If the TPQ with appropri-
ate security level does not exist, the TPU will create a new
TPQ. Next, the scheduler fetches a TFR from one TPQ and
sends it to the ‘‘TFR Dispatch’’ procedure. Finally, procedure
‘‘TFR Dispatch’’ caches the properties of each TFR (such
as security level, VEE information), and sends the TFR to
the hardware TPM sequentially (hardware TPM only accepts
sequential access).

When the hardware TPM finishes processing a TFR, the
corresponding RSLT data are generated. Since the RSLT
data are sequentially generated by the hardware TPM, the
RSLT needs to be cached temporally before it can be further
processed (in the procedure ‘‘RSLT Receiving’’). The cached
RSLT data are then fetched in procedure ‘‘RSLT Security
Level Restore (RSLT S.L. Restore)’’ and will be assigned
properties according to the corresponding TFR information
cached in the ‘‘TFR Dispatch’’ procedure. Finally, in the
‘‘RSLT Dispatch’’ procedure, RSLT data are fetched from
RSLT cache and sent to the corresponding VEEs.

C. TFR SCHEDULING
According to the discussion of TFR/RSLT processing details
in section IV-B, we present a further discussion on the
internals of TFR scheduling. We begin by introducing the
internals of the TFR scheduling procedure, including the key
components. Then, scheduling algorithms are proposed and
discussed.
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FIGURE 4. TFR scheduling internals.

Figure 4 shows the key phases involved in TFR scheduling
and the details of related components, including TFR Cache,
TPU/TPQ and Sequential TFR Buffer. As mentioned before,
multiple VEEs can send TFRs to vTPMSvc simultaneously,
and a cache (TFR Cache) is set in TPU to balance the dif-
ference between the rate of TFR processing and submitting.
Each TFR in the cache is then fetched in order by TFR Mon-
itor, which schedules TFRs to appropriate TPQs according to
their security levels. Finally, TFRs are fetched from each TPQ
by a ‘‘Round-Robin’’ algorithm and cached in the Sequential
TFR Buffer, which ensures that the hardware TPM can be
accessed in a sequential manner. In this section, we focus on
TFR scheduling, which is performed by the TFR Monitor.

TABLE 1. Symbol table for algorithm 1 and 2.

Table 1 shows the symbols used in algorithm 1. Note
that, QTPQ denotes a list including all TPQs in TPU. The
current processing TPQ is represented by Q. TFR denotes
the latest TFR fetched from the TFR Cache. Algorithm 1
fetches TFR from the TFR Cache, and ensures that the
TFR can be delivered to the appropriate TPQ. In the
outer loop, the algorithm checks the TFR Cache (CCHTFR)
and picks the TFR at the head of CCHTFR. Note that,
function PickMinDomSLQueue(sl,QTPQ) is used to pick
a queue (denoted by Q̂) with minimal security level
from QTPQ, which can dominate sl. E.g., sl = [VEE1,
⊥,⊥], there is a security level list SL = [VEE1,VEEa,⊥],
[VEE1,>,⊥], [>,>,VEE3]. We have SL1 4 SL2 4 SL3
(SLi denotes the ith element of SL). Since sl 4 SL1, SL1 is

Algorithm 1 TFR Scheduling Algorithm
Require: CCHTFR,TFR Cache;
Ensure: Does the TFR be successfully delivered to the TPU?

(Boolean value);
1: repeat
2: TFR⇐ Dequeue(CCHTFR);
3: QTPQ ⇐ Get TPQ list;
4: Q̂⇐ PickMinDomSLQueue(QTPQ);
5: if Q̂ is found then
6: Enqueue(Q̂,TFR);
7: else
8: Create a new queue Q∗ with level SLTFR;
9: Enqueue(Q∗,TFR);
10: end if
11: until CCHTFR is empty

theminimal dominating security level to sl. Algorithm 2 gives
the details of function PickMinDomSLQueue. If no proper
queue (Q̂) is found for TFR, a new queue, Q∗, is created with
the same security level as TFR.

Algorithm 2 Pick QueueWithMinimal Dominating Security
Level (PickMinDomSLQueue)
Require: QTPQ, SLTFR;
Ensure: Q̂ index in QTPQ;
1: i⇐ 1;
2: tmp_sl ⇐ null;
3: tmp_idx ⇐ −1;
4: while i ≤ ‖QTPQ‖ do
5: Qi ⇐ get the ithQ in QTPQ;
6: SLi ⇐ get security level of Qi;
7: if SLTFR = SLi or SLTFR 4 SLi then
8: if tmp_sl = null or SLi 4 tmp_sl then
9: tmp_sl ⇐ SLi;

10: tmp_idx ⇐ i;
11: end if
12: end if
13: CheckLongTimeIdle(Qi);
14: i⇐ i+ 1;
15: end while
16: return tmp_idx;

The outer loop of algorithm 1 will terminate when the
TFR Cache is empty. Hence, the execution time depends
on the size of the TFR Cache. Furthermore, function
PickMinDomSLQueue has a time complexity of 2(n), which
is determined by ‖QTPQ‖. Function CheckLongTimeIdle just
checks whether the queue is empty for long time and flags
each empty queue; thus, its time complexity is 2(1). Hence,
the time complexity of the algorithm 1 is 2(n2).

V. PROTOTYPE IMPLEMENTATION AND EVALUATION
A. PROTOTYPE IMPLEMENTATION
We have implemented a prototype of secured vTPMSvc,
which contains more than 4500 lines of C++ codes and
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FIGURE 5. A prototype of secured vTPMSvc implementation.

consists of TFR Cache, TPQ, TFR Seq. Buffer and RSLT
Cache (RSLT Dispatcher belongs to RSLT Cache). We use
TPM emulator as the shared hardware TPM. The architecture
of our prototype is shown in figure 5. The cycle of TFR/RSLT
processing contains two primary procedures, TFR processing
and RSLT processing. VEEs generate TFRs and send them to
TPU, which processes these TFRs according to their security
levels and delivers them to the hardware TPM. The RSLT
data are generated by the hardware TPM when it finishes the
TFRs, and the RSLT data will be dispathed to VEEs. Note
that, a Shared Storage is set to temporarily store information
related to the TFRs being processed, which will be restored
to corresponding RSLT by RPU.

The system contains two primary units, TPU and RPU,
which take charge of processing TFR and RSLT, respec-
tively. In order to ensure that the key components are
not accessed or modified by unauthorized and malicious
applications or users, we isolate these components with
container (the container depends on the system implemen-
tation), so that the malicious applications in one component
cannot affects other components. In our prototype, Linux
Container (LXC) [17], [18] is adopted to provide a isolation
environment for each component. Since LXC provides sepa-
rate address space, it is more secure than sharedmemory envi-
ronment. Shown as figure 5,CTNTCCH denotes the containers
for TFR cache, and CTNT represents the containers for TPQ.
TFR Sequential Buffer (TFR Seq. Buffer) is contained by
CTNTSeqBuf , whereas RPU has on container CTNRPU . which
includes RSLT Cache and RSLT Dispatcher. Thus, both of
TPU and RPU are container managers.

As mentioned in Section IV, TPQ Monitor provides
in-queue isolation to prevent TFR from being accessed or
modified by malicious code hiding in other TFRs. In our
implementation, each node of TPQ (the TPQ node is actually
TFR) will be allocated a shadow memory address, which
is managed and protected by TPQ Monitor and cannot be

used to access other nodes’ addresses without the TPQ Mon-
itor. Thus, malicious code in a node cannot access other
nodes’ data. Moreover, in-queue isolation is also adopted in
TFR/RSLT Cache and TFR Seq. Buffer, which contain queue
monitors not explicitly shown in the figure. Since the three
components (TFR/RSLT Cache, TFR Seq. Buffer) need to
process all of the TFR or RSLT data, their security levels are
the trusted level ([>,>,>]).

B. SYSTEM EVALUATION
In this section, the system performance evaluation is pro-
posed, including in-container and stand-alone environments.
For in-container environments, each component is deployed
in an individual container, which can communicate with other
components via a socket. For stand-alone environments, the
components are running on the single machine, whose inter-
communication depends on interprocess communication.

In addition, our evaluation consists of three secu-
rity constraints, including non-security (NON_SEC), low-
security (LOW_SEC) and high-security (HIGH_SEC).
For NON_SEC , all the components have a FIFO queue to
process TFRs and RSLTswithout a security level. LOW_SEC
provides security-level-aware queue to process TFRs and
RSLTs in each components. Particularly, multiple queues
with different security levels for processing various TFR are
adopted in TPU. For HIGH_SEC , in addition to the security
guarantees in LOW_SEC , the shadow address is adopted in
each queue; thus, the real memory addresses are protected
while accessing to queues or queue elements.

We conducted our evaluation on a computer with a quad-
core CPU (Intel Q8400), 8GBRAM (DDR3) and 500GBhard
disk (7200rpm). Both of the host and the container oper-
ating systems are Ubuntu 16.04.1 x86_64. Our test data
are 10000 TFRs with random security levels in 3, 5, 10,
15, 20, 25, 30 dimensions. We will evaluate and discuss
the time consumption of TFR/RSLT processing in different
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FIGURE 6. (a) Time consumption of TFR processing in TFR Cache; (b) Time consumption of TFR processing in TPQ.

components as well as in the whole process. To focus on the
performance of the primary four components (TFR Cache,
TPQ, TFR Seq. Buffer and RSLT Cache), the perfomance in
terms of TFR processing of TPM is ignored. In addition, the
time consumption in our evaluation also contains semaphore
operations, memory allocation/release, etc., which exists in
each component and each security constraint. Hence, the
extra time overheads will not affect our evaluation.

C. IN-CONTAINER ENVIRONMENT
Figure 6 (a) shows the time consumption of TFR processing
in the TFR Cache. Note that the TFR/RSLT Cache and TFR
Seq. Buffer only have one queue to cache TFRs/RSLTs,
which have to process data with any security levels; hence,
they are assigned to the top security level. Thus, for the
three components, there are only two security constraints,
NON_SEC and HIGH_SEC (HIGH_SEC_NOSEND indi-
cates that the cached TFRs are fetched from the TFR Cache,
but not to be sent to the TPQ). For the NON_SEC case, the
time consumption experiences no significant change (about
0.2s ∼ 1.0s) with the increase of in the dimension of the
security level. However, it takes more time (about 1s ∼ 1.5s)
for HIGH_SEC_NOSEND to process TFR compared with
NON_SEC , which is caused by the conversion from shadow
address to real address. For HIGH_SEC , it has a similar
time consumption to HIGH_SEC_NOSEND does in the first
two dimensions (3 and 5). However, from dimension 10, the
time consumption has a distinct increment, and reaches nearly
16 seconds at dimension 30. The increasing time overhead is
primarily caused by the TPQ which has limited processing
capacity (shown as figure 6 (b)).With the increase in the secu-
rity level dimension, TPQ has to queue the TFRs according
to their security levels, which is a time-consuming process, in
particular, when the address conversion is involved. In addi-
tion, the higher dimension of security level also increases the
amount of data (TFR data) being transmitted via the socket,

which has finite-size buffer. TPQ has to finish handling the
data in the current buffer before it can continue to receive
data from the TFR Cache (in our experiment, the TFR is
emitted at an extremely fast rate; hence, the socket buffer can
be quickly filled). This also reduces the performance of the
TFR Cache.

Shown as figure 6 (b), for NON_SEC , similar to
figure 6 (a), the time consumption does not change signifi-
cantly due to no address conversion, operations on multiple
queues or security level comparison. The dimension does
not distinctly affect the performance. However, LOW_SEC
and HIGH_SEC spend more time on TFR processing than
NON_SEC does. Particularly, from dimension 10, there is
a noticeable increase in time consumption, which lasts until
dimension 30 (about 46 seconds). According to the discussion
about figure 6 (a), the time consumption is mainly due to the
limited TPQ processing power, including address conversion
between shadow address and real address and the increase in
data amount in the socket buffer etc. Moreover, the difference
in time consumption between LOW_SEC and HIGH_SEC is
mainly due to address conversion.

As shown in figure 7 (a) and (b), since there is no secu-
rity mechanism, the time consumption of NON_SEC does
not change significantly in all security level dimensions.
However, for HIGH_SEC , the increment of time consump-
tion is also caused by the security operations, including
address conversion, security level comparison etc. In addi-
tion, both NON_SEC and HIGH_SEC in figure 7 (a) and (b)
show the same trends as that of TPQ (figure 6 (b)). This is
also caused by the limited processing power of TPQ. TFR
Seq. Buffer has to wait until TPQ finishes processing TFRs
and sends them out. Thus, the performance of TFR Seq.
Buffer is greatly affected by that of TPQ. Moreover, the time
consumption of TFR processing of the TPM is also subject
to the TFR Seq. Buffer. Since the TPM runs in batch mode,
the output is also serial. This will transfer the performance of
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FIGURE 7. (a) Time consumption of TFR processing in TFR Seq. Buffer; (b) Time consumption of RSLT processing in RSLT Cache.

FIGURE 8. (a) Time consumption of TFR processing in TFR Cache; (b) Time consumption of TFR processing in TPQ.

FIGURE 9. (a) Time consumption of TFR processing in TFR Seq. Buffer; (b) Time consumption of RSLT processing in RSLT Cache.
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FIGURE 10. (a) Total time consumption in in-container environment; (b) Total time consumption in stand-alone environment.

TFR Seq. Buffer to the RSLT Cache, which makes the two
figures (figure 7 (a) and (b)) show nearly the same trends.

D. STAND-ALONE ENVIRONMENT
Figure 8 (a), (b) and figure 9 (a), (b) show the time con-
sumption of the systemwith different security constraints and
security level dimensions in a stand-alone environment. In
this scenario, all the components are processes in the same
operating system. Compared with the in-container environ-
ment, we can find some important similarities:

1) For the four components (TFR/RSLT Cache, TPQ and
TFR Seq. Buffer), the time consumption does not
change drastically with the constraint NON_SEC at
any security level dimensions. This indicates that with-
out security, the system performance is not signifi-
cantly affected by the dimension of security level.

2) Both TFR Seq. Buffer and RSLT Cache consume
nearly the same time in processing TFR at any dimen-
sions; this is also caused by the delay in security
operations in TPQ (refers to the discussion about
figure 6).

Moreover, in figure 10 (a), the time consumption of
HIGH_SEC has small increases from dimension 3 ∼ 30,
which is in sharp contrast to figure 6 (a); in stand-alone
mode, the components are processes whose intercommuni-
cations do not depend on the virtual network interfaces of
the containers, and the components can directly use local
memory without being limited by the container’s memory
capacity. Thus, when the amount of data increases with the
dimensions, the TPQ will not delay on receiving and pro-
cessing a large number of TFRs, and thus TFR Cache must
wait.

Figure 10 shows a comparison of the total time con-
sumption for the in-container and stand-alone environment.
Although in-container mode consumes more time than stand-
alone mode, it provides stronger isolation for the compo-
nents and is therefore a more secure mechanism compared

with stand-alone mode (shared memory). In addition, the
increased more time cost of in-container mode does not
affect its application. For example, at dimension 30, for
HIGH_SEC , in-container mode consumes only 16 seconds
more than the stand-alone mode, which can still be accepted
in the real applications for a more secure guarantee. More-
over, in reality, the speed of the TFR generation is not as fast
as in our experiment, and the security level dimensions are
also not as high; hence, TPQ has enough time to deal with
TFRs. In such circumstances, the system has good usability
based on the premise of ensuring security.

VI. CONCLUSION
In this paper, we establish a secure scheme for trusted hard-
ware sharing systems (THS), which protects the sensitive data
in trusted function requests (TFRs) from being leaked, dis-
closed and modified in an unauthorized manner by malicious
software or users. In our scheme, we first build a security
level model for the THS system based on an information
flow model. Then, the TFRs are assigned different security
levels according to their owners (such as applications, ser-
vices) and processed in isolated environments with different
security levels. This mechanism enhances the security of
TFR processing under the THS system in stand-alone and
in-container environments. We have developed a prototype,
and our experiment results show that, in the case of a large
number of high-rate concurrent TFRs, the isolation environ-
ment and the increasing security level dimension will lead
to the degradation of system performance. However, in the
real world, since the rate of TFR generation is lower than that
of the experimental environment in most of the use case, the
delay caused by the security mechanism will not seriously
affect the usability of the system.
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