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ABSTRACT With the advent of big data era, complex optimization problems with many objectives and large
numbers of decision variables are constantly emerging. Traditional research about multi-objective particle
swarm optimization (PSO) focuses on multi-objective optimization problems (MOPs) with small numbers
of variables and less than four objectives. At present, MOPs with large numbers of variables and many
objectives (greater than or equal to four) are constantly emerging. When tackling this type of MOPs, the
traditional multi-objective PSO algorithms have low efficiency. Aiming at these multi-objective large-scale
optimization problems (MOLSOPs) and many-objective large-scale optimization problems (MaOLSOPs),
we need to explore thoroughly parallel attributes of the particle swarm, and design the novel PSO algorithms
according to the characteristics of distributed parallel computation. We survey the related research on PSO:
multi-objective large-scale optimization, many-objective optimization, and distributed parallelism. Based on
the aforementioned three aspects, themulti-objective large-scale distributed parallel PSO andmany-objective
large-scale distributed parallel PSOmethodologies are proposed and discussed, and the other future research
trends are also illuminated.

INDEX TERMS Particle swarm optimization (PSO), multi-objective optimization, many-objective
optimization, large-scale optimization, distributed parallelism.

I. INTRODUCTION
Many complicated scientific and engineering problems can
be transformed into optimization problems. With the contin-
uous development of big data technologies, more and more
complex optimization problems are emerging, which have
relatively more objectives and large numbers of variables.
Particle swarm optimization (PSO) can tackle lots of real-
world complicated optimization problems [1], especially the
non-smooth optimization problems, resulting in more and
more attention from the academia and industry. Traditional
research on PSO has mainly focused on multi-objective
optimization [2], [3], large numbers of decision variables
(we also call this kind of problems large-scale optimization

problems which mean the number of decision variables is
up to 103 magnitude) [4], distributed/parallel computing [5],
respectively. However, research of PSO on ‘‘distributed
parallelism + large-scale optimization + multi-objective/
many-objective optimization’’ is relatively rare.

First, in real life, there are a number of multi-objective
optimization problems (MOPs) [3] which have large amounts
of decision variables and these decision variables may
strongly correlate with each other.When tackling these multi-
objective large-scale optimization problems (MOLSOPs),
traditional PSO has low efficiency. Therefore, designing
novel methods of analysis, decomposition and optimization
for addressing MOLSOPs is of great significance.
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Next, MOPs composed of greater than or equal to four
objectives are called many-objective problems (MaOPs) [6].
Traditional PSO algorithms address MOPs mostly according
to the Pareto non-dominance in order to obtain the opti-
mal solution set [7]. Nevertheless, traditional Pareto non-
dominance based methods are not applicable to MaOPs [6].
Therefore, it is extremely urgent to design novel PSO algo-
rithmswith the aim of tackling themany-objective large-scale
optimization problems (MaOLSOPs).

Third, when the number of decision variables of MOPs
is huge and the objective number is large, the time con-
sumption of serial algorithms will be tremendous. In virtue
of distributed parallel computing [8], the operation time
can be significantly reduced. In addition, PSO has poten-
tial high parallel attributes. Consequently, there is impor-
tant significance to study distributed parallel PSO algorithms
for solving multi-/many-objective large-scale optimization
problems (M/MaOLSOPs).

Finally, studying how to use the above algorithms to solve
real-life optimization problems is of important significance.
In the real world, optimization problems may exist in many
fields [9]–[13], a certain number of which are very suitable
to be resolved through swarm intelligence and evolutionary
algorithms. Unlike some complex algorithms [14], due to
its simple structure, PSO can be easily implemented and is
commonly used to tackle complicated optimization problems,
such as the 2D plane deployment problem of wireless sensor
networks (WSNs) [15], [16], etc.

In summary, this paper will review related research on PSO
as follows:
• multi-objective large-scale optimization;
• many-objective optimization;
• distributed parallelism.

In addition, based on the above overview, we will propose
and discuss the future research trends. The remainder of our
paper is organized as follows. Section II describes related
research on PSO algorithms for multi-objective large-scale
optimization. Correlated studies of many-objective optimiza-
tion are illuminated in Section III. Followed in Section IV is
the description on distributed/parallel PSO algorithms. Next,
the future research trends are proposed and discussed in
Section V. Finally, the conclusion of our paper is provided
in Section VI.

II. MULTI-OBJECTIVE LARGE-SCALE OPTIMIZATION
Lots of researchers have studied multi-objective small-scale
and single-objective large-scale PSO algorithms [1], [4], [17],
however, less attention is paid to multi-objective large-scale
PSO algorithms [18], where ‘‘large-scale’’ means that the
number of decision variables is up to 103 magnitude.
Coello and Lechuga [19] proposed a multiple objec-

tive PSO (MOPSO), which was on the basis of Pareto
non-dominance; Chen et al. [20] studied the local search
based multi-objective optimization algorithm. However, the
above algorithms did not involve large numbers of variables.
To tackle large-scale optimization problems, cooperative

coevolution (CC) framework [21] was introduced to PSO [7].
CC framework [21] decomposes a large-scale problem to
several small-scale problems, via the ‘‘divide-and-conquer’’
methodology, and it exhibits relatively better performance
for large-scale global optimization problems (LSGOPs).
Li and Yao [17] made use of CC framework, and the proposed
new cooperative coevolving PSO (CCPSO2) performed well
in tackling complicated multimodal single-objective func-
tions with the dimensionality up to 2000. Ling et al. [22]
put forward the graph-based differential grouping. Exist-
ing grouping methods applicable to decompose large num-
bers of variables also include: random grouping [23], Delta
method [24], dynamic grouping [17], differential group-
ing [25], global differential grouping [26], etc. The fore-
going methods have been only used to solve the global
optimization problems (GOPs) which are single-objective.
How to use the foregoing methods to tackle MOPs remains to
be studied. Cooperative coevolutionary generalized differen-
tial evolution 3 (CCGDE3) [27] employed fixed grouping to
decompose large numbers of variables, which could deal with
MOLSOPs with up to 5000 variables. Ma et al. [28]
proposed decision variable analyses (DVA), which could
optimize 1000-dimensional MOLSOPs. Cao et al. [29] put
forward a cooperative coevolutionary multi-objective evo-
lutionary algorithm to tackle MOLSOPs. Nevertheless, the
above two methods have not been applied to PSO. By adopt-
ing adaptive velocity updating strategy, adaptive velocity
PSO (AV-PSO) [30] achieved better performance when opti-
mizing GOPs composed of as many as 4000 variables, yet
no further exploration on MOLSOPs was conducted. Put
forward by Qiu et al. [18], by using random grouping,
cooperative co-evolution MOPSO (CCMOPSO) could tackle
MOLSOPs with 1000 variables. Liang and Qu [31] proposed
multiobjective dynamic mutli-swarm PSO (DMS-MO-PSO),
and applied it to solve bi-objective optimization problems,
which could obtain good optimization performance when
the number of variables reaches five hundred. PSO has the
disadvantage of premature convergence, accordingly, many
improvement measures were put forward, such as the fol-
lowing: Jie et al. [32] and Shen et al. [33] studied multiple
swarms; Fang et al. [34] considered the population structure;
Tang et al. [35] explored the adaptive adjustment of the
inertia weight; Li et al. [36] introduced the historical memory
strategy, etc. However, the studies mentioned above have not
been further explored and extended to MOLSOPs.

III. MANY-OBJECTIVE OPTIMIZATION
In MaOPs, the dimensionality of the objective space is high,
the visualization approach [37] of which differs that ofMOPs.
By means of mapping the high dimensional objective space
into a 2D polar coordinate plot, He and Yen [37] put forward a
visualizationmethod forMaOPs.Moreover, the proportion of
non-dominated solutions increases, resulting in low selection
pressure in populations containing limited number of individ-
uals and traditional Pareto non-dominance basedmethods can
not make effective selection of solutions.
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Li et al. [6] surveyed many-objective evolutionary algo-
rithms (MaOEAs) and pointed out that MaOEAs included
seven main classes: relaxed dominance based, diversity-
based, aggregation-based, indicator-based, reference set
based, preference-based, and dimensionality reduction
approaches. In the work of Li et al. [6] also illumi-
nated a multi-objective PSO with preference-based sort-
ing (MOPSO-PS) which was proposed by K.-B. Lee and
J.-H. Kim for tackling DTLZ test suite with seven objec-
tives and less than thirty variables, a two-step searching
method based on PSO which was presented by H. Hirano and
T. Yoshikawa for solving MaOPs with two to ten objec-
tives, and a reference point based multiobjective differen-
tial evolution and particle swarm optimization (MDEPSO)
which was described by U.K. Wickramasinghe, R. Carrese
and X. Li for tackling the airfoil design problem with six
objectives and ten variables, etc. However, these PSO algo-
rithms, which could solve MaOPs, were serial optimization
algorithms and not used for solving many-objective large-
scale optimization problems (MaOLSOPs) with up to one
thousand variables. Deb and Jain [38] adopted the refer-
ence point based approach. Cheng et al. [39] explored the
strategy of reference vector. Wu et al. [40] indicated that
preference information can greatly influence the optimization
performance. Wang et al. [41] proposed an improved two-
archive algorithm (Two-Arch2), which was capable of tack-
ling MaOP with as many as 20 objectives. Gong et al. [42]
devised an objective decomposition based many-objective
evolutionary algorithm, which could better approximate the
Pareto optimal front by decomposing the MaOP into several
subproblems with fewer objectives as well as integrating an
aggregated objective to each subproblem. Xiao et al. [43]
introduced the global ranking based approach.
Zheng et al. [44] developed the information separation
methodology, which exploited the convergence information
and the distribution information to enhance the selection
pressure and the population distribution, respectively. How-
ever, the aforementioned inspirations have not been com-
bined with PSO. Hu and Yen [45] described the parallel
cell coordinate system (PCCS) and applied it to multi-
objective PSO. PCCS could be scarcely influenced by the
number of objectives [46]. When the number of objectives
was no more than ten, regardless of solving MOPs [47]
or MaOPs [46], PCCS could achieve good performance.
However, its applicability with respect to large numbers of
variables requires further study. Zhang et al. [48] illustrated
the clustering based variable analysis method, whose results
were more accurate and stable compared with Pareto based
DVA [28]. Combined with CC framework and fast tree based
non-dominated sorting strategy, MaOLSOPs with up to ten
objectives and five thousand variables can be effectively opti-
mized by this method [48], however, PSO was not taken into
consideration. Therefore, from the studies mentioned above,
we could get a conclusion that the many-objective large-
scale PSO might be one of the future focuses in PSO study
areas.

IV. DISTRIBUTED PARALLELISM
In usual, the decision variable number of complicated opti-
mization problems is huge, and if only a serial algorithm
and a single personal computer are used, it is likely that the
complicated optimization problems can not be solved because
of memory overflows, etc., or that satisfactory results can
not be obtained in tolerable time. At this time, adopting dis-
tributed parallel processing techniques [8] will undoubtedly
accelerate the resolving speed for the optimization problems.

The foregoing cooperative coevolutionary PSO algorithms
have actually implied the ‘‘divide-and-conquer’’ parallel ide-
ology, nevertheless, they are not implemented in parallel in
allusion to specific hardware. Only properly designing dis-
tributed parallel algorithms according to the characteristics
of particular hardware, software, algorithm and optimization
problem can exert the potential parallel computing abilities
of algorithms and machines to the greatest extent. The par-
allelism realization approaches incorporate memory sharing
parallelism and distributed parallelism, etc. Gong et al. [8]
reviewed distributed evolutionary algorithms (including dis-
tributed PSO algorithms) and pointed out that distributed
evolutionary algorithms were mainly composed of two types
of models: population distributed model and dimensionality
distributed model. The former is consisted of master-slave
model, island model, cellular model, hierarchical model,
pool model, etc.; and the latter is composed of coevolution
model, multi-agent model, etc. Cheng et al. [49] proposed
an algorithm, denoted distributed differential evolution with
multicultural migration, in which, the adopted population
migration strategy could better maintain the population diver-
sity, whereas PSO was not aimed at. Cao et al. [29] pre-
sented a distributed algorithm with the help of Message
Passing Interface (MPI), however, the integration of PSO
required further exploration. For single-objective small-scale
optimization problems and multi-objective small-scale opti-
mization problems, there have been some distributed parallel
PSO researches, which included the works of L. Vanneschi,
N. Nedjah, J. Zhang, S.N. Omkar, et al. Dali and
Bouamama [50] realized GPU based PSO parallel algo-
rithm, and further put forward the distributed version.
Tan and Ding [51] systematically researched on the GPU
implementation of parallel PSO algorithms. Zhang et al. [1]
reviewed some parallel PSO algorithms which included the
multicore (multiprocessor) based PSO and GPU based PSO
algorithms, etc. Cao et al. [52] proposed a Spark-based
cooperative co-evolution PSO algorithm. McNabb et al. [53]
explored the effect of the population size and communica-
tion topology to the optimization performance of PSO, and
through representing topology structure by directed graph,
discussed selection strategy of topology structures under
diverse objective function complexities and communication
costs. Gardner et al. [54] came up with a newmethod SEPSO,
which conducted multiple generations of evolution and only
partially selected several individuals to perform fitness evalu-
ation. However, the PSO algorithms mentioned above did not
make further specialized exploration for M/MaOLSOPs.
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FIGURE 1. A roadmap for future research trends.

V. FUTURE RESEARCH TRENDS
We combine the above three types of methods, and present
the future research trends as the following: 1) Multi-objective
large-scale distributed PSO algorithms. 2) Many-objective
large-scale distributed PSO algorithms. 3) Designing dis-
tributed algorithms according to various hardware and soft-
ware environments. 4) Applying novel algorithms to tackle
real-world MOLSOPs and MaOLSOPs. A feasible research
roadmap is illustrated in Fig. 1.

A. MULTI-OBJECTIVE LARGE-SCALE
DISTRIBUTED PARALLEL PSO
By combining the two kinds of methods mentioned above:
multi-objective large-scale optimization and distributed par-
allelism, theMulti-Objective Large-ScaleDistributed Parallel
PSO can be proposed. Traditional MOEAs have not focused
on addressing the variable decomposition of MOLSOPs and
the parallel implementation of algorithms.With the increment
of variable number, the problem complexity and optimization
time consumption are in growth correspondingly. Optimiz-
ing all variables as a whole, traditional serial approaches
have low operation efficiency and poor optimization effect.
By carrying through analysis, decomposition and grouping of
variables, better optimization performance can be achieved
following the ‘‘divide-and-conquer’’ strategy. In order to
more efficiently solve MOLSOPs with respect to operation
time and optimization performance, the distributed parallel
structure can be adopted, combined with the multiple pop-
ulation mechanism, more thorough exploration can be con-
ducted to each objective and parallelism resources will be
taken full advantage of; meanwhile, by analyzing the large
number of variables, variable property can be identified, and
variables can be further decomposed through extending the
preceding grouping methods, then, optimization of variable
groups can be conducted under CC framework; finally, novel

multi-objective large-scale distributed PSO algorithms can be
devised. We believe that ‘‘large-scale’’ and ‘‘small-scale’’ are
two relative concepts but not absolute ones. With the devel-
oping of distributed and parallel computing technologies, the
definition of ‘‘large-scale’’ will develop and change in the
future, and the ‘‘large-scale’’ at present may be regarded as
‘‘small-scale’’ in the future. This will bring new opportunities
and challenges to the study on Multi-Objective Large-Scale
Distributed Parallel PSO.

B. MANY-OBJECTIVE LARGE-SCALE
DISTRIBUTED PARALLEL PSO
We can present the Many-Objective Large-Scale Distributed
Parallel PSO. For MaOPs, the dimensionality of the objective
space is relatively high and the population selection pres-
sure is low, thus, traditional Pareto non-dominance based
methods are unapplicable. To this issue, we can design new
many-objective large-scale distributed parallel PSO algo-
rithms according to the characteristics of seven kinds of
main MaOEAs which are categorized as relaxed dominance
based, diversity-based, aggregation-based, indicator-based,
reference set based, preference-based, and dimensionality
reduction approaches [6]. For instance, the reference set can
be considered, nevertheless, how to construct and update the
reference set and how to estimate the individuals require
further exploration. As the individual similarity is low in
the high-dimensional space, the neighborhood strategy can
be exploited; the adoption of multiple population strategy
contributes to full exploration of all objectives and adequate
utilization of parallelism resources. Pareto non-dominance
based variable analysis methods are hardly suitable for
MaOPs, for which, designing non-Pareto based variable anal-
ysis mechanisms will be a research trend. In addition, the
novel many-objective large-scale distributed PSO algorithms
can absorb the advantages of the traditional mathematical
theories and methods.

C. DESIGNING DISTRIBUTED ALGORITHMS
ACCORDING TO VARIOUS HARDWARE
AND SOFTWARE ENVIRONMENTS
We can design and implement new distributed PSO algo-
rithms based on various hardware and software environ-
ments, including various high performance computing (HPC)
environments and cloud computing environments. PSO has
potential parallel attributes, which facilitate the design of
distributed algorithms. Multi-layer structure (e.g. objective,
variable group and population individual) may contribute
to the comprehensive utilization of computation resources,
significantly reducing operation time. Different distributed
parallel architectures (e.g. master-slave model, island model,
cellular model, hierarchical model, pool model, etc.) have
their advantages and disadvantages, hence the selection and
combination of different distributed parallel architectures
demands experimental study and exploration.

More communication will greatly reduce the opera-
tion efficiency of the parallel algorithm, and the less
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FIGURE 2. Illustration of a distributed parallel architecture.

communication hardly ensures the optimization performance.
Thus, efficient communication topology is a crucial factor to
ensure the operation efficiency and optimization performance
of the distributed algorithms. In order to ensure the optimiza-
tion quality, communications among distributed computation
resources ought to be guaranteed. Specifically, the commu-
nication topology needs to be elaborately devised and the
communication contents should also be carefully selected.

A candidate distributed parallel architecture is illustrated
in Fig. 2, in which, on the basis of multiple populations, vari-
able groups and particle swarm decomposition, a threefold
parallel structure is constructed. Specifically, the decomposi-
tions can be as follows:

• The original M/MaOLSOP is decomposed according to
the objectives. Each subpopulation optimizes a single
objective and a main population is in charge of all objec-
tives. Thus, simultaneously,M+1 populations optimize
the target M/MaOLSOP.

• Through analyzing, decomposing and grouping, the
large number of variables are separated to multiple
groups; accordingly, each population is decomposed to
a number of species, each of which corresponds to a
variable group.

• Finally, individuals in each species can be further
decomposed to multiple sets, each of which contains
one or more individuals and is allocated to a single
computation resource.

Additionally, based on a distributed parallel structure, exper-
imental simulation can be conducted to construct a specific
efficient communication topology.

A viable approach is to use supercomputers for algorithm
development and testing. Various heterogeneous comput-
ing models are worth exploring, including CPU + GPU,
CPU + MIC (Many Integrated Core), etc. Intel’s MIC and
some other many-core processor technologies are developed.
Intel’s up-to-date Knights Landing Xeon Phi processor, for
instance, can be used as a main processor, which differs from
the preceding Knights Corner in that the latter can only be
used as coprocessors. Both of the foregoing processors can
be used for HPC. FPGA (Field Programmable Gate Array)
may be also useful. In addition, MPI can also be consid-
ered, which is a useful programming tool for distributed
parallelism. Spark and Hadoop may be potential tools for
big data. The new algorithm based on Spark may be one of
the future research focuses. The novel algorithm needs to
be optimized according to the characteristics of hardware,
software, algorithm and optimization problem so as to maxi-
mize the potential optimization performance of machine and
algorithm.

D. TACKLING REAL-WORLD M/MaOLSOPs
The foregoing algorithms can be applied to address real-
world optimization problems. For the real-world applica-
tions, we should design and improve the PSO algorithms
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according to the characteristics of the specific optimization
problems. In the following, we take the WSN deployment
problem as an example to elaborate. Traditional research on
deployment optimization of WSNs [16] is mainly focused on
2D plane. However, in fact, real-world WSNs usually exist
on complicated 3D terrains or in complex 3D spaces. The
WSN deployment optimization problems can be transformed
into the M/MaOLSOPs. Consequently, using the foregoing
algorithms to tackle the deployment optimization problems
of WSNs in complicated 3D environments has more practical
significance, and we can improve the foregoing algorithms
according to the characteristics of specific optimization
problems.

In addition, we can explore the use of an approximated
separable objective function to replace the original non-
separable objective function of optimization problem and we
can also conduct the decomposing operation according to
the characteristics of the optimization problem and the priori
knowledge.

VI. CONCLUSION
With the fast development of distributed parallel computing
technologies and the the coming era of big data, many com-
plicated problems can be transformed into M/MaOLSOPs.
Therefore, the research on distributed parallel PSO for multi-
objective and many-objective large-scale optimization has
important research significance. In this connection, we sur-
veyed related research on PSO algorithms: multi-objective
large-scale optimization; many-objective optimization; and
distributed parallelism. Then the Multi-Objective Large-
Scale Distributed Parallel PSO and Many-Objective Large-
Scale Distributed Parallel PSO methodologies are proposed
and disscussed, and the other prospective research trends
are also presented and discussed. The difference between
the MOPs and MaOPs is that the number of objectives is
different. However, the selection of optimization strategies
may be different. The research on designing multi-objective
large-scale distributed parallel PSO algorithms can be first
conducted; then, integrating novel variable decomposition
and optimization strategies, we can study the many-objective
large-scale distributed parallel PSO algorithms for tackling
MaOLSOPs. When the objective number is large and the
number of variables is huge, the optimization process will be
extremely time-consuming. Based on the distributed parallel
strategies, the optimization tasks can be allocated to large
amounts of computation units, which can effectively improve
the running efficiency.
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