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ABSTRACT In this paper, a new robust Student’s t-based stochastic cubature filter (RSTSCF) is proposed for
a nonlinear state–space model with heavy-tailed process and measurement noises. The heart of the RSTSCF
is a stochastic Student’s t-spherical radial cubature rule (SSTSRCR), which is derived based on the third-
degree unbiased spherical rule and the proposed third-degree unbiased radial rule. The existing stochastic
integration rule is a special case of the proposed SSTSRCR when the degrees of freedom parameter tends to
infinity. The proposed filter is applied to a maneuvering bearings-only tracking example, in which an agile
target is tracked and the bearing is observed in clutter. Simulation results show that the proposed RSTSCF can
achieve higher estimation accuracy than the existing Gaussian approximate filter, Gaussian sumfilter, Huber-
based nonlinear Kalman filter, maximum correntropy criterion-based Kalman filter, and robust Student’s
t-based nonlinear filters, and is computationally much more efficient than the existing particle filter.

INDEX TERMS Nonlinear filter, heavy-tailed noise, student’s t distribution, student’s t weighted integral,
outlier, nonlinear system.

I. INTRODUCTION
Nonlinear filtering has been playing an important role in
many applications, such as target tracking, detection, sig-
nal processing, communication and navigation. Under the
Bayesian estimation framework, the nonlinear filtering prob-
lem is addressed by calculating the posterior probability
density function (PDF) recursively based on the nonlinear
state-space model. Unfortunately, there is not a closed form
solution for posterior PDF for nonlinear state-space model
since a closed PDF for nonlinear mapping doesn’t exist [1].
As a result, there is not an optimal solution for nonlinear
filtering problem, and an approximate approach is neces-
sary to obtain a suboptimal solution. In general, the pos-
terior PDF is approximated as Gaussian by assuming the
jointly predicted PDF of the state and measurement vectors
is Gaussian, and the resultant Gaussian approximate (GA)
filter can provide tradeoffs between estimation accuracy and
computational complexity [2], [3]. Up to present, many vari-
ants of the GA filter have been proposed using different
Gaussian weighted integral rules [3]–[9]. However, in some
engineering applications, such as tracking an agile target that

is observed in clutter, the heavy-tailed process noise may
be induced by severe manoeuvering and the heavy-tailed
measurement noise may be induced by measurement outliers
from unreliable sensors [10]–[12]. The performance of the
GA filters may degrade for such engineering applications
with heavy-tailed noises since they all model the process and
measurement noises as Gaussian distributions so that they are
sensitive to heavy-tailed non-Gaussian noises [11].

Particle filter (PF) is a common method to address non-
Gaussian noises, in which the posterior PDF is approximated
as a set of random samples with associated weights based on
sequential Monte Carlo sampling technique [13]. The PF can
model the process and measurement noises as arbitrary distri-
butions, such as the Student’s t distributions for heavy-tailed
non-Gaussian noises [14], [15]. However, the PF suffers from
substantial computational complexities in high-dimensional
problems because the number of particles increases expo-
nentially with the dimensionality of the state [16]. Gaussian
sum filter (GSF) is an alternative method to handle heavy-
tailed non-Gaussian noises, where the heavy-tailed process
and measurement noises are modelled as a finite sum of
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Gaussian distributions, and the posterior distribution is then
approximated as a weighted sum of Gaussian distributions
by running a bank of GA filters [17]–[19]. However, for the
GSF, it is very difficult to model the heavy-tailed process
and measurement noises accurately using finite Gaussian
distributions since the heavy-tailed non-Gaussian noises are
induced by the unknown manoeuvering or outliers, which
may degrade the estimation performance of the GSF.

To solve the filtering problem of nonlinear state-space
model with heavy-tailed non-Gaussian noises, the Huber-
based nonlinear Kalman filter (HNKF) has been proposed by
minimising a Huber cost function that is a combined l1 and l2
norm [20]. A larger number of variants of the HNKF have
been derived based on a linearized or statistical linearized
method, such as theHuber-based extendedKalman filter [21],
the Huber-based divided difference filter [22], the Huber-
based unscented Kalman filter [23], the nonlinear regression
Huber Kalman filter [24] and the adaptively robust unscented
Kalman filter (ARUKF) [25]. However, the influence func-
tion of the HNKFs don’t redescend, which may deteriorate
the estimation performance of the HNKFs [12]. The max-
imum correntropy criterion based Kalman filter (MCCKF)
has been proposed by maximising the correntropy of the pre-
dicted error and residual [26]–[29]. However, there is a lack
of theoretical basis to develop the estimation error covariance
matrix of the MCCKF, which may degrade the estimation
accuracy [12].

A reasonable approach to improve the estimation perfor-
mance is utilizing a Student’s t distribution to model the
heavy-tailed non-Gaussian noise. The Student’s t distribu-
tion is a generalized Gaussian distribution but has heavier
tails than the Gaussian distribution, which makes it more
suitable for modelling the heavy-tailed non-Gaussian noise.
A general framework of the robust Student’s t based nonlinear
filter (RSTNF) has been proposed, in which the jointly pre-
dicted PDF of the state and measurement vectors is assumed
to be Student’s t, and the posterior PDF is then approximated
as Student’s t [30]. The heart of the RSTNF is how to cal-
culate the Student’s t weighted integral, and the estimation
accuracy of the associated RSTNF is determined by the
employed numerical integral technique. Many variants of the
RSTNF have been derived based on different numerical inte-
gral methods, such as the robust Student’s t based extended
filter (RSTEF) using the first-order linearization [10], the
robust Student’s t based unscented filter (RSTUF) using the
unscented transform (UT) [30], [31], and the robust Student’s
t based cubature filter (RSTCF) using the third-degree Stu-
dent’s t spherical radial cubature rule (STSRCR) [32]. How-
ever, the existing Student’s t integral rules can only capture
the third-degree or fifth-degree information of the Taylor
series expansion for nonlinear approximation, which may
result in limited estimation accuracy. Although the Monte
Carlo approach can be used to calculate the Student’s t
weighted integral, it has low accuracy and slow convergence
when the integrand is not approximately constant and the
number of random samples is finite [33]. Therefore, there is

a great demand to develop more accurate numerical integral
approach for the Student’s t weighted integral to further
improve the estimation accuracy of the existing RSTNFs.

In this paper, the Student’s t weighted integral is decom-
posed into the spherical integral and the radial inte-
gral based on the spherical-radial transformation. A new
stochastic STSRCR (SSTSRCR) is derived based on the
third-degree unbiased spherical rule (USR) and the proposed
third-degree unbiased radial rule (URR), from which a new
robust Student’s t based stochastic cubature filter (RSTSCF)
is obtained. The existing stochastic integration rule (SIR) [8]
is a special case of the proposed SSTSRCR when the degrees
of freedom (dof) parameter tends to infinity. The proposed
SSTSRCR can achieve better approximation to the Student’s
t weighted integral as compared with existing Student’s
t integral rules. As a result, the proposed RSTSCF has higher
estimation accuracy than the existing RSTNFs. The pro-
posed filter and existing filters are applied to a manoeu-
vring bearings-only tracking example, where an agile target
is tracked and the bearing is observed in clutter. Simulation
results show that the proposed RSTSCF can achieve higher
estimation accuracy than the existing GA filter, GSF, HNKF,
MCCKF and RSTNFs, and is computationally much more
efficient than the existing PF.

The remainder of this paper is organized as follows.
In Section II, a general frame of the RSTNF is reviewed.
In Section III, a new SSTSRCR is derived based on the
proposed third-degree URR, from which a new RSTSCF
is obtained. Also, the relationship between the proposed
SSTSRCR and the existing SIR is revealed in Section III.
In Section IV, the proposed filter is applied to a manoeuvring
bearings-only tracking example and simulation results are
given. Concluding remarks are drawn in Section V.

II. PROBLEM STATEMENT
Consider the following discrete-time nonlinear stochastic
system as represented by the state-space model [30]

xk = fk−1(xk−1)+ wk−1 (process equation) (1)

zk = hk (xk )+ vk (measurement equation), (2)

where k is the discrete time index, xk ∈ Rn is the state vector,
zk ∈ Rm is the measurement vector, and fk−1(·) and hk (·)
are known process and measurement functions respectively.
wk ∈ Rn and vk ∈ Rm are heavy-tailed process and mea-
surement noise vectors respectively, which are induced by
process and measurement outliers, and their distributions are
modelled as Student’s t distributions, i.e.,

p(wk ) = St(wk ; 0,Qk , ν1) (3)

p(vk ) = St(vk ; 0,Rk , ν2), (4)

where St(·;µ,6, v) denotes the Student’s t PDF with mean
vector µ, scale matrix 6, and dof parameter v, Qk and ν1 are
the scale matrix and dof parameter of process noise respec-
tively, and Rk and ν2 are the scale matrix and dof parameter
of measurement noise respectively. The initial state vector x0
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is also assumed to have a Student’s t distribution with mean
vector x̂0|0, scale matrix P0|0, and dof parameter ν3, and x0,
wk and vk are assumed to be mutually uncorrelated.

To achieve the filtering estimation, a general framework
of RSTNF is derived for the nonlinear system formulated
in equations (1)-(4), where the jointly predicted PDF of the
state and measurement vectors is assumed as Student’s t, then
the posterior PDF of the state vector can be approximated as
Student’s t [30]. The time update and measurement update of
the recursive RSTNF are given as follows:

Time update

x̂k|k−1 =
∫
Rn

fk−1(xk−1)St(xk−1; x̂k−1|k−1,Pk−1|k−1, ν3)

× dxk−1 (5)

Pk|k−1 =
ν3 − 2
ν3

∫
Rn

fk−1(xk−1)fTk−1(xk−1)

×St(xk−1; x̂k−1|k−1,Pk−1|k−1, ν3)dxk−1

−
ν3 − 2
ν3

x̂k|k−1x̂
T
k|k−1 +

ν1(ν3 − 2)
(ν1 − 2)ν3

Qk−1, (6)

where (·)T denotes the transpose operation, x̂k|k−1 and Pk|k−1
are respectively the mean vector and scale matrix of the one-
step predicted PDF p(xk |Zk−1), Zk−1 = {zj}k−1j=1 is the set of
k−1 measurement vectors, and ν3 denotes the dof parameter
of the filtering PDF.

Measurement update

1k =

√
(zk − ẑk|k−1)T (Pzzk|k−1)

−1(zk − ẑk|k−1) (7)

Kk = Pxzk|k−1(P
zz
k|k−1)

−1 (8)

x̂k|k = x̂k|k−1 +Kk (zk − ẑk|k−1) (9)

Pk|k =
(ν3 − 2)(ν3 +12

k )

ν3(ν3 + m− 2)
(Pk|k−1 −KkPzzk|k−1K

T
k ), (10)

where (·)−1 denotes the inverse operation, x̂k|k and Pk|k are
respectively the mean vector and scale matrix of the filtering
PDF p(xk |Zk ), ẑk|k−1 and Pzzk|k−1 are respectively the mean
vector and scale matrix of the likelihood PDF p(zk | Zk−1),
and Pxzk|k−1 is the cross scale matrix of state and measurement
vectors, which are given by

ẑk|k−1 =
∫
Rn

hk (xk )St(xk ; x̂k|k−1,Pk|k−1, ν3)dxk (11)

Pzzk|k−1 =
ν3 − 2
ν3

∫
Rn

hk (xk )hTk (xk )St(xk ; x̂k|k−1,Pk|k−1, ν3)

× dxk −
ν3 − 2
ν3

ẑk|k−1ẑ
T
k|k−1 +

ν2(ν3 − 2)
(ν2 − 2)ν3

Rk

(12)

Pxzk|k−1 =
ν3 − 2
ν3

∫
Rn

xkhTk (xk )St(xk ; x̂k|k−1,Pk|k−1, ν3)

× dxk −
ν3 − 2
ν3

x̂k|k−1ẑ
T
k|k−1. (13)

The recursive RSTNF is composed of the analytical com-
putations in equations (7)-(10) and the Student’s t weighted
integrals in equations (5)-(6) and (11)-(13). The key problem
in the design of the RSTNF is calculating the nonlinear

Student’s t weighted integrals formulated in equations (5)-(6)
and (11)-(13), whose integrands are all of the form nonlinear
function×Student’s t PDF. Therefore, the numerical integral
technique is required to implement the RSTNF, which deter-
mines the estimation accuracy of associated RSTNF. Next, to
further improve the estimation accuracy of existing RSTNFs,
a new SSTSRCR will be proposed, based on which a new
RSTSCF can be obtained.

III. MAIN RESULTS
A. SPHERICAL-RADIAL TRANSFORMATION
The Student’s t weighted integrals involved in the RSTNF can
be written as the general form as follows

I [g] =
∫
Rn

g(x)St(x;µ,6, ν)dx, (14)

where the Student’s t PDF is given by

St(x;µ,6, ν) =
0( ν+n2 )

0( ν2 )
1

√
|νπ6|

×

[
1+

1
ν
(x− µ)T6−1(x− µ)

]− ν+n2
,

(15)

where 0(·) and | · | denote the Gamma function and deter-
minant operation respectively. To derive the SSTSRCR, the
Student’s t weighted integral in equation (14) requires to be
transformed into a spherical-radial integral form.

A change of variable is utilized as follows

x = µ+
√
ν6y, (16)

where
√
6 is the square-root of scale matrix 6 satisfying

6 =
√
6
√
6
T
.

Substituting equation (16) in equations (14)-(15) and using
the identity |

√
ν6| =

√
|ν6| yields

I [g] =
∫
Rn

l(y)(1+ yTy)−
ν+n
2 dy, (17)

where l(y) is given by

l(y) =
0( ν+n2 )

0( ν2 )π
n
2
g(µ+

√
ν6y). (18)

Define y = rs with sT s = 1, then equation (17) can be
rewritten as [34]

I [g] =
∫
+∞

0

∫
Un

l(rs)rn−1[1+ (rs)T (rs)]−
ν+n
2 dσ (s)dr

=

∫
+∞

0

∫
Un

l(rs)rn−1(1+ r2)−
ν+n
2 dσ (s)dr, (19)

where s = [s1, s2, · · · , sn]T , Un = {s ∈ Rn
: s21 + s

2
2 + · · · +

s2n = 1}, and σ (s) is the spherical surface measure or an area
element on Un.
According to equation (19), the Student’s t weighted inte-

gral in equation (14) can be decomposed into the radial
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integral

I [g] =
∫
+∞

0
S(r)rn−1(1+ r2)−

ν+n
2 dr, (20)

and the spherical integral

S(r) =
∫
Un

l(rs)dσ (s). (21)

Next, a new third-degree SSTSRCR will be derived, in
which the spherical and the radial integrals are respectively
calculated by the third-degree USR (Section III. B below)
and the third-degree URR (Section III. C below). Before
deriving the third-degree SSTSRCR, the unbiased integral
rule is firstly defined as follows.

Definition 1: The integral rule
∫
g(x)p(x)dx ≈

N∑
l=1

wlg(xl) is unbiased if and only if [33]∫
g(x)p(x)dx = E

[
N∑
l=1

wlg(xl)

]
, (22)

where xl and wl are respectively cubature points and
corresponding weights, and E[·] denotes the expectation
operation.

B. UNBIASED SPHERICAL RULE
The Stewart’s method is employed to construct the third-
degree USR. IfQ is a random orthogonal matrix drawn with a
Haar distribution from the set of all matrices in the orthogonal
group, the third-degree USR can be constructed as [33], [35]

S3u(r) ≈
An
2n

n∑
i=1

[l(−rQei)+ l(rQei)], (23)

where An = 2π
n
2

0( n2 )
is the surface area of the unit sphere,

and ei denotes the i-th column of an n × n unit matrix.
To produce a random orthogonal matrix Q, a n × n matrix
U of standard normal variables is first generated, then the
required random orthogonal matrix Q is obtained based on
the QR factorization, i.e., U = QR [35].
Next, a new third-degree URR will be proposed for the

radial integral in equation (20).

C. UNBIASED RADIAL RULE
Generally, the monomials S(r) = 1, S(r) = r , S(r) = r2, and
S(r) = r3 need to bematched to derive the third-degree URR.
However, only monomials S(r) = 1 and S(r) = r2 need
to be matched for the third-degree URR since the USR and
the resultant STSRCR are fully symmetry. Thus, two points
{r1, ωr,1} and {r2, ωr,2} are sufficient to design the third-
degree URR, where one point is used to match monomials
S(r) = 1 and S(r) = r2 and the other point is employed to
retain unbiasedness. That is to say, the third-degree URR can
be written as∫
+∞

0
S(r)rn−1(1+ r2)−

ν+n
2 dr ≈ ωr,1S(r1)+ ωr,2S(r2),

(24)

where {r1, ωr,1} and {r2, ωr,2} satisfy the following
equations

ωr,1r01 + ωr,2r
0
2 =

∫
+∞

0
r0rn−1(1+ r2)−

ν+n
2 dr (25)

ωr,1r21 + ωr,2r
2
2 =

∫
+∞

0
r2rn−1(1+ r2)−

ν+n
2 dr (26)∫

+∞

0
S(r)rn−1(1+ r2)−

ν+n
2 dr

= E
[
ωr,1S(r1)+ ωr,2S(r2)

]
. (27)

Since there are three equations and four variables in equa-
tions (25)-(27), there is one free variable. In order to get the
STSRCR with the minimum number of points, r1 is chosen
as the free variable and set to zero.
Theorem 1: If r1 = 0 and the PDF of random vari-

able r2 is

p(r2) = 2rn+12 (1+ r22 )
−
ν+n
2 /B(

n+ 2
2

,
ν − 2
2

), (28)

where B(·, ·) denotes the beta function, then the third-degree
URR is given by

I [g] ≈
1
2
B(
n
2
,
ν

2
)

{[
1−

n

(ν−2)r22

]
S(0)+

n

(ν−2)r22
S(r2)

}
.

(29)
Proof: Firstly, a general integral

∫
+∞

0 r lrn−1(1 +
r2)−

ν+n
2 dr is calculated to obtain the right-hand parts in

equations (25)-(26). Making a change of variable via t = r2

results in∫
+∞

0
r lrn−1(1+ r2)−

ν+n
2 dr =

1
2
B(
n+ l
2
,
ν − l
2

), (30)

where B(·, ·) denotes the beta function.
Substituting equation (30) in equations (25)-(26),

we have

ωr,1 + ωr,2 =
1
2
B(
n
2
,
ν

2
) (31)

ωr,1r21 + ωr,2r
2
2 =

1
2
B(
n+ 2
2

,
ν − 2
2

). (32)

Utilizing the identities 0(a + 1) = a0(a) and B(a, b) =
0(a)0(b)
0(a+b) in equation (32) yields

ωr,1r21 + ωr,2r
2
2 =

n
2(ν − 2)

B(
n
2
,
ν

2
). (33)

Employing r1 = 0 in equation (33) yields

ωr,2 =
n

2(ν − 2)r22
B(
n
2
,
ν

2
). (34)

Substituting equation (34) in equation (31) results in

ωr,1 =
1
2
B(
n
2
,
ν

2
)

[
1−

n

(ν − 2)r22

]
. (35)
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Utilizing r1 = 0 and equations (34)-(35), the expecta-
tion of the third-degree radial rule with respect to p(r2) is
written as

E
[
ωr,1S(r1)+ ωr,2S(r2)

]
=

1
2
B(
n
2
,
ν

2
)E

[
1−

n

(ν − 2)r22

]

×S(0)+
1
2
B(
n
2
,
ν

2
)E

[
n

(ν − 2)r22
S(r2)

]
. (36)

Using equations (28) and (30), we have

E

[
1−

n

(ν − 2)r22

]

=

∫
+∞

0

2rn+12 (1+ r22 )
−
ν+n
2

B( n+22 , ν−22 )
dr2

−
n

(ν−2)

∫
+∞

0

2rn−12 (1+r22 )
−
ν+n
2

B( n+22 , ν−22 )
dr2 = 0 (37)

E

[
n

(ν − 2)r22
S(r2)

]

=
n

(ν − 2)

∫
+∞

0

2rn−12 (1+ r22 )
−
ν+n
2

B( n+22 , ν−22 )
× S(r2)dr2

=
2

B( n2 ,
ν
2 )

∫
+∞

0
S(r)rn−1(1+ r2)−

ν+n
2 dr . (38)

Substituting equations (37)-(38) in equation (36) yields

E
[
ωr,1S(r1)+ ωr,2S(r2)

]
=

∫
+∞

0
S(r)rn−1(1+r2)−

ν+n
2 dr .

(39)

With r1 = 0, equations (34)-(35) and (39), the third-degree
URR can be formulated as equation (29). �
It is very difficult to directly generate random samples from

p(r2) since p(r2) is not a special PDF. To solve this problem,
Theorem 2 is presented as follows.

Theorem 2: If random variable τ =
r22

1+r22
, then random

variable τ obeys the Beta distribution, i.e.,

p(τ ) = Beta(τ ;
n+ 2
2

,
ν − 2
2

) =
τ
n+2
2 −1(1− τ )

ν−2
2 −1

B( n+22 , ν−22 )
,

(40)

where Beta(·;α, β) denotes the beta PDF with parameters α
and β.

Proof: Since τ =
r22

1+r22
and r2 ∈ [0,+∞), random vari-

able τ ∈ [0, 1). According to τ =
r22

1+r22
, r2 is formulated as

r2 = c(τ ) =
√

τ

1− τ
τ ∈ [0, 1). (41)

Employing the transformation theorem and equation (41),
the PDF of random variable τ is given by

p(τ ) = pr2 (c(τ ))c
′(τ ), (42)

where pr2 (·) denotes the PDF of r2 and c′(τ ) denotes the
derivative of c(τ ) with respect to τ given by

c′(τ ) = 0.5τ−
1
2 (1− τ )−

3
2 . (43)

Substituting equations (28), (41) and (43) in equation (42)
obtains

p(τ ) = τ
n+2
2 −1(1− τ )

ν−2
2 −1/B(

n+ 2
2

,
ν − 2
2

), (44)

which proves the theorem. �

D. STOCHASTIC STSRCR
A theorem is first presented to derive the unbiased STSRCR.
Theorem 3: If the spherical and radial rules are unbiased,

then the resultant STSRCR is also unbiased.
Proof: If the spherical and radial rules are given by

S(r) ≈
Ns∑
i=1

ws,il(rsi); I [g] ≈
Nr∑
j=1

wr,jS(rj), (45)

then the STSRCR can be formulated as

I [g] ≈
Nr∑
j=1

Ns∑
i=1

wr,jws,il(rjsi), (46)

where si and ws,i are respectively cubature points and
weights of the spherical rule, and rj and wr,j are
respectively quadrature points and weights of the radial
rule.

Since the spherical and radial rules are unbiased, we obtain

S(r) = E

[ Ns∑
i=1

ws,il(rsi)

]
; I [g] = E

 Nr∑
j=1

wr,jS(rj)

.
(47)

Using equation (47) yields

I [g] = E


Nr∑
j=1

wr,jE

[ Ns∑
i=1

ws,il(rjsi)

]. (48)

Since the set {si, ws,i}
Ns
i=1 is independent of the set

{rj, wr,j}
Nr
j=1, we have

I [g] = E

 Nr∑
j=1

Ns∑
i=1

wr,jws,il(rjsi)

, (49)

which proves the theorem. �
Using Theorems 1-3 obtains

I [g] = E

{[
1−

n

(ν − 2)r22

]
g(µ)+

1

2(ν − 2)r22

×

n∑
i=1

[
g(µ−r2

√
ν6Qei)+g(µ+r2

√
ν6Qei)

]}
.

(50)
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By employing the Monte Carlo approach, the right-hand
parts of equation (50) can be approximated as

I3s [g]

=
1
N

N∑
l=1

{[
1−

n

(ν − 2)r22,l

]
g(µ)+

1

2(ν − 2)r22,l

×

n∑
i=1

[
g(µ−r2,l

√
ν6Qlei)+g(µ+r2,l

√
ν6Qlei)

]}
,

(51)

where N denotes the number of random samples, and Ql
is a random orthogonal matrix, and r2,l is drawn randomly
from p(r2). The form I3s [g] denotes the proposed third-degree
SSTSRCR, and the implementation pseudocode of the pro-
posed SSTSRCR is shown in Table 1.

TABLE 1. The implementation pseudocode of the proposed SSTSRCR.

According to the Monte Carlo approach, I3s [g] converges
to I [g] when N tends to infinity, i.e.,

lim
N→+∞

I3s [g] = I [g]. (52)

Thus, the proposed SSTSRCR provides asymptotically
exact integral evaluations when N tends to infinity. A new
RSTSCF can be obtained by employing the proposed
SSTSRCR to calculate the Student’s t weighted integrals
involved in the RSTNF, and the implementation pseudocode
for one time step of the proposed RSTSCF is shown in Table
2, where SSTSRCR(·) denotes the proposed SSTSRCR algo-
rithm. The proposed SSTSRCR can achieve better approxi-
mation to the Student’s t weighted integral as compared with
existing Student’s t integral rules. As a result, the proposed
RSTSCF has higher estimation accuracy than the existing
RSTNFs.
Remark 1: The Monte Carlo approach can be also used

to calculate the Student’s t weighted integral, and it provides

TABLE 2. The implementation pseudocode for one time step of the
proposed RSTSCF.

asymptotically exact integral evaluations when the number
of random samples tends to infinity. However, it has low
accuracy and slow convergence when the integrand is not
approximately constant and the number of random samples
is finite [33]. Fortunately, the proposed SSTSRCR is at least
exact up to third-degree polynomials for any number of ran-
dom samples, and it can capture more and more higher-
degree moment information as the number of random samples
increases.
Remark 2: The Student’s t distribution is a generalized

Gaussian distribution but has heavier tails than the Gaussian
distribution, which makes it more suitable for modelling the
heavy-tailed non-Gaussian noise. In the proposed RSTSCF,
the Student’s t distributions are utilized to model the heavy-
tailed process and measurement noises, which mitigates the
negative effect of heavy-tailed process and measurement
noises. Therefore, the proposed RSTSCF is robust to heavy-
tailed process and measurement noises.

E. RELATIONSHIP BETWEEN THE PROPOSED SSTSRCR
AND THE EXISTING SIR [8]
Theorem 4: The proposed SSTSRCR will degrade to the

existing SIR when the dof parameter ν →+∞, i.e.

lim
ν→+∞

I3s [g]

=
1
N

N∑
l=1

{[
1−

n

ρ2l

]
g(µ)+

1

2ρ2l

×

n∑
i=1

[
g(µ−ρl

√
6Qlei)+g(µ+ρl

√
6Qlei)

]}
,

(53)

where the right-hand side of the equation (53) is the SIR for
the Gaussian weighted integral, and ρl is drawn randomly
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from p(ρl) that is given by

p(ρl) ∝ ρ
n+1
l e−

ρ2l
2 . (54)

Proof: Make a change of variable as follows

r2,l = c(ρl) =
ρl

√
ν − 2

, s.t. ν →+∞. (55)

Substituting equation (55) in equation (51) results in

I3s [g]

=
1
N

N∑
l=1

{[
1−

n

ρ2l

]
g(µ)+

1

2ρ2l

n∑
i=1

×

[
g(µ−ρl

√
ν

ν − 2
6Qlei)+g(µ+ρl

√
ν

ν−2
6Qlei)

]}
.

(56)

Taking the limit of equation (56) when the dof parameter
ν →+∞, we can obtain equation (53).

Using the transformation theorem and equation (55), the
PDF of random variable ρl is given by

p(ρl) = pr2 (c(ρl))c
′(ρl), (57)

where pr2 (·) denotes the PDF of r2 , and c′(ρl) denotes the
derivative of c(ρl) with respect to ρl given by

c′(ρl) =
1

√
ν − 2

. (58)

Substituting equations (28), (55) and (58) in equation (57),
we obtain

p(ρl) = 2ρn+1l lim
ν→+∞

1

(ν − 2)
n+2
2 B( n+22 , ν−22 )

× lim
ν→+∞

(
1+

ρ2l

ν − 2

)− ν+n2
. (59)

Utilizing the identity B(a, b) = 0(a)0(b)
0(a+b) , the first limit in

equation (59) can be formulated as

lim
ν→+∞

1

(ν − 2)
n+2
2 B( n+22 , ν−22 )

=
2−

n+2
2

0( n+22 )
× lim
ν→+∞

0( ν−22 +
n+2
2 )

0( ν−22 )( ν−22 )
n+2
2

. (60)

Using the property of Gamma function lim
t→+∞

0(t+α)
0(t)tα = 1

in equation (60) gives

lim
ν→+∞

1

(ν − 2)
n+2
2 B( n+22 , ν−22 )

=
2−

n+2
2

0( n+22 )
. (61)

The second limit in equation (59) can be reformulated as

lim
ν→+∞

(
1+

ρ2l

ν − 2

)− ν+n2
= lim

ν→+∞
s(ν)d(ν)

= lim
ν→+∞

s(ν)

[
lim

ν→+∞
d(ν)

]
, (62)

where the functions s(ν) and d(ν) are given by

s(ν) =

(
1+

ρ2l

ν − 2

) ν−2
ρ2l

(63)

d(ν) = −
ρ2l (ν + n)

2(ν − 2)
. (64)

Using the identity lim
t→+∞

(
1+ 1

t

)t
= e and equa-

tions (63)-(64), equation (62) can be rewritten as

lim
ν→+∞

(
1+

ρ2l

ν − 2

)− ν+n2
= e−

ρ2l
2 . (65)

Substituting equations (61) and (65) in (59), we can
obtain (54), which proves the theorem. �

Considering that the Student’s t PDF turns into the Gaus-
sian PDF as the dof parameter ν →+∞, we obtain

lim
ν→+∞

I [g] =
∫
Rn

g(x) lim
ν→+∞

St(x;µ,6, ν)dx

=

∫
Rn

g(x)N(x;µ,6)dx. (66)

According to the Theorem 4 and equation (66), we can
conclude that the proposed SSTSRCR with ν →+∞ can be
utilized to calculate the Gaussian weighted integral. Thus, the
proposed SSTSRCR is a generalized SIR, which can calculate
not only the Gaussian weighted integral but also the Student’s
t weighted integral.

IV. SIMULATION STUDY
In this simulation, the superior performance of the proposed
RSTSCF as compared with existing filters is shown in the
problem of manoeuvring bearing-only tracking observed in
clutter. The target moves according to the continuous white
noise acceleration motion model [8]

xk = Fxk−1 +Gwk−1, (67)

where xk = [xk yk ẋk ẏk ], and xk , yk , ẋk and ẏk denote the
cartesian coordinates and corresponding velocities respec-
tively; F andG denote respectively the state transition matrix
and noise matrix given by

F =
[
I2 1tI2
0 I2

]
G =

[
0 02×1

02×1 0

]
, (68)

where 1t = 1min is the sampling interval, and I2 is the two
dimensional identity matrix, and 02×1 is the two dimensional
zero vector, and 0 = [0.51t2 1t]T .

The target is observed by an angle sensor installed in a
manoeuvring platform. If the platform is located at (xpk , y

p
k )

at time k , then the measurement model is given by

zk = tan−1(
yk − y

p
k

xk − x
p
k
)+ vk , (69)

where zk is the angle between the target and the platform at
time k . Outlier corrupted process andmeasurement noises are
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generated according to [10], [12], and [30]

wk ∼

{
N (0,6w) w.p. 0.95
N (0, 1006w) w.p. 0.05

(70)

vk ∼

{
N (0, 6v) w.p. 0.95
N (0, 506v) w.p. 0.05,

(71)

where N(µ,6) denotes the Gaussian distribution with mean
vectorµ and covariance matrix6, w.p. denotes ‘‘with proba-
bility’’, the nominal process noise covariance matrix is6w =

10−6I2km2/min2, and the nominal measurement noise vari-
ance is 6v = (0.02rad)2. Process and measurement noises,
which are generated according to equations (70)-(71), have
heavier tails.

In our simulation scenario, the initial positions of the
target and the platform are respectively (3km, 3km) and
(0km, 0km). The target moves at a constant speed of 180
knots (1 knot is 1.852km/h) with a course of −135.4◦.
The platform moves at a constant speed of 50 knots with
a initial course of −80◦, and the course reaches 146◦

at time k = 15min by executing a manoeuvre [8].
The initial estimation error covariance matrix is P0|0 =

diag[16km2 16km2, 4km2/min2, 4km2/min2], and the ini-
tial state estimate x̂0|0 is chosen randomly from N(x0,P0|0),
where x0 denotes the initial true state.

In this simulation, the stochastic integration filter (SIF) [8],
the ARUKF with free parameter κ = 0 [25], the MCCKF
with kernel size σ = 5 [29], the RSTEF [10], the 3rd-
degree RSTUF with free parameter κ = 3− n [30], the 3rd-
degree RSTCF [32], the fifth-degree RSTUF [31], the robust
Student’s t based Monte Carlo filter (RSTMCF), the Gaus-
sian sum-cubature Kalman filter (GSCKF) [18], the PF with
10000 particles [13], the PF with 2000 particles [13], and the
proposed RSTSCF are tested. In the RSTMCF, the Student’s t
weighted integral is calculated using the conventional Monte
Carlo approach with 10000 random samples. In the GSCKF,
the process and measurement noises are modelled as p(wk ) =∑5

i=1 αiN (wk ; 0, λi6w) and p(vk ) =
5∑
i=1
αiN (vk ; 0, λi6v),

where the weights α1 = 0.8 and α2 = α3 = α4 =

α5 = 0.05, and the scale parameters λ1 = 1, λ2 = 50,
λ3 = 100, λ4 = 500 and λ5 = 1000. Moreover, to
prevent the computational complexity of the GSCKF increas-
ing exponentially as the time, the posterior distribution is
approximated as a weighted sum of five Gaussian terms with
the highest weights. In the PF, the process and measurement
noises are modelled as Student’s t distributions. In the exist-
ing RSTEF, 3rd-degree RSTUF, 3rd-degree RSTCF, fifth-
degree RSTUF, RSTMCF, PF and the proposed RSTSCF, the
dof parameters are all chosen as ν1 = ν2 = ν3 = 5 and
the scale matrices are all set as Qk = 6w and Rk = 6v.
In the SIF and the proposed RSTSCF, the number of random
samples is selected as N = 100. The proposed filter and
existing filters are coded with MATLAB and the simula-
tions are run on a computer with Intel Core i7-3770 CPU
at 3.40 GHz.

FIGURE 1. RMSEs of the position from the proposed filter and existing
filters.

FIGURE 2. RMSEs of the velocity from the proposed filter and existing
filters.

To compare the performances of the proposed fil-
ter and existing filters, the RMSEs and the averaged
RMSEs (ARMSEs) of the position and velocity are chosen
as performance metric. The RMSE and ARMSE in position
are respectively defined as

RMSEpos(k) =

√√√√ 1
M

M∑
s=1

((
xsk − x̂

s
k

)2
+
(
ysk − ŷ

s
k

))2
(72)

ARMSEpos =

√√√√ 1
MT

T∑
k=1

M∑
s=1

((
xsk − x̂

s
k

)2
+
(
ysk − ŷ

s
k

))2
,

(73)

where M = 1000 denotes the number of Monte Carlo runs,
and T = 100min denotes the simulation time, and (xsk , y

s
k )

and (x̂sk , ŷ
s
k ) respectively denote the true and estimated posi-

tions at the s-th Monte Carlo run. Similar to the RMSE and
ARMSE in position, we can also formulate the RMSE and
ARMSE in velocity.

The RMSEs and ARMSEs of position and velocity from
the proposed filter and existing filters are respectively shown
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TABLE 3. ARMSEs and implementation times of the proposed filter and
existing filters.

FIGURE 3. RMSEs of the position from the existing 5th-degree RSTUF and
the proposed filter when T = 200min.

in Fig. 1–Fig. 2 and Table 3, where PF (10000) and PF
(2000) denote the PF with 10000 particles and the PF with
2000 particles respectively. The implementation times of the
proposed filter and existing filters in single step run are given
in Table 3. Note that the existing ARUKF and RSTEF diverge
in the simulation, as shown in Fig. 1–Fig. 2 and Table 3.

It is seen from Fig. 1–Fig. 2 and Table 3 that the RMSEs
and ARMSEs of the proposed RSTSCF are smaller than
the existing SIF, ARUKF, MCCKF, RSTEF, 3rd-degree
RSTUF, 3rd-degree RSTCF, 5th-degree RSTUF, RSTMCF,
GSCKF and PF with 2000 particles but larger than the
existing PF with 10000 particles. Furthermore, it can be
also seen from Table 3 that the implementation time
of the proposed RSTSCF are greater than the exist-
ing SIF, ARUKF, MCCKF, RSTEF, 3rd-degree RSTUF,
3rd-degree RSTCF, 5th-degree RSTUF but significantly
smaller than the existing RSTMCF, GSCKF, PF with

FIGURE 4. RMSEs of the velocity from the existing 5th-degree RSTUF and
the proposed filter when T = 200min.

10000 particles and PF with 2000 particles. Therefore, the
proposed RSTSCF has better estimation accuracy than the
existing SIF, ARUKF, MCCKF, RSTNFs and GSCKF, and
is computationally much more efficient than the existing PF.

To further compare the performance of the existing
5th-degree RSTUF and the proposed RSTSCF, Fig. 3–Fig. 4
show the RMSEs of the existing 5th-degree RSTUF and the
proposed RSTSCF when the simulation time T = 200min.
We can see from Fig. 3–Fig. 4 that the RMSEs of
the existing 5th-degree RSTUF increase sharply after
90min and the proposed RSTSCF has significantly
smaller RMSEs than the existing 5th-degree RSTUF
after 90min. The ARMSEs of position and velocity
from the existing 5th-degree RSTUF and the proposed
RSTSCF are respectively 122.48km, 1.17km/min, 44.07km
and 0.58km/min. Thus, the proposed RSTSCF has sig-
nificantly better estimation accuracy than the existing
5th-degree RSTUF after 90min.

To study the performance of the proposed RSTSCF
when the initial state estimate x̂0|0 is drawn randomly
from non-Gaussian distribution, four RSTSCFs with dif-
ferent ways of generating initial state estimate are tested.
The initial state estimate is drawn randomly from four
different distributions with the same first two moments,
including Gaussian distribution, Student’s t distribution,
uniform distribution and Gaussian mixture distribution.
The utilized Gaussian distribution, Student’s t distribu-
tion and Gaussian mixture distribution are respectively
N(x0,P0|0), St(x0, 0.8P0|0, 10) and 0.95N(x0, 0.81P0|0)
+0.05N(x0, 4.61P0|0), where St(µ,6, ν) denotes the Stu-
dent’s t distribution with mean vector µ, scale matrix 6
and dof parameter ν. The employed uniform distributions
for initial estimates of positions and velocities are respec-
tively U(−3.93, 9.93), U(−3.93, 9.93), U(−7.37,−0.44)
and U(−7.42,−0.49), where U(a, b) denotes the uniform
distribution with location parameters a and b.
Fig. 5–Fig. 6 and Table 4 show the RMSEs and ARMSEs

of the position and velocity from the proposed RSTSCF
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TABLE 4. ARMSEs of the proposed filter with different distributions of
initial state estimate.

FIGURE 5. RMSEs of the position from the proposed filter with different
distributions of initial state estimate.

FIGURE 6. RMSEs of the velocity from the proposed filter with different
distributions of initial state estimate.

with different distributions of initial state estimate, where
RSTSCF (Gaussian distribution), RSTSCF (Student’s t dis-
tribution), RSTSCF (Uniform distribution) and RSTSCF
(Gaussianmixture distribution) denote the proposedRSTSCF
with initial state estimates that are respectively drawn from
Gaussian distribution, Student’s t distribution, uniform distri-
bution and Gaussian mixture distribution. It can be seen from
Fig. 5–Fig. 6 and Table 4 that the proposed RSTSCF (Gaus-
sian distribution) and RSTSCF (Uniform distribution) have
almost identical estimation accuracy and outperform slightly
the proposed RSTSCF (Student’s t distribution) and RSTSCF
(Gaussian mixture distribution). Thus, the performance of the

proposed RSTSCF degrades slightly when the initial state
estimate x̂0|0 is drawn randomly from the Student’s t distri-
bution and Gaussianmixture distribution. Fortunately, we can
see from Tables 3 and 4 that the proposed RSTSCF (Student’s
t distribution) and RSTSCF (Gaussian mixture distribution)
have significantly better estimation accuracy than the existing
SIF, ARUKF, MCCKF, RSTNFs and GSCKF.

V. CONCLUSION
In this paper, a new SSTSRCRwas derived based on the third-
degree USR and the proposed third-degree URR, from which
a new RSTSCF was obtained. The existing SIR is a special
case of the proposed SSTSRCRwhen the dof parameter tends
to infinity. Simulation results for a manoeuvring bearings-
only tracking example illustrated that the proposed RSTSCF
can achieve higher estimation accuracy than the existing GA
filter, GSF, HNKF, MCCKF and RSTNFs, and is computa-
tionally much more efficient than the existing PF.
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