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ABSTRACT This paper deals with low-complexity joint channel estimation and decoding for faster-than-
Nyquist (FTN) signaling over frequency selective fading channels. The inter-symbol interference (ISI)
imposed by FTN signaling and the frequency selective channel are intentionally separated to fully exploit
the known structure of the FTN-induced ISI. Colored noise due to the faster sampling rate than that
of the Nyquist signaling system is approximated by autoregressive process. A Forney style factor graph
representation of the FTN system is developed and Gaussian message passing is performed on the graph.
Expectation propagation (EP) is employed to approximate the message from channel decoder to Gaussian
distribution. Since the inner product between FTN symbols and channel coefficients is infeasible by belief
propagation (BP), we propose to perform variational message passing (VMP) on an equivalent soft node
in factor graph to tackle this problem. Simulation results demonstrate that the proposed low-complexity
hybrid BP-EP-VMP algorithm outperforms the existing methods in FTN system. Compared with the Nyquist
counterpart, FTN signaling with the proposed algorithm is able to increase the transmission rate by over 40%,
with only negligible BER performance loss.

INDEX TERMS Faster-than-Nyquist signaling, factor graph, joint channel estimation and decoding, belief
propagation, variational message passing, expectation propagation.

I. INTRODUCTION
Since the available bandwidth becomes insufficient, it is
required to maximize the spectral efficiency to achieve
higher data rate in mobile communication systems [1].
Amongst several methods, the faster-than-Nyquist (FTN)
signaling proposed by Mazo [2] has been rediscovered
recently and attracted numerous attentions since it is able
to increase the transmission rate with the same bandwidth.
It is known that the bit error rate (BER) performance will
not be affected when the packing ratio lies above the Mazo
limit [3].

It is well known that the Nyquist rate ensures intersym-
bol interference (ISI) free transmission. However, with FTN
signaling, since the symbol period is packed, the shaping
pulse is nonorthogonal with respect to the symbol interval.
As a result, ISI is unavoidable. Moreover, the length of

FTN-induced ISI could be very long, which leads to chal-
lenging detection problem at receiver. Several receiving tech-
niques have been proposed to eliminate the ISI caused by
FTN signaling in additive white Gaussian noise (AWGN)
channels. A reduced search BCJR detector is proposed in [4].
A successive interference cancellation (SIC) detector with
optimal packing ratio is devised in [5]. By taking advantage
of the frequency-domain equalization (FDE), an FDE FTN
detector is proposed in [6], which does not consider the
colored noise imposed by the faster sampling rate of FTN
receiver than that of the Nyquist signaling. Moreover, the
insertion of cyclic prefix in FDE also decreases the efficiency.
By using factor graph and Gaussian message passing (GMP),
a graph-based linear minimummean squared error (LMMSE)
equalizer is developed in [7] for FTN signaling over AWGN
channels.
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Only a few studies considered receivers design for FTN
signaling in fading channels. In [8], an FDE-aided iterative
FTN signaling detector is proposed for frequency selective
fading channels. Since the coefficients of the fading chan-
nel are assumed to be known, the ISI caused by both FTN
signaling and the frequency selective channels are consid-
ered together. In [9], low-complexity FTN receivers based
on two variational methods, i.e., mean field (MF) and Bethe
approximations, are studied for doubly selective channels.
For the receivers discussed in [8] and [9], channel state infor-
mation (CSI) is assumed to be perfectly known. In practical
wireless communications, however, CSI is usually unknown
and has to be estimated at receiver. Many channel estima-
tion methods have been proposed in the literature [10]–[12].
However, most of them rely on long training sequences to
obtain accurate CSI, which on the other hand reduces the
advantage of using FTN signaling [13]. Since data symbols
and channel coefficients are coupled in observations, it is pos-
sible to jointly estimate the CSI and detect the data symbols.
Joint channel estimation and decoding can not only reduce
the number of pilots but enhance the accuracy of channel
estimation [14]–[16].

Recently, motivated by the heuristic iterative approaches
on probabilistic graphical models, several methods are
derived for low-complexity iterative receivers based on mes-
sage passing algorithms, e.g., belief propagation (BP) [17],
variational message passing (VMP) [18], and approximate
message passing (AMP) [19]. In [20], based on factor
graph and BP, a frequency-domain iterative message passing
receiver for FTN signaling is proposed in doubly selective
channels. The algorithm is evaluated in both perfect and
imperfect CSI scenarios. Nevertheless, to the best knowledge
of the authors, joint channel estimation and decoding has not
been investigated for FTN signaling.

This paper deals with low-complexity receiver design for
FTN signaling in frequency selective fading channels. Dif-
ferent from the existing works in [8], [9], and [20], which
assume the CSI is known at the receiver side, we consider
a more practical scenario that CSI is unknown and joint
channel estimation and decoding has to be performed for
FTN signaling. Instead of combining the ISI imposed by FTN
signaling and the frequency selective channel together as
in [8], we intentionally separate them from each other, which
enables us to fully exploit the known structure of the FTN-
induced ISI. Considering that the packing symbol period will
lead to correlation of channel taps, we use discrete Fourier
transform (DFT) interpolation to obtain channel taps in FTN
scenario. The colored noised due to the faster sampling rate
in FTN system is approximately modeled by autoregres-
sive (AR) process to avoid the whitening filtering. Building
on this, a Forney style factor graph is constructed and GMP is
employed to update messages on the graph. Considering the
inner product between FTN symbols and channel coefficients
is infeasible by using BP, we propose to perform VMP on an
equivalent soft node instead. Different from linear minimum
mean squared error (MMSE)-based channel estimator [21],

the VMP algorithm also provides the uncertainty in channel
estimates. Moreover, expectation propagation (EP) [22] is
used to update the message from channel decoder by Gaus-
sian distribution, which is shown to have better performance
than theMMSE-basedmethod employed in [9]. The proposed
hybrid BP-EP-VMP algorithm enables effective Gaussian
message approximation, thereby allowing low-complexity
implementation. Simulation results demonstrate the superior
performance of the proposed algorithm, and also show the
advantage of using FTN signaling over the Nyquist counter-
part.
Notations: We use a boldface capital letter to denote a

matrix while boldface lower-case letter for a vector. The
superscript ∗, T , H and −1 denote the conjugate, trans-
pose, Hermitian, and the inverse operations, respectively;
N (m, σ 2) denotes Gaussian distribution with mean m and
variance σ 2; ∝ represents equality up to a constant normal-
ization factor; E is the expectation operation; A:,i denotes
the ith row of matrix A; b·e denotes the rounding to inte-
ger operation; Aij is the (i, j)th element of A; −→· denotes
the message that passes along the direction of the edge
while −→· denotes the message passing in the opposite
direction.

II. FASTER-THAN-NYQUIST SIGNALING MODEL
We consider a coded FTN signaling system illustrated in
Fig. 1. At the transmitter side, the information bit sequence b
is encoded to a coded sequence c and mapped to a length-N
data symbol vector x = [x0, . . . , xN−1]T . The data symbol
block passes through the shaping filter g(t), yielding trans-
mitted signal s(t) =

∑
i g(t − iτT0)xi, where 0 ≤ τ ≤ 1

is the FTN packing ratio and T0 is the symbol period under
the Nyquist criterion. Obviously we can choose a smaller τ
to achieve higher data rate at the cost of severer ISI. Note that
an FTN symbol is interfered by neighboring symbols on both
sides and the number of ISI taps is infinite. In practice, we
can choose a sufficiently large number LFTN = 2Lf + 1, then
s(t) is given as

s(t) =
Lf∑

i=−Lf

g(t − iτT0)xi. (1)

The signal is transmitted over a frequency selective fad-
ing channel h(t). For Nyquist signaling, we can model the
channel with Lnyq independent taps h̃ = [h̃Lnyq−1, . . . , h̃0]

T .
However, for FTN signaling, since the symbol period is
packed, the number of channel taps becomes greater, i.e,
L = bLnyq/τe. According to [23], the channel taps in FTN
system can be calculated via interpolation based on the chan-
nel taps in Nyquist counterpart. Here we exploit DFT to
obtain the fading channel taps for FTN signaling. Assuming
D ∈ RLnyq×Lnyq and DF ∈ RL×L are the DFT matrices, the
channel tap h = [hL−1, . . . , hl, . . . , h0]T for FTN signaling
is given as

h = DH
F

[
Dh̃
0

]
. (2)
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FIGURE 1. System model for considered FTN signaling system.

Note that the correlations between different channel taps will
result in a nondiagonal covariance matrix of h, which is given
as

Vh = DH
F

[
DVnyqDH 0

0 0

]
DF,

where Vnyq is the covariance matrix of h̃.
With the assumption of prefect synchronization, the

received signal can be represented as

y(t) =
L−1∑
l=0

Lf∑
i=−Lf

hlg(t − (i+ l)τT0)xi + n(t), (3)

where n(t) is white Gaussian noise process with power spec-
tral density N0. The received continuous-time signal y(t) is
matched-filtered by g∗(t) and then sampled with the symbol
rate 1

τT0
. At the output of the matched filter, the k-th sample

can be expressed as

rk =
L−1∑
l=0

Lf∑
i=−Lf

hlq(kτT0 − (i+ l)τT0)xi + ξ (kτT0)

=

L−1∑
l=0

Lf∑
i=−Lf

hlqk−l−ixi + ξk , (4)

where qm−n =
∫
g(t − mτT0)g∗(t − nτT0)dt and ξk =∫

n(t)g∗(t − kτT0)dt . Since g(t) is not τT0-orthogonal,
{ξk} is a colored noise process with autocorrelation function

E[ξmξn] = N0qm−n. (5)

With (4), the received symbol vector r = [r0, . . . , rN−1]T

can be written as

r = HQx+ ξ , (6)

where x = [x0, . . . , xN−1]T and ξ = [ξ0, . . . , ξN−1]T are
the symbol and noise vector; H and Q are the matrices with

respect to channel tap and FTN ISI tap as

H =



h0 0
h1 h0
...

. . .

hL−1 hL−2 · · · h0
. . .

. . .

0 hL−1 · · · h1 h0


(7)

and

Q =



q0 q1 · · · qLf 0
... q0

. . .

q−Lf · · · q0 · · · qLf
q−Lf · · · q0 · · · qLf

. . .
...

0 q−Lf · · · q0


. (8)

The autocorrelation matrix of noise vector ξ is given as
E[ξξH ] = N0Q.

III. MESSAGE PASSING RECEIVER DESIGN
In this section, a Gaussian message passing based iterative
receiver is proposed for joint channel estimation and decod-
ing in FTN signaling system.

A. OUTPUT LLR OF CHANNEL DECODER
The receiver performs iterative decoding by exchanging log-
likelihood ratio (LLR) between the channel decoder and
equalizer. For decoding, the optimal BP decoding algorithm
is utilized. Then the output extrinsic LLR of channel decoder
can be represented as

L0(cn,m) = ln
p(cn,m = 0)
p(cn,m = 1)

, (9)

where cn,m denotes the mth code bit in the nth subsequence
cn = [cn,1, . . . , cn,M ]T with M being the modulation order.

B. AUTOREGRESSIVE MODEL OF COLORED NOISE
Due to the correlations between noise samples, conventional
MMSE detection approaches suffer from high complexity.
Some works neglect the impact of colored noise, which
will cause performance loss. To overcome this problem, we
employ a Pth-order AR process to approximately model the
colored noise [24], i.e.,

ξk =

P∑
j=1

ajξk−j + wk = aT ξ k−1 + wk , (10)

where a = [a1, . . . , aP]T is the AR parameters and wk is the
white noise with zero mean and variance σ 2

w, and ξ k−1 =
[ξk−1, . . . , ξk−P]T denotes the correlated noise samples. The
autocorrelation parameters a can be obtained from the Yule-
Walker equation as

N0qk =


N0

∑P

j=1
ajq−j + σ 2

w k = 0

N0

∑P

j=1
ajqk−j othertwise.

(11)
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C. FACTOR GRAPH REPRESENTATION
Note that the equation (4) can be reformulated as

sk = qT xk , (12)

rk = hT sk + ξk , (13)

where xk = [xk−Lf , . . . , xk , . . . , xk+Lf ]
T and sk =

[sk−L+1, . . . , sk ]T . Moreover, xk and sk follow state transi-
tion model as

xk = Gxk−1 + fxk+Lf , (14)

sk = G1sk−1 + fT1 sk , (15)

where the G =

[
02Lf I2Lf
0 0T2Lf

]
, f = [0T2Lf , 1]

T , G1 =[
0L−1 IL−1
0 0TL−1

]
and f1 = [0TL−1, 1]

T . Similarly, (10) can be

rewritten as

ξ k = Aξ k−1 + f2wk , (16)

ξk = fT2 ξ k , (17)

with f2 = [0TP−1, 1]
T and A =

[
0 aT

0P−1 IP−1

]
.

According to [25], the linear state space model can be
represented by a ‘‘block diagram’’ factor graph. Based
on (12)-(17), the corresponding Forney-style factor graph is
depicted in Fig. 2. On this factor graph, the edges represent
variables while the factor nodes denote the local functions.
The equality node can be regarded as branching points which
allow different factors to share the same variables. Further-
more, a multiplier node × is introduced to denote the inner
product constraint δ(r − hT s).

D. COMBINED BP-EP-VMP MESSAGE PASSING
GMP is an efficient parametric message passing algorithm
in linear Gaussian system, where message on factor graph
can be characterized either by the mean vector m and the
covariance matrix V or by the weight matrix W = V−1 and
the transformed mean Wm.1 The update rules of GMP have
been derived in [25].

Following the GMP rules, most messages on the factor
graph can be computed. For ease of exposition, we will elab-
orate the message updating on the four subgraphs in Fig. 2
separately.

� Messages Updating for FTN Equalization (on
Subgraph 1):

Assuming that the parameters
−→
Wxk−1 and

−→
Wxk−1

−→m xk−1 are
available, we have

−→
V x̃k−1 = G

(
←−
Wx′′k−1

+
−→
Wxk−1

)−1
GT , (18)

−→
Wx̃k−1

−→m x̃k−1 = G
(
−→
Wxk−1

−→m xk−1 +
←−
Wx′′k−1

←−m x′′k−1

)
, (19)

1It may happen frequently that the covariance matrix of a message
does not exist due to the singular matrix. Under such circumstances, one
may use the transformed means and weight matrices to parameterize the
messages [25].

FIGURE 2. Factor graph representation for joint channel estimation and
decoding for FTN system. The subgraphs denoted by 1©, 2©, 3© and 4©
correspond to the FTN equalization, multipath channel equalization,
channel estimation and colored noise process, respectively.

where
←−
Wx′′k−1

and
←−
Wx′′k−1

←−m x′′k−1
are given as

←−
Wx′′k−1

=
qqT

Vsk−1
, (20)

←−
Wx′′k−1

←−m x′′k−1
=

qmsk−1
Vsk−1

. (21)

In a similar way, the backward mean and covariance matrix
←−m xk and

←−
V xk are obtained as

←−
V xk =

(
←−
Wx′k
+
←−
Wx′′k

)−1
, (22)

←−m xk =
←−
V xk

(←−
Wx′k
←−m x′k
+
←−
Wx′′k
←−m x′′k

)
. (23)

With (18)-(23), the outgoing message parameters for xk+Lf
are

←−m xk+Lf
= fT

(←−m xk −
−→m x̃k−1

)
, (24)

←−
V xk+Lf

= fT
(−→
V x̃k−1 +

←−
V xk

)
f. (25)

As the incoming messages are computed from L0(cn,m),
they have discrete distributions with respect to the constella-
tion points. In order to employ GMP, we use EP to approx-
imate the incoming messages to be Gaussian [26]. For the
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kth symbol, the incoming message can be expressed as

−→µ (xk ) =
∑
χi∈A

pk,iδ(xk − χi), (26)

where χi is the ith constellation symbol, A is the set of
constellation symbols and pk,i is the probability with respect
to χi, which is computed from the LLR L0(cn,m). Then the
belief of xk is obtained as a probability mass function (PMF).
Based on EP, matching the first two order moments of the
belief yields

m̃xk =
1

2π
←−
V xk

∑
χi∈A

χipk,i exp

(
−
(χi −

←−m xk )
2

←−
V xk

)
, (27)

Ṽxk =
1

2π
←−
V xk

∑
χi∈A
|χi|

2pk,i exp

(
−
(χi −

←−m xk )
2

←−
V xk

)
−|mxk |

2.

(28)

Then the Gaussian approximation to the incoming message
can be parameterized as

−→m xk =
−→
V xk

(
m̃xk
Ṽxk
−

←−m xk
←−
V xk

)
, (29)

−→
V xk =

(
Ṽ−1xk −

←−
V −1xk

)−1
. (30)

Consequently, the outgoing messages which are passed to
Subgraph 2 read

−→m sk = qT
(
−→
Wxk +

←−
Wx′k

)−1
×

(
−→
Wxk

(
−→m x̃k−1 + f−→m xk+Lf

)
+
←−
Wx′k
←−m x′k

)
, (31)

−→
V sk = qT

(
−→
Wxk +

←−
Wx′k

)−1
q, (32)

where
−→
Wxk =

(
−→
V x̃k−1 + f

−→
V xk f

T
)−1

.

� Messages Updating for Multipath Channel Equaliza-
tion (on Subgraph 2):

Similar to (24) and (25), the backward messages←−m sk and
←−
V sk are given by

←−m sk = fT1
(←−m sk −

−→m s̃k
)
, (33)

←−
V sk = fT1

(−→
V s̃k +

←−
V sk

)
f1, (34)

where the parameters with respect to sk and s̃k have similar
form as in (18)-(23). According to GMP rules, the messages
−→m s′′k

and
−→
V s′′k

can be expressed as

−→m s′′k
=
−→
V s′′k

(
−→
Wsk
−→m sk +

←−
Ws′k
←−m s′k

)
, (35)

−→
V s′′k
=

(
−→
Wsk +

←−
Ws′k

)−1
, (36)

which are involved in the message computations in
Subgraph 3.

� Messages Updating for Colored Noise Estimation (on
Subgraph 4):

It is noted that the correlation between colored noise sam-
ples does not affect the first-order moment. The means of

messages with respect to ξk on Subgraph 4 are
−→m ξk =

←−m ξk =

E[ξk ] = 0, ∀k . Therefore only the variances (covariance
matrices) of messages need to be calculated. The variance
−→
V ξk can be obtained as

−→
V ξk = fT2

−→
V ξ ′k

f2 =
[
−→
V ξ ′k

]
P,P
, (37)

where
−→
V ξ ′k

is given by

−→
V ξ ′k
=

((
−→
V
ξ̃ k
+ σ 2

wf2f
T
2

)−1
+ AT←−W

ξ̃ k+1
A
)−1

. (38)

� Messages Updating for Channel Estimation (on
Subgraph 3):

To deal with the inner product of channel vector h and sym-
bol vector sk , we first consider the messages corresponding
to the multiplier node. With−→m s′′k

,
−→
V s′′k

and
−→
V ξk computed on

Subgraphs 2 and 4, using BP rule, the message from × to hk
reads

←−µ (hk ) ∝
∫
δ(r ′k − hTk sk )

←−µ (s′′k )
−→µ (r ′k ) ds

′′
k dr
′
k

∝

∫
exp

(
−(s′′k −

−→m s′′k
)H
−→
V −1s′′k

(s′′k −
−→m s′′k

)
)

× exp

(
−
(rk − hTk s

′′
k )

2

−→
V ξk

)
ds′′k

∝ exp

−hHk −→m s′′k
−→mH

s′′k
−→
V ξk + hHk

−→
V s′′k

hk
hk

+ 2hHk

−→m s′′k
rk

−→
V ξk + hHk

−→
V s′′k

hk

. (39)

Note that it is difficult to formulate (39) to Gaussian.
To this end, we resort to VMP [27] on the multiplier node to
derive Gaussian messages. According to VMP update rules,
the message←−µ hk follows

←−µ (hk ) ∝ exp
(∫

ln δ(r ′k − hTk s
′′
k )b(s

′′
k )b(r

′
k ) ds

′′
k dr
′
k

)
,

(40)

where b(s′′k ) and b(r
′
k ) are the beliefs of sk and r

′
k .

Obviously, the logarithm of delta function involved in the
integration (40) is pathological. To solve this problem, the
multiplier node can be grouped with the noisy measurement
to form a ‘‘soft’’ factor node fk [28], as illustrated in Fig. 3.
Then the message is obtained as

←−µ (hk ) ∝ exp
(
−

∫
(rk − hTk s

′′
k )

2

−→
V ξk

× exp
(
−(s′′k −ms′′k

)HV−1s′′k
(s′′k −ms′′k

)
)
ds′′k

)

∝ exp

−hHk Vs′′k
+ms′′k

mH
s′′k

−→
V ξk

hk + 2hHk
ms′′k

rk
−→
V ξk

.
(41)
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FIGURE 3. The equivalent ‘‘soft node’’ for multiplier node. The factor fk
denotes the probability density function of rk conditioned on sk , hk
and ξk , which can be expressed as fk ∝ exp

(
−(rk − hT

k s′′k )2/ EVξk

)
.

Since ←−µ (s′′k ) and −→µ (s′′k ) have been obtained in Gaussian
form, we can calculate ms′′k

and Vs′′k
as

ms′′k
= Vs′′k

(
−→
V −1s′′k

−→m s′′k
+
←−
V −1s′′k

←−m s′′k

)
, (42)

Vs′′k
=

(
−→
V −1s′′k
+
←−
V −1s′′k

)−1
. (43)

By noting that the incoming messages to the soft node are
beliefs, (42) and (43) can be regarded as the posterior mean
and variance of sk . Then ←−µ (hk ) is calculated as Gaussian
with mean vector and covariance matrix

←−
V hk =

−→
V ξk

(
Vs′′k
+ms′′k

mH
s′′k

)−1
, (44)

←−m hk =
(
Vs′′k
+ms′′k

mH
s′′k

)−1
ms′′k

rk . (45)

Likewise,
←−
V s′′k

and←−m s′′k
can be obtained as

←−
V s′′k
=
−→
V ξk

(
Vhk +mhkm

H
hk

)−1
, (46)

←−m s′′k
=

(
Vhk +mhkm

H
hk

)−1
mhk rk , (47)

withmhk andVhk computed in a similar way in (42) and (43).

E. COMPUTATION OF EXTRINSIC LLR
The equalizer calculates the extrinsic LLR based on the soft
information←−m xk and

←−
V xk .

Le(cn,m) = ln
p(cn,m = 0|r)
p(cn,m = 1|r)

− L0(cn,m)

= ln

∑
di,m=0 p(r|cn = di)p(cn = di)∑
di,m=0 p(r|cn = di)p(cn = di)

− L0(cn,m),

(48)

where di is the coded bit sequence corresponding to the
constellation symbol χi. A concise representation of Le(cn,m)
has been derived in [29], which reads

Le(cn,m) = ln

∑
χi∈A0

m

exp
(
−

(χi−
←−m xk )

2

←−
V xk

) ∏
m′ 6=m

p(cn,m′ = si,m′ )

∑
χi∈A1

m

exp
(
−

(χi−
←−m xk )

2

←−
V xk

) ∏
m′ 6=m

p(cn,m′ = si,m′ )
,

(49)

where A0
m and A1

m denote the subset of A whose
label in position m has the value 0 or 1. Then the
LLRs {Le(cn,m)} are fed to the channel decoder. After
decoding, the decoder outputs the extrinsic LLR and
turns to the next iteration of equalization. The details
of the proposed BP-EP-VMP algorithm are summarized
in Algorithm 1.

Algorithm 1 The Proposed Hybrid BP-EP-VMP Approach
to Joint Channel Estimation and Decoding for FTN Signaling
Over Frequency Selective Channels
1: Initialization:

The output LLRs of channel decoder are initialized as
L0(cm,n) = 0, i.e., −→m 0

xk = 0 and
−→
V 0
xk = +∞.

The initial estimation of channel coefficients are obtained
using 20 pilot symbols based on least square method.(In
each turbo equalization, pilot symbols are also used to
estimate the channel taps.) Then, the prior of h can be
expressed as

p(h) ∝ exp
(
(h−−→m 0

h)
H−→W0

h(h−
−→m 0

h)
)
,

where−→m 0
h is the measured CSI and

−→
W0

h is diagonal with

the entries being
[
−→
W0

h

]
ii
= σ 2

hi .
−→m 0

xk = 0,
−→
V 0
xk ,
−→m 0

h and
−→
W0

h can be regarded as the prior information.
2: for Iter=1:I do
3: Calculate the messages from subgraph 1 to subgraph 2

according to (31) and (32);
4: Calculate the messages on subgraph 2 according to

(33)-(36);
5: Calculate the messages on subgraph 3 according to

(37) and (38);
6: Calculate the messages related to the ‘‘multiplier

node’’ using (44)-(47);
7: Convert the outgoing messages to LLR based on (49)

and feed them to channel decoder;
8: Perform BP channel decoding algorithm;
9: Calculate the incoming messages using EP as in (29)

and (30);
10: end for

F. COMPLEXITY ANALYSIS
The complexity of the proposed algorithm is dominated by
the matrix inversion operations in (18), (22), (36), (38), (43)
and (44). For a non-sparse K × K matrix, the complex-
ity for calculating its inverse is O(K 3). Here O denotes
the order of time complexity. Taking (18) as an exam-
ple, the total computational complexity is O(NL3FTN) for a
length-N symbol block. Then the total computational com-
plexity of the proposed algorithm is O(N (L3FTN + L3 +
P3)), where LFTN is the length of FTN-induced ISI con-
sidered at the receiver, L is the channel length and P is
the order of AR model used to approximate the colored
noise.
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IV. SIMULATION RESULTS
In the simulations, we consider a 5/7-rate LDPC code
with variable and check node degree distributions being
v(X ) = 0.0005+ 0.2852X + 0.2857X2

+ 0.4286X3, c(X ) =
0.0017X9

+0.9983X10 [30]. The encoded bits are interleaved
and mapped to a sequence of QPSK symbols. The number of
transmitted symbols is N = 2048. The sequence of symbols
passes through a root raised-cosine shaping filter with a roll-
off factor α = 0.4. The carrier frequency f0 = 2GHz and the
symbol period T = 0.2µs. The frequency selective fading
channel for Nyquist signaling is assumed to have L = 20
taps and the coefficients {h̃l} are independently generated
according to the distribution h̃l ∼ N (0, ql). Then the channel
taps for FTN signaling can be obtained by interpolation using
DFT matrices. The normalized power delay profile is ql =
exp(−0.05l)∑

ql . The number of iterations is set to I = 10 and
the maximum number of BP decoding iterations is 50. The
number of ISI taps due to FTN considered by the receiver is
LFTN = 11, unless otherwise specified. All simulation results
are averaged over 1000 independent Monte Carlo trails.

We first evaluate the impact of packing factor τ . As shown
in Fig. 4(a), BER performance versus the signal-to-noise
ratio (SNR) of the proposed BP-EP-VMP algorithm with
various τ are plotted. The performance of Nyquist signaling
over the same channel is also included as a benchmark.
It is observed that the proposed FTN receiver can attain the
BER performance of the Nyquist signaling when the packing
factor τ ≥ 0.7. Therefore, up to 40% of transmission rate
can be increased with the same bandwidth by employing
FTN signaling. Even for τ = 0.6, the performance gap is
less than 0.2dB, while the transmission rate in this case can
be increased by more than 65%. In Fig. 4(b), we evaluate
the BER performance with roll-off factor α = 0.05. Since
smaller α will lead to stronger ISI, it is seen that, com-
pared with the Nyquist counterpart, the performance gap for
τ = 0.6 becomes about 0.5dB. Nevertheless, it is able to
improve transmission rate up to 25% by employing FTN
signaling with τ = 0.8.

The complexity of the proposed algorithm depends on
LFTN, i.e., the length of FTN-induced ISI considered at
receiver. In Fig. 5(a), BER performances with different
LFTN = {5, 11, 41} are illustrated, where the roll-off factor
α = 0.4 and τ = 0.7. It is seen that, LFTN = 5 suffers
from significant performance degradation due to the under-
estimation of ISI induced by FTN. The increase of LFTN
helps to improve the BER performance, and the gain becomes
marginal when LFTN ≥ 11. Therefore, the length of ISI
induced by FTN signaling can be safely approximated by
LFTN = 11 in this case. We further consider a stronger
packing scenario with τ = 0.5 and the BER performance
is illustrated in Fig. 5(b). We can see that LFTN = 11 is not
long enough to approximate the length of FTN-induced ISI
and about 0.3dB performance loss can be observed compared
to the LFTN = 41 case. Therefore, In practice, we can
compromise between BER performance and computational
complexity by selecting a proper value of LFTN.

FIGURE 4. BER performance of the proposed algorithm for FTN system
with different packing factor τ . The roll-off factor α = 0.4 and α = 0.05,
respectively. (a) α = 0.4. (b) α = 0.05.

In Fig. 6, BER performance of the proposed BP-EP-VMP
algorithm is compared with other methods. Since there is no
existing work on this topic, we extend two Bayesian esti-
mators to the FTN signaling over frequency selective chan-
nels, namely, the MMSE equalizer [14] and the variational
inference (VI) method [16]. The BER performance with
perfect channel information is also included as a reference.
The MMSE equalizer can only treat the ISI caused by FTN
signaling and the fading channel as a composite ISI channel,
which leads to increased number of channel coefficients to be
estimated. The VI method suffers from performance degrada-
tion due to its assumption that data symbols are conditional
independent. The complexities of the MMSE equalizer and
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FIGURE 5. Impact of LFTN on BER performance. The roll-off factor α = 0.4,
τ = 0.7 and τ = 0.5, respectively. (a) τ = 0.7. (b) τ = 0.5.

the VI method are O(N 3) and O(N (L2FTN + L2 + P2)),
respectively. It is seen that the proposed BP-EP-VMP algo-
rithm outperforms the other methods. When BP instead of
EP is employed to update the messages from output of
channel decoder to the equalizer, denoted as ‘‘BP-VMP’’
in In Fig. 6, about 0.2dB performance loss can be
observed, which demonstrates the superior performance by
employing EP.

The mean squared error (MSE) of channel estimation of
the proposed BP-EP-VMP algorithm is evaluated in Fig. 7.
For comparison, the performances of least square (LS) chan-
nel estimation [10] and the expectation-maximization (EM)-
based method [15] are also included. The number of channel

FIGURE 6. BER performance of different algorithms for considered FTN
signaling system, with τ = 0.7, α = 0.4.

FIGURE 7. MSE of channel estimation of the proposed algorithm, with
τ = 0.7, α = 0.4.

taps is 14 in τ = 0.7 scenario. It is seen that the proposed
BP-EP-VMP algorithm and the EM-based method signifi-
cantly outperform the LS channel estimation that only uses
the limited amount of pilot symbols. Moreover, the proposed
BP-EP-VMP algorithm is superior to the EM-based method
in [15], since the latter only provides hard channel estimation
to the equalizer. Simulation results corroborate the benefits of
the proposed joint channel estimation and decoding scheme.

V. CONCLUSIONS
In this paper, we proposed a low-complexity FTN receiver to
perform joint channel estimation and decoding in frequency
selective fading channels. The ISI imposed by FTN signaling
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and that by the unknown frequency selective channel were
considered separately, which enabled us to fully exploit the
known structure of the FTN-induced ISI. Colored noise due
to the faster sampling rate of FTN signaling was approxi-
mated by AR process to avoid using whitening filter. A For-
ney style factor graph, which consists four subgraphs, was
constructed to represent the FTN system. We showed that
using BP on the factor graph directly is infeasible, since the
messages corresponding to the inner product of FTN symbol
vector and the channel coefficient vector cannot be updated
efficiently. We proposed to perform VMP on an equiva-
lent ‘‘soft node’’ to tackle this problem. Moreover, EP was
employed to efficiently convert the messages corresponding
to FTN symbols obtained from channel decoder to Gaussian
distribution. It was shown that, since the proposed hybrid
BP-EP-VMP algorithm enabled effective Gaussian message
approximation, the complexity only increases linearly with
the block length N . Simulation results showed the superior
performance of the proposed algorithm compared with the
existing methods in FTN system. Compared with the Nyquist
counterpart, FTN signaling with the proposed algorithm is
able to increase the transmission rate over 40% in frequency
selective fading channels, with negligible BER performance
loss.
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