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ABSTRACT In this paper, we propose a deep belief network (DBN)–deep neural network (DNN)withmimic
features based on the bootstrap inspired technique to learn the complex nonlinear relationship between the
mimic feature vectors obtained from the oscillometry signals and the target blood pressures. Unfortunately,
we have two problems in utilizing the DBN–DNN technique to estimate the systolic blood pressure (SBP)
and diastolic blood pressure (DBP). First, our set of input feature vectors is very small, which is a fatal
drawback to training based on the DBN–DNN technique. Second, the special pre-training phase can also
trigger an unstable estimation, because there are still a lot of random initialized assigns, such as the training
data set, weights, and biases. For these reasons, we employ the bootstrap-inspired technique as a fusion
ensemble estimator based on the DBN–DNN-based regression model, which is used to create the mimic
features to estimate the SBP and DBP. Our DBN–DNN-based ensemble regression estimator provides a
lower standard deviation of error, mean error, and mean absolute error for the SBP and DBP as compared
with those of the conventional methods.

INDEX TERMS Blood pressure measurement, oscillometry blood pressure estimation, deep neural
networks, bootstrap-inspired technique, ensemble.

I. INTRODUCTION
Blood pressure (BP) is an important vital signal and serves
as a core parameter to determine the cardiovascular health
of patients [1]–[6]. An oscillometry BP monitor is one of
the current standard automatic devices now readily available
for the home, office, and hospital. The maximum amplitude
algorithm (MAA) based on the oscillometry is generally used
to estimate the average of the BP as the cuff pressure at which
the maximum oscillation occurs and then linearly relates the
SBP and DBP to the mean pressure using empirical coeffi-
cients [1], [3]. Thus, these characteristic coefficients are used
to determine time points where the cuff pressure corresponds
to the SBP on the ascending phase of the oscillometry enve-
lope, while it coincides to the DBP on the descending phase of
the oscillometry envelope [3], [4]. However, the characteristic
fixed coefficients are not supported by the evidence, because
the BPs (SBP and DBP) are consistently changing over time
according to intrinsic physiological variabilities such as exer-
cise, stress, food, and environmental factors [4], [5]. As an
example, it is found that the BP values provided by patients’
monitors differ from those recorded from the auscultatory
devices by greater than 5mmHg approximately 50% and 40%
of themeasurement for SBP andDBP, respectively [6]. On the

basis of the American National Standards Institute and the
Association for the Advancement of Medical Instrumenta-
tion (ANSI/AAMI) phygmomanometer committee (SP 10)
standard, the maximum is limited to the mean error of
±5 mmHg with a standard deviation 8 mmHg compared
with an auscultatory reference reading obtained by at least
two trained clinicians [7]. However, the BP can move up
to 20 mmHg within a few heartbeats [8]. These variations
and their impact on BP measurements are not perceived and
accounted for by most physician, which implies BP estima-
tion utilizing available automated devices is subject to two
causes of uncertainty. The first cause is a BP measurement
device inaccuracy and the second is a physiological variabil-
ity of the BPs. Even though the uncertainty is introduced by
measurement error based on the ANSI/AAMI SP 10 standard,
the physiological variability with respect to estimation uncer-
tainty is not addressed [9].

In order to address the problem, alternative techniques
such as artificial neural networks (ANNs) [10], [11]
have been considered to address the characteristic fixed
coefficient problem of the conventional MAA algorithm.
These techniques did not use a mathematically or physically
complicated models [12], [13] and were suitable only for
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nonlinear physiological BP structures [14]. The ANN is more
robust with respect to noise and artifact than oscillomet-
ric algorithm such as the MAA [1], slope of envelope [1],
mathematical models [4] to estimate the BP [10]. Based
on these techniques, a two-layer feed-forward neural net-
work (FFNN) based on the back-propagation training algo-
rithm was proposed by Baker [10] to estimate the BP. Also,
an approach using the FFNN technique, which consists of
two-layer FFNNs with a linear output layer, was performed
to compute the gradient using the resilient back-propagation
algorithm [14]. Unfortunately, this method is not enough
to satisfy the recommendations of the ANSI/AAMI SP10
standard [7]. For these reasons, an intelligent learning-based
technique is highly required to estimate the BP accurately
without limitations such as the characteristic coefficients and
physiological variability.

In this paper, we propose a novel approach using a
deep belief network (DBN)-deep neural networks (DNN)
based fusion ensemble regression estimator to represent the
highly nonlinear relationship between the feature vectors
obtained from the oscillometry BP signals and target BPs
efficiently [15], [16]. Please note that the DBN proposed by
Hinton et al. [16] is the superior generative model to learn
the complex nonlinear relationship between the explanatory
data and dependent variables. Recently, the DBN technique
has attracted increasing attention in both the machine learn-
ing [17], [18] and signal processing areas as a remarkable
technique. The general approach is to employ the DBN-DNN
based regression technique to produce a single estimator
using a training set [19]. However, it also has some prob-
lems. First, it is hard to choose the best DBN-DNN based
regression estimator, which is not known during training. The
best DBN-DNN-based regression estimator produces the best
accuracy as well as good generalization ability for the unseen
data. Second, we may throw away valuable information when
choosing the DBN-DNN based regression estimator and dis-
carding the others. Third, our input data were a small sample
size of only five measurements per subject, which is a fatal
drawback while using the DBN-DNN technique [16]. If we
have no a priori knowledge on the highly nonlinear function,
generally speaking, small number of samples may not guar-
antee successful identification of the DBN-DNN structure of
the nonlinear function since there may exist infinite many
nonlinear functions fitting the data. This critical weakness
can then cause problems such as overfitting because our
DBN-DNN based regression model is composed of the
complex structures such as many layers, weights, biases,
neurons, and nonlinear functions. Given our model, the over-
fitting problem can be mitigated by the size of our input
data increases. Specifically, the DBN was designed to solve
overfitting on the training data set using a special pre-
training phase. Even though the early stopping and drop-
out is well known to decrease the overfitting case as simple
techniques on the DBN-DNN model, however, we cannot
utilize them because they need an appropriate amount of
the input data [19]. Interestingly, this pre-training phase in

the DBN-DNN based regression model can also trigger an
estimation uncertainty, because there are still a lot of random
initialized assigns such as the training data set, weights, and
biases.

On the basis of these motivations, the DBN-DNN based
fusion ensemble regression estimator is proposed to esti-
mate the SBP and DBP without the characteristic coeffi-
cients. To address above problems, the bootstrap-aggregation
(bagging) [20] and adaboost techniques [21], as a fusion
ensemble estimator based on the DBN-DNNbased regression
model, are used to estimate the SBP and DBP using the
small sample. The bagging technique is used for ensemble
parameters in the pre-training phase, whereas the adaboost
approach is utilized to estimate the SBP and DBP in the
fine-tuning phase accurately. In particular, the number of
the mimic feature’s samples is rapidly increased using the
bootstrap-inspired techniques, which generate an ensemble of
estimators by training each estimator on a different bootstrap
sample of the training set. This work offers an accurate BP
estimates without the characteristic coefficients and provides
a relevant solution that can decrease the estimation uncer-
tainty. As far as we know, this is one of the first studies apply-
ing the DBN-DNN based fusion ensemble regression model
for BP estimationwith a small training sample. This paper has
the following additional improvements and contributions:
• We provide a novel technique to obtain accurate BP
estimates from an insufficient sample of oscillomet-
ric blood pressure measurements using the DBN-DNN
based fusion ensemble regression estimator.

• As a statistical aspect, the DBN-DNN-based regression
ensemble estimator can find a superior estimator and
mitigate the risk of selecting the wrong estimator [22].

• In a computational viewpoint, we provide a better
approximation to the true target BPs than any of the sin-
gle estimators because of driving the local search from
many initial points through the pre-training phase [22].

• For the convergence, the DBN-DNN-based ensemble
estimator also minimizes on upper bound on the estima-
tion error [21].

• This method can indeed mitigate the estimation uncer-
tainty such as large the error of standard deviation on
comparing the proposed DBN-DNN based ensemble
model to the FFNN estimator, we confirm that the
SDEs of the SBP and DBP are reduced by 1.87 and
2.11 mmHg, respectively. These imply that the proposed
method substantially improve the performance by 24.6%
and 31 % compared with the FFNN regression model.

• Our DBN-DNN based ensemble model reduces the
SDEs (MAE) of SBP and DBP by 11.0% and 18.1%
compared with the DBN-DNN based regression [19].

II. BP ESTIMATION BASED ON ENSEMBLE ESTIMATOR
OF DBN-DNN REGRESSION
A. FEATURES OBTAINED FROM OSCILLOMETRY SIGNALS
Filtering and detrending are required to extract the oscillo-
metric signals from the cuff deflation curve. The filtering is to
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FIGURE 1. A block diagram showing the systolic and diastolic blood pressures estimation using the DBN-DNN based fusion
ensemble estimator, where from the step 1 to step 11 denote the DBN structure for the pre-training and the remaining steps are the
DNN ensemble estimator.

remove the frequency components that belong to the deflating
cuff pressure using a band-pass or high-pass filter [2]. Specif-
ically, the lower cutoff frequency of the filter is generally
set to 0.1-0.3 Hz. The detrending is to do a line of best
fit that represents the decreasing cuff pressure is subtracted
from the cuff deflation curve. After the signal processing of
the oscillometry signals such as the noise suppression and
smoothing using the weighted median filter, we are then
interested in the features obtained from the oscillometry sig-
nals [3]. First, we analysis the time and frequency domains
of the oscillometry signals. However, there is not effective
feature in the frequency domains due to very low frequency
around 1-1.5 Hz. Thus, all original features are acquired
from the oscillometry signals in the time domain to estimate
the reference systolic blood pressure (RSBP) and reference
diastolic blood pressure (RDBP) [23], [24], which are used
as the target BPs in the proposed DBN-DNN fusion ensemble
estimator. We can then use the mean arterial pressure (MAP)
estimated using the MAA technique, which is mapped back
to the cuff pressure signal [24]. We also utilize the maximum
amplitude (MA), the area under the envelope (AE) [23], [24]
and the asymmetry ratio (AR) of the oscillometry’s enve-
lope [23], [24], which is calculated by dividing the length
of the maximum amplitude’s position (MAPL) by the length
of the envelope (EL) obtained from the oscillometry signals,
because this feature represents quite well the characterization
of the BPs of individual subjects. The four features from the
asymmetrical Gaussian curve function about the oscillome-
try’s envelope are also included, such as the amplitudes, σ1
and σ2, which denote the different standard deviations of
the asymmetrical Gaussian function [3], [14]. We also add

the average of the oscillometry signal’s heart rate, the oscil-
lometry signal’s maximum positive of temporal rate change
of amplitude [24], the subject’s age, and the subject’s gen-
der [24]. Thus, eleven feature vectors are collected to estimate
the target BPs (RSBP and RDBP). A common normalization
technique is then utilized to restrict the ranges of the allowed
feature values to lie between the minima and maxima of the
predefined ranges [24].

FIGURE 2. The plots of distribution of artificial features based on the
parametric bootstrap approach with replication numbers (B=100). Note
that these artificial figures are examples obtained from one subject with
5 samples for 8 features [19].

From the above mimic feature distribution, the nor-
mality of each mimic feature distribution is validated as
shown in Fig. 2. Specifically, we utilize the Kolmogorov-
Smirmov (KS) test [25], which is commonly known as the
statistical test, where the distribution of these mimic feature
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fits the Gaussian distribution quite well. Suppose that we
obtain F∗ a distribution of mimic feature {x∗1 , x

∗

2 , . . . , x
∗
B}

from unknown sample distribution F . Thus, it is required to
test the hypothesis that F∗ becomes to the Gaussian distribu-
tion F0. The null hypothesis states that the observed blood
pressure measurement has an approximately Gaussian distri-
bution. The alternative hypothesis describes that the observed
blood pressure measurements does not approximately resem-
ble a normal. H0: there is no difference between the observed
measurements of BP and a normality distributed empirical
measurements. Meanwhile, H1: there is a difference between
the observed measurements of BP and a normality distributed
empirical measurements. Moreover, we confirm that the test
results of all mimic features are 0. Thus, we cannot reject
the null hypothesis states at the 0.05 significant level. Also,
the all p values of the KS test are greater than the level
of the 0.05 significant level. Additionally, if KS values are
greater than the critical values, the null hypothesis is rejected.
Therefore, we do not reject the null hypothesis states for that
the observed measurements are sufficiently normal. Thus,
the mimic features have very similar statistical characteristic
as the original feature vectors. The remaining features also
denote similar results. Thus, the distribution of the mimic
features acquired using the parametric bootstrap are repre-
sented in Fig. 2 (B=100). As the number of replication B gets
large, the distribution becomes more closely the Gaussian
distribution [3].

B. DBN-DNN ENSEMBLE REGRESSION
One of the core advantages of the DBN-DNNs regression
model is its powerful generalizability over the conventional
FFNN technique [15]. Specifically, an unsupervised learn-
ing technique initializes a good set of parameters because
the unsupervised training makes it easier to optimize many
parameters before overfitting occurs, which is called pre-
training technique [16]. After pre-training phase, a supervised
learning step is performed through the back-propagation
algorithm to fine-tune the parameters obtained from the pre-
training phase [15], [16]. The pre-training step makes it pos-
sible to find abstractions from the lowest level features to
highest level concepts. Namely, the input features are to be
mapped into gradually higher levels of representation through
the deep architectures [26].

The mimic feature is generated by the bootstrap-inspired
technique to improve the performance of the estimates
from a small number of measurements in situations where
improving the performance of conventional methods is not
a valid approach [3]. Considering the proposed DBN-DNN
regression model, the target function can be defined as
E[Y |X ]. In this work, suppose X = {x1, . . . , xN } and Y =
{y1, . . . , yN } are random samples of the distribution F with
unknown parameters {µ, σ }, respectively. Thus, we can only
apply the estimated distribution F̂ by using sample parameters
(µ̂, σ̂ |X ), where the mean and standard deviation are given
by E(µ|X ) ' µ̂ = x̄ = 1

n

∑n
i=1 xi and E(σ |X ) ' σ̂ =√

1
n−1

∑n
i=1(xi − x̄)2, where F̂ ' N (µ̂, σ̂ 2) is approximated

as a Gaussian distribution N (µ, σ 2), which is called the
parametric bootstrap [27]. The parametric bootstrap is used to
generate themimic features obtained from the original feature
vectors which have a priori information such as the mean and
standard deviation for each subject; this is different from the
original bagging method [20], because this is used to estimate
F without any a priori assumptions, which is called the
nonparametric bootstrap technique [27]. Specifically, instead
of sampling with replacement from X = {x1, . . . , xN }, we
generate B samples X∗b with size N = 5 and ∀b ∈ {1, . . . ,B}
from Fµ̂,σ̂ , as shown in Table 1, where N denotes the number
of BP measurement data point for each subject. On the para-
metric technique, even though the oscillometry may be a time
series with autocorrelation and dynamics, the mimic feature
vectors X∗i = {X̄

∗

i,1, X̄
∗

i,2, . . . , X̄
∗
i,B} can be finally calculated

as given in steps (7)-(9). In step (7), X∗i,b = {x
∗

1 , x
∗

2 , . . . , x
∗
N }

as bootstrap replication data are generated from the original
feature vector X = {x1, . . . , xN }, which exactly corresponds
to themimic feature vectors using themoving block bootstrap
because the bootstrap samples based on Fµ̂,σ̂ are calculated
using the Monte-Carlo method [27] as shown in Table 1.
The moving block bootstrap is an ideal technique on the
nonparametric bootstrap technique because given N = 5, we
can randomly select block k from the original feature vector
X = {x1, . . . , xN } and connect together to make a resample
with respect to the time series [27]. A similar procedure is
used to create the mimic features from Y = {y1, . . . , yN }
in order to be used as the target vectors. Thus, the sufficient
feature samples are ready to estimate the target BPs (RSBP
and RDBP) efficiently as training data sets, whereas the
unseen feature vectors are used as the test data. As shown
in the steps of Table 1.
We firstly propose a fusion ensemble approach combin-

ing as the bagging and adaboost [20], [21] techniques to
address the problem of small samples for each subject and
the unstable performance of the DBN-DNN regression esti-
mator. In this section, we explain how ensemble fusion using
the bagging and adaboost techniques can be used for the
DBN-DNN regression estimator, as shown in Table 1. There
are two phases: the upper phase represents the pre-training
phase, whereas the lower phase expresses the fine-tuning. The
upper phase starts with the input features obtained from the
oscillometry signals. First, we can define our input features
as S = {Xi,Yi}, where Xi denotes the explanatory vector
and Yi are the response vectors, as shown in step (2). Each
feature vector is used to compute the parameters such as the
mean µ and standard deviation σ . We then initialize a weight
vector w(1)

m to be used in the fine-tuning. Then, the parametric
bootstrap function is called to generate the bootstrap resam-
pled distribution, as shown in steps (7)-(9). Next, we also
call the RBM [16] function to mitigate the overfitting and
local minima problems. However, this phase in the DBN-
DNN based regression estimator may also trigger an unstable
estimation, because there are many random initialized assigns
such as the training data set, weights, and biases. Thus, we
need to address this problem through the ensemble process, as
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TABLE 1. The algorithm is an example of mimic feature creation using the ensemble estimator based on the parametric bootstrap-inspired technique for
each subject, where I denotes the number of input feature (MAP, AR,. . . ), J is the number of target BPs (SBP and DBP), and B represents the number of
parametric bootstrap replication.

shown in step (12). Therefore, the average parameters such as
the weights and biases that are obtained through the bagging
technique are used for the fine-tuning phase. Otherwise, the
adaboost technique of the lower phase adaptively adjusts
the distribution of the original training set before each new
bootstrap sample is obtained. For each estimator, it then gen-
erates a different training set by sampling with replacement
from the bootstrap training set according to the weighted
training samples, as expressed in step (19). Specifically, the
bootstrap samples are obtained from a distribution that is
iteratively updated by a relative error function for the sub-
sequent estimator. The weight of each instance is adjusted in
accordance with its difficulty, i.e., the previously large incor-
rect instances are more likely to appear in the next bootstrap
sample. Accordingly, the adaboost technique will thus lead
to decrease the variance of the mean error and increase the
confidence of the results for the DBN-DNN regression esti-
mator. As shown in step (20), the back-propagation is called

to estimate the target BPs. We then recursively compute the
error between the estimated (Ŷ∗) and target BPs (Y) until the
minima of the errors are found, as shown in step (21). The
average error is calculated as expressed in step (22), and then
the weight updating parameter βk is given as in step (23).
Finally, we update the weight vector for elements and normal-
ize as shown in steps (24)-(25). If an element in the current
iteration has a large error, βk will be large, whereas if the
error of the element is very small, the weight will be reduced.
Therefore, the final output of the fusion ensemble estimator is
given as

Ŷ∗ = inf
{
y ∈ Y :

∑
k:ŷk≤y

log(1/βk ) ≥ 0.5
∑
k

log(1/βk )
}
.

(1)

Here, each of the K estimator makes a prediction ŷk ,∀k = 1
to K. Summing up the log(1/βk ) until we reach the smallest

9966 VOLUME 5, 2017



S. Lee, J.-H. Chang: Deep Belief Networks Ensemble for Blood Pressure Estimation

k so that the inequality is satisfied. If the βk are all equal,
it would be the median value. For details on the theorem
of ensemble estimator, the reader is referred to [21]. The
following theorem represents the guarantee of our ensemble
estimator [21].

TABLE 2. Parameter setting [15], [16], [26] of the DBN-DNN based fusion
ensemble regression model, where 11 is the number of input units
(namely, the input vector’s dimension) and 2 denotes the number of
output units (namely, the target vector’s [SBP and DBP] dimensions).

Theorem: Suppose the DBN-DNN algorithm, when called
by the adaboost technique for the regression model, gener-
ates hypotheses with errors {ε1, ε2, . . . , εK }, where εk is as
defined in Table 2. Then, the mean square error ε = E[(Ŷ∗−
Y)2] of the final output of the hypothesis by the adaboost
technique is bounded above by

ε ≤ 2K
K∏
k=1

√
εk (1− εk ) (2)

On the basis of this theorem and proof about the adaboost
algorithm [21], the DBN-DNN based fusion ensemble regres-
sion estimator can be used as a stable estimator. The
DBN-DNN based fusion ensemble regression can then be
defined as

f̂ ∗ϕ (·) = DNN ((X∗,Y∗))(·) : RI
→ RJ

whereDNN (·) denotes the estimator based on the DBN-DNN
regression model that will be represented as follows.

C. DESIGN OF DBN-DNN REGRESSION ESTIMATOR
The DBN-DNN regression estimator has two training steps,
a greedy layer-wise unsupervised pre-training (DBN) at each
layer to preserve information from the input data and a super-
vised fine-tuning (DNN) of the whole DBN-DNN in terms
of the ultimate target estimation [16], [28], where the DBN
denotes a top-down model calculated from the hidden layer
to input data. The DNN is a bottom-up propagation from
input data to the top layer based on a non-probability model.
One the other hand, the DBN is probabilistic generative

model [16] that comprises multi-hidden layers of stochastic
variables, where top two layers denote undirected connec-
tions, which has defined as

P(X∗,h1,h2, . . . ,hl) =
(l−2∏
i=1

P(hi|hi+1)
)
P(hl−1,hl) (3)

where the probabilities of the condition layers P(hi|hi+1)
are factorized conditional distributions [26], hi denote the
hidden units at layer i and X∗ is the resampled input vector.
Note that we will omit the subscripts i and j in the previous
section as X∗ = X∗i , ∀i in Table 1 to avoid confusing the
subscripts between the subsections. The hidden layer hi is
a binary random vector with hij. In particular, the top-level
a priori probability P(hl−1,hl) represents a restricted Boltz-
mann machines (RBM) [16] between the layers. Specifically,
our DBN-DNN regression model is a deep generative model
that mimics target BPs (SBP and DBP) by stacking multi-
ple restricted Boltzmann machines (RBMs) [16]. An RBM
is made up of a two-layer, bipartite, generative undirected
model with a set of binary hidden units h and a set of visible
units X∗ in our case. Also, a weight matrixW ties the visible
units and the hidden units [15]. Each hidden unit uses the
hyperbolic tangent function to be activated, and the type of the
output is used as the linear value. In this work, the Gaussian-
Bernoulli RBM [16] is used to connect the Gaussian visible
layer and binary hidden layer, because our mimic feature
vectors are asymptotically Gaussian distribution. The several
Bernoulli-Bernoulli RBMs are then stacked behind the first
Gaussian-Bernoulli RBM [16]. The contrastive divergence as
a faster learning procedure is used to train the first Gaussian-
Bernoulli RBM [16], [26] as an unsupervised learning to
minimize the negative log probability of the training vectors.
Then, the second Bernoulli-Bernoulli RBM is trained using
the information of the first Gaussian-Bernoulli RBM’s hid-
den layer as the second RBMs visible layer [16]. Generally,
the DNN is trained by the back-propagation algorithm [26];
however, this is often leads to poor local optima due to the
randomly initialized parameters. The weights and biases are
thus initialized by pre-training [26] to overcome the poor
local optimum problem in the training stage. Unfortunately,
random guessing may also use to address this by adopting the
pre-training values as the initial weights and biases, because
the randomly initialized parameters in the pre-training can
cause unstable estimation in the fine-tuning stage. To sup-
press this problem, we employ the bagging technique for
the weights and biases between the RBMs, as shown in
Table 1. TheDBN-DNNbased ensemble regression estimator
technique will help to address the problem of instability due
to the small sample size. After the pre-training with the
ensemble technique, the multiple RBMs can be used as an
effective starting point via the ensemble weights and biases
for fine-tuning by back-propagation [16]. Therefore, the cost
function uses the minimum mean square error (MMSE) cri-
terion [28], [29] using a mini-batch scaled conjugate gra-
dient function between the estimated BP and auscultatory
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BP defined as

E(‖ Ŷ∗ − Y ‖2) =
∫
‖ Ŷ∗ − Y ‖2 PY(Y)dY

= minE(‖ Ŷ∗ − Y ‖2)

=
1
N

N∑
m=1

D∑
d=1

[
Ŷ∗dm (W)− Yd

m

]2
(4)

where Ŷ∗ andY are the estimated and auscultatory BP vectors
at the sample indexm,N andD represents the mini-batch size
and the feature vector’s size,W represent the weights and bias
parameters which are learned at the ith layer. The estimated
weights and bias can then be updated iteratively as follows:

Wi
m+1 = −ε

∂E(‖ Ŷ∗ − Y ‖2)
∂
(
Wi

m
) + η

(
Wi

m
)
,

1 ≤ i ≤ L + 1 (5)

where ε denotes the learning rate, η is the momentum param-
eter, L is the number of hidden layers, and L + 1 denotes
the output layer. We can thus obtain (Ŷ∗1, Ŷ

∗

2, . . . , Ŷ
∗
K ) as

expressed in steps (19)-(24) in Table 1. Finally, we can
estimate the target BP E∗[Y] = Ȳ∗ as given in Eq. (1).
As a whole, our DBN-DNN based fusion ensemble estimator
is used to learn the complex mapping between the mimic
feature vectors and target BPs, and it can adaptively learn the
complicated relationship to estimate the target BPs (RSBP
and RDBP) from the mimic feature vectors given plenty
of training samples by using the bootstrap-inspired fusion
ensemble technique [27] in the DBN-DNN training stage.
Finally, the SBP and DBP in our DNN estimation stage are
stably estimated with assistance of the many DNN ensemble
fusion estimators. The primary advantage of using ensemble
fusion estimators is the ability to decrease the variance and
increase the confidence in determining the SBP and DBP.

III. EXPERIMENTAL RESULTS
This study was conformed by a research ethics committee,
and every participant signed informed consent prior to mea-
surement, according to the BP measurement protocol of the
institutional research ethics board. The BP measurements
were measured from 85 healthy subjects with no history
of cardiovascular disease, aged 12 to 80 years, of which
37 were females and 48 were males. Five sets of BP mea-
surements from each subject (duration range of a single
measurement: 31-95 sec., duration median: 55 sec.) were
acquired utilizing a wrist-worn blood pressure device at a
sampling rate of 100 Hz according to the recommendations
of the ANSI/AAMI SP 10 standard [7], [24]. Specifically,
the readings of two independent nurses were averaged to
offer one SBP and one DBP reading [3]. Our BP measure-
ments were comprised of an oscillometric BP recording led
by two trained nurses following one minute of rest. This
process was repeated four more times to build a recording
of five BP measurements. Each participant comfortably sat
upright in a chair in which the device cuff was strapped to
the left wrist of the subject and raised to heart level during

data collection. The auscultatory cuff, that was the reference
device, was placed on the upper left arm, also at heart level.
The upper cuff was inflated around the arm in order to
occlude the brachial artery. When the cuff signal deflated,
blood flow generated Korotkoff sounds, that could be readily
heard through a stethoscope placed next to the upper cuff.
The first Korotkoff sound (K1), that was measured in mmHg
by a manometer of the upper cuff, was utilized to estimate
SBP, whereas the fifth sound (K5) was used to estimate
DBP [30]. Concurrent brachial and wrist measurements were
not possible because of the difficulty of occlusion of brachial
arteries by upper arm sphygmomanometers. Thus, almost
1.5 min after each signal was obtained by the monitor of the
wrist measurement, two trained nurses concurrently recorded
systolic blood pressure (SBP1 and SBP2) and diastolic blood
pressure (DBP1 and DBP2) using a classic upper arm sphyg-
momanometer. Therefore, the mean values of concurrent
readings was utilized as the reference BPs (SBP and DBP).
Readings with subscript 1 were obtained by the first nurse,
and readings with subscript 2 were obtained by the sec-
ond nurse. The BP measurements of the five sets are given
by {SBP1,j,SBP2,j, |j = 1, . . . , 5} and {DBP1,j,DBP2,j,
|j = 1, . . . , 5} for each participant, respectively. For details
on BP measurements collection, the reader is referred to [24].

Based on the experimental conditions, we performed
the training and test experiments to verify the proposed
DBN-DNN based fusion ensemble regression estimator.
In the proposed scenario, the measurements of subjects were
sequentially separated into the training set (250 measure-
ments obtained from 50 subjects with five measurements
each) and the testing set (175 measurements obtained from
35 subjects with five measurements each). This process was
then repeated such that each subject was included once in
the testing stage. Testing in the proposed test scenario may
look like examining the generalizing ability of the proposed
approach with measurements from new subjects. Indeed,
five measurements (i.e., 5 samples over each feature) from
each subject is an extremely small number as input data in
the training stage. Therefore, we used the mimic features
obtained from the original feature vectors. Note that in the test
stage, we utilized the unseen original feature set to verify the
proposed algorithm. As mentioned, our feature vectors were
obtained from the oscillometry signals, which were used to
create the mimic feature vectors using the bootstrap-inspired
technique [27] for the DBN-DNN based fusion ensemble
regression estimator. We thus could obtain the mimic feature
vectors with (B=100) training samples over each feature,
which implies that each subject has (B=100) training samples
over each feature.

In Table 2 shows the configuration and parameter settings
of our DNN-based fusion ensemble technique. Specifically,
the number of feature vectors (11) represents the features
such as the MAP and AE, while the number of samples over
each mimic feature (100) was obtained using the bootstrap-
inspired technique, as described in section II (b). Based
on these configuration, we tested the performance of the
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FIGURE 3. Summary of the SDE (ME) obtained using the proposed
DBN-DNN based fusion ensemble regression estimator vs. DBN-DNN
based single regression estimator as the number of training sample
increases based on the AAMI standard protocol, where B is the number
of replication about the mimic feature vectors with (from B=5 to 500)
training samples for each subject, which implies that each feature has
(from B=5 to 500) training samples. As a result, we obtained 25000 input
vectors (i.e., 50 subject × B, in case of B = 500) over each feature in the
training stage.

TABLE 3. Comparison of the complexity of in terms of running time [32],
where the specifications of system are Intel R© Core(TM) i7-4790 CPU
3.60 GHz, RAM 32.0 GB, OS 64 bit, and Matlab R© 2015 (The MathWorks
Inc., Natick, Ma, USA).

proposed algorithm based on the same conditions with dif-
ferent number of hidden units from 16 to 256. The best result
of the proposed approach was obtained at 64 hidden units,
which indicated that a small number of hidden units can lead
to an increase in the mean absolute error (MAE) and standard
deviation of error (SDE) [31] owing to underfitting, whereas
a larger number of hidden units can increase the MAE and
SDE due to overfitting. We also conducted another test to
prove the performance of the proposed algorithm based on
the same conditions with the number of bootstrap replications
varying (B) from 5 to 500 for the mimic features. Fortunately,
we found that the proposed algorithm had fairly good results
as the number of replications changed. We found that the
proposed DBN-DNN based fusion ensemble estimator gave
more reliable results compared to the DBN-DNN based sin-
gle estimator as shown in Fig. 3. This demonstrates that the
estimation uncertainties were efficiently reduced as shown
the solid lines for the SBP and DBP in Fig. 3. In order to com-
pare the computational running time between the DBN-DNN
based single estimator and proposed algorithm, we set the
number of hidden unit and the number of epoch as 32 and 100.
The remaining parameter values were set as in Table 2. Note
that the running time is eventually computed based on the
performance in Matlab R© 2015 [32]. The result noticed that
the proposed algorithm did give much higher computation
time (s) compared to the DBN-DNN based single estimator,
which is mainly due to the ensemble step. Thus, we need to
reduce the running time as shown in Table 3.

FIGURE 4. Panel (a) shows scatter plot for regression model estimation
between the referenced auscultatory SBP and the estimated SBP using
the proposed DBN-DNN based fusion ensemble regression estimator and
panel (b) denotes scatter plot for regression model estimation between
the referenced auscultatory DBP and the estimated DBP using the
proposed DBN-DNN based fusion ensemble regression estimator.

To evaluate the proposed technique, we first investigated
the degree of similarity between the readings measured with
the proposed DBN-DNN based fusion ensemble regression
estimator and those measured with the auscultatory method
as shown Tables 4 and 5. The proposed method have effect on
the SEEs, compared to the MAA because DBN-DNN based
fusion ensemble regression have lower SEEs (5.93 mmHg in
the SBP and 5.10 mmHg in the DBP), compared with the
MAA (8.83 mmHg in the SBP and 6.62 mmHg in the DBP),
compared to with the DBN regression (6.45 mmHg in the
SBP and 5.24 mmHg in the DBP). These imply that the pro-
posed method represents 32.8% in the SBP and 23% reduc-
tion effect compared with the conventional MAA and shows
8.1% in the SBP and 2.7% reduction effect compared with
the DBN-DNN regression. As shown Fig. 4 and Table 5, the
Pearson correlations (0.901 in the SBP and 0.847 in the DBP)
between the DBN-DNN based fusion ensemble regression
model and the auscultatory method were compared with
those (0.882 in the SBP and 0.838 in the DBP) between the
DBN-DNN single regression and the auscultatory method.
Those may be noted that the proposed ensemble regression
model had the highest the degree of similarity than the
conventional methods including the DBN-DNN regression,
compared with the auscultatory method.

We also confirmed the mean error (ME) and the SDE
between the estimated BPs t̂i, i = 1, 2, . . . , n and the ref-
erence BPs (ti, i = 1, 2, . . . , n) according to the recom-
mendations of the AAMI standard protocol [7] to verify
the overall performance of the proposed fusion ensemble
algorithm. A BP measurement device can pass the AAMI
protocol if the ME is less than 5 mmHg with an SDE of
no more than 8 mmHg [7]. Thus, the lower values of the
ME and SDE represent the better overall result. However, the
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TABLE 4. Summary of the BP measurements using the MAA, FFNN, SVR, GMR, DBN-DNN and the proposed DBN-DNN with ensemble, where SEE denotes
standard error of estimate.

TABLE 5. Summary of the BP measurements using the MAA, FFNN, SVR, GMR, DBN-DNN and the proposed DBN-DNN with ensemble, where R is
correlation value.

TABLE 6. ME and SDE relative to the reference auscultatory method obtained with the conventional MAA, FFNN, SVR [33], GMR, DBN-DNN based single
regression model (DBN-DNN) [19], and using the proposed DBN-DNN based fusion ensemble regression estimator (DBN-DNN ensemble) in the text,
where the results are the average values for our test data.

FIGURE 5. The Bland-Altman plots comparing the performance between
the proposed DBN-DNN based fusion ensemble regression estimator and
the auscultatory nurse measurements [7]. (a) Bland-Altman plot for the
SBP. (b) Bland-Altman plot for the DBP.

SDE is more important than the ME, because a BP measure-
ment device can be very inaccurate, and the BP measure-
ments can have small ME values with large errors, which
are equally probable to be positive or negative. The MEs of
the SBP and DBP acquired using the proposed DBN-DNN
based ensemble regression estimator were compared to those
of the MAA [24], FFNN [14], support vector regression
(SVR) [33], GMR [23], DBN-DNN single model [19], and
DBN-DNN based regression ensemble model as shown in
Table 6. Note that the mimic features were fairly used in

the opponent algorithms except for the MAA [24]. From
Table 6, the SDE values obtained by our DBN-DNN based
fusion ensemble regression estimator were observed to be
5.74 and 4.68 mmHg for the SBP and DBP, respectively.
The SDE values for the proposed DBN-DNN based ensemble
regression estimator were improved by 4.31 and 3.61 mmHg
for the SBP and DBP, respectively, as compared with those of
the conventional MAA, as shown in Table 6. There were dif-
ferences of 1.37 and 1.46 mmHg in the SDEs for the SBP and
DBP, respectively, between the proposed DBN-DNN based
ensemble regression estimator and the SVR model. Addi-
tionally, comparing the proposed DBN-DNN based ensemble
regression estimator with the DBN-DNN based single regres-
sion model, we found that the SDEs of the SBP and DBP
were reduced by 0.46 and 0.58 mmHg, respectively. These
mean that the proposed method improved the performance by
7.4% and 11 % compared with the DBN-DNN based single
regression model.

The results of the FFNN and GMR models are also pre-
sented in Table 6. In particular, we utilized the SVR algorithm
with a linear epsilon insensitive cost function [33] as the
opponent technique in the current state of the art to evaluate
the performance of the proposed DBN-DNN based ensemble
regression estimator fairly. Indeed, the error of the proposed
technique was calculated by (ei = t̂i − ti). Thus, ME and
root mean square error (RMSE) were readily defined as

( 1n
∑n

i=1 ei) and
√
( 1n
∑n

i=1 |ei|
2), respectively. Therefore, the

SDEs of the ME and RMSE were easily computed through
the statistical method as shown in Table 6.

Moreover, we computed the percentages of the MAEs for
three categories, ≤ 5 mmHg, ≤ 10 mmHg, and ≤ 15 mmHg,
for all measurements (425 measurements). The protocol of
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TABLE 7. Grading of the proposed algorithm based on the BHS standard using the results of MAA, FFNN, SVR [33], GMR, DBN-DNN [19], and DBN-DNN
ensemble on (5× 85 = 425) measurements.

the BHS with an A-D graded system would grant a grade
of A to a device if 60% of its error measurements are
within 5 mmHg, 85% of its error measurements are within
10 mmHg, and 95% of its error measurements falls within
15 mmHg [31]. Furthermore, Bland-Altman plots to compare
the performance of the proposed DBN-DNN based fusion
ensemble model with the auscultatory nurse measurements
(425 measurements) are represented in Fig. 5. In addition, the
results of the BHS protocol [31] indicate that the DBN-DNN
based fusion ensemble regression estimator provided accu-
rate BP estimates when compared to the MAA, FFNN, SVR,
GMR, and DBN-DNN based single regression techniques. In
Table 7, we also report the BHS grading scores obtained by
the DBN-DNN based fusion ensemble regression estimator.
The results of the proposed DBN-DNN based fusion ensem-
ble regression estimator were 71.06 % (≤5 mmHg), 90.82 %
(≤10 mmHg), and 95.53 % (≤15 mmHg) for the SBP in the
given experimental test scenario and 81.18 % (≤5 mmHg),
96.24 % (≤10 mmHg), and 99.29 % (≤15 mmHg) for the
DBP in the experimental test scenario.

IV. DISCUSSION AND CONCLUSION
As mentioned in the results section, we found that the
proposed DBN-DNN based ensemble regression estimator
was superior to the conventional algorithms, as shown in
Tables 4, 5, 6 and 7. These mean that sufficient mimic
features are an important aspect for improving the general-
ization capacity of the proposed DBN-DNN based ensem-
ble regression estimator. In consequence, the proposed
DBN-DNN based ensemble regression estimator obtains an
overall grade of A based on the BHS grading system. Addi-
tionally, we also assessed the performance of the DBN-DNN
based ensemble regression estimator using regression and
Bland-Altman plots as shown in Figs. 4 and 5. These indicate
that the BP estimates acquired by the proposed DBN-DNN
based ensemble regression estimator are in very close agree-
ment with the reference BPs (SBP and DBP). The bounds
of agreement (see bold horizontal lines in Fig. 5) that we
used were (ME ± 2× SDE) for two plots, the mostly black
asterisks lie within the bounds of agreement. The biases (see
horizontal center lines) for the two plots were practically
small (≤ ± 0.5 mmHg). In particular, Fig. 5 beautifully
demonstrates results in accord with the last column in Table 6.
Therefore, based on the results of the overall performance

evaluation, we have clearly demonstrated that the proposed
DBN-DNN based ensemble regression estimator mitigates
the estimation uncertainty and improves the confidence of the
proposed technique.

In conclusion, the DBN-DNN based ensemble regression
estimator with a small sample obtained lower SDEs and
MEs for the SBP and the DBP compared to conventional
algorithms. The main contribution of the proposed algorithm
is that the accuracy and stability are improved using the
DBN-DNN based fusion ensemble regression estimator in
a small sample environment based on the bootstrap-inspired
technique. We also found the distribution of mimic feature is
asymptotical Gaussian that is quite well fit for the proposed
ensemble regression estimator as the number of training data
increases. Our future study will include clinical testing on
a wide range of new subjects based on the ANSI/AAMI
SP 10 andBHS protocols.Moreover, since the proposedDBN
ensemble is highly time consuming when compared to the
single DBN-DNN model, optimization can be further used
to simplify the structure and enhance the efficiency of the
DBN-DNN based ensemble regression estimator.
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