
Received February 15, 2017, accepted April 5, 2017, date of publication May 4, 2017, date of current version June 28, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2701339

An Empirical Study on the Impact of an IDE Tool
Support in the Pair and Solo Programming
OMAR S. GÓMEZ1, ANTONIO A. AGUILETA2, RAÚL A. AGUILAR2, JUAN P. UCÁN2,
RAÚL H. ROSERO1, AND KAREN CORTES-VERDIN3
1Escuela Superior Politécnica de Chimborazo, Riobamba 060155, Ecuador
2Universidad Autónoma de Yucatán, Mérida 97000, Mexico
3Universidad Veracruzana, Xalapa 91190, Mexico

Corresponding author: Omar S. Gómez (ogomez@espoch.edu.ec)

ABSTRACT The adoption of Agile software development approaches has beenwidespread. Onewell-known
Agile approach is extreme programming, which encompasses twelve practices of which pair programming
is one of them. Although various aspects of pair programming have been studied, we have not found, under
a traditional setting of pair programming, studies that examine the impact of using a tool support, such
as an integrated development environment (IDE) or a simple text editor. In an attempt to obtain a better
understanding of the impact of using an IDE in this field, we present the results of a controlled experiment
that expose the influence on quality, measured as the number of defects injected per hour, and cost, measured
as the time necessary to complete a programming assignment, of pair and solo programmingwith andwithout
the use of an IDE. For quality, our findings suggest that the use of an IDE results in significantly higher
defect injection rates (for both pairs and solos) when the programming assignment is not very complicated.
Nevertheless, defect injection rates seem to decrease when pairs work on more complicated programming
assignments irrespective of the tool support that they use. For cost, the programming assignment significantly
affects the time needed to complete the assignment. In relation to the programming type, pairs and solos
performed in a similar way with regards to quality and cost.

INDEX TERMS Pair programming, software quality and cost, integrated development environment,
controlled experiment, software engineering.

I. INTRODUCTION
The adoption of agile approaches in the development and
maintenance of software products has been becoming rele-
vant in the software industry. The successful adoption of agile
approaches has been reported in several countries [1]–[7].

One of the first and well-known agile approaches is
eXtreme Programming, or XP [8], [9], which focuses on
twelve practices for software development: planning games,
short releases, system metaphors, simple design, testing,
refactoring, pair programming, collective ownership, con-
tinuous integration, 40-hour-week, on-site customers, and
coding standards.

Pair programming is a common practice used either,
independently or as part of XP. In this practice, two pro-
grammers work together on the same task using a computer.
One of the programmers (the driver) writes the code, and
the other (the observer), actively reviews the work performed
by the driver. Essentially, the observer reviews the work for

possible defects, writes down notes, or defines strategies for
solving any issue that can arise in the task that they are
working on.

Various empirical studies that report beneficial effects of
the use of this practice have been conducted [10]–[24]. Some
beneficial effects reported in these studies are that pair pro-
gramming helps to produce shorter programs and achieve
better designs; programs contain fewer defects than do those
written individually, and pairs usually require less time to
complete a task than do programmers working individually.

Although different aspects of pair programming have been
studied, we have not found studies that examine the impact of
using a tool support such as an integrated development envi-
ronment (IDE) under a traditional approach (programmers
working in the same place with the same computer). With
the objective of obtaining a better understanding of the influ-
ence of the use of an IDE within this practice, in this work,
we present the results of an empirical study in the form of a

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

9175



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

controlled experiment that investigates the effect on quality
and cost of pair and solo programming with and without the
use of an integrated development environment (IDE).

The remainder of the document is organized as follows:
In section II, we describe the related work; in section III,
we present the experimental setting; in section IV, the anal-
ysis and results are presented; in section V, we discuss the
findings; and finally, in sectionVI, the conclusions are drawn.

II. RELATED WORK
The use of a tool support for pair programming (PP) has been
commonly studied in a distributed setting, wherein pairs are
located at different geographical locations and are working in
a synchronous or asynchronous manner [25]–[31].

For example, Winkler et al. [31] define a systematic tool
evaluation approach for distributed PP, authors also report
an initial tool survey of open source tools. Concerning the
integrated development environments (IDEs), authors iden-
tify some that could be considered under a distributed PP
approach.

Schümmer and Lukosch [30] present a plug-in for the
Eclipse integrated development environment, which allows
distributed PP capabilities such as shared editing, project
synchronization, shared program and test execution, user
management, built-in chat communication, and a shared
whiteboard. Authors observed that role switches did not
occur as often as expected from a traditional setting
(non-distributed) of PP. Similarly, Ho et al. [29] also present
a plug-in for the Eclipse IDE that allows users in different
locations to share a workspace so that they may work as if
they were using the same computer. Authors discuss its use
under a distributed PP approach.

Atsuta and Matsuura [28] propose an XP support envi-
ronment for conducting pair programming activities under
a distributed approach. Some of the functions proposed for
such an environment are: the role shift, states notifications,
a chat, an editor synchronization and a white board.

Natsu et al. [27] present a synchronous source code editor
that allows two distributed software engineers to write a
program using pair programming. Their proposal implements
characteristics of groupware systems such as communication
mechanisms, collaboration awareness, concurrency control,
and a radar view of the documents, among others. The authors
reported a preliminary evaluation of its proposal.

Stotts et al. [26] report the results of two distributed pair
programming cases studies, where participants used a set of
available off-the-shelf applications for collaborative software
development. Authors observed that pairs induce better team-
work and communication within a virtual distributed team.

Maurer [25] presents a process-support environment that
helps software development teams to maintain XP practices
in a distributed setting. Among the features that this environ-
ment supports are: project coordination, user stories, infor-
mation routing, team comunication, and pair programming.

Summarizing these previous works, we observe that the
assessment of different support tools is commonly carried out

in the context of distributed pair programming research. How-
ever, under a traditional setting of pair programming wherein
pairs work in the same location with the same computer
simultaneously, we have not found studies that investigate the
effects of using a tool support such as an IDE.

The experiment we report in this article has its origins in
the work of [24]. Gómez [24] conducted a controlled experi-
ment as part of a course on Design of Experiments (DoE) in
Software Engineering (SE). The experiment was conducted
at the Faculty of Mathematics of the Autonomous University
of Yucatan (Mexico) in the Software Engineering degree
program. In this experiment, a Latin square design [32] was
used.

The main characteristics of this experimental design are
that there are two blocking factors. The treatment is present
at each level of the first blocking factor as well as at each
level of the second blocking factor. This design is arranged
with an equal number of rows (blocking factor one) and
columns (blocking factor two). Treatments are represented by
Latin symbols, where each symbol is present exactly once in
each row and exactly once in each column. An example of the
structure of this design is shown in Table 1.

TABLE 1. Example of a Latin square layout.

In this type of experimental design, blocking is used to
systematically isolate the undesired source of variation when
comparing the treatments. In the case of the experiment
reported in [24], a Latin square design was used in an attempt
to block the program being coded and the tool support, thus
reducing the undesired source of variation between the treat-
ments of interest, namely, the pair and solo programming
approaches. The Latin square design structure used in [24]
is shown in Table 2.

TABLE 2. Latin square experimental design used in [24].

The aspects studied in [24] were duration (cost) and effort
of 7 pairs and 7 solos who coded two programs with and
without the use of an IDE. The duration was measured as the
time, in minutes, needed to code the programming assign-
ment, whereas effort was measured as the amount of labor
spent on coding the programming assignment (measured in
person-minutes).

With respect to duration, Gómez [24] reported a signifi-
cant (at α = 0.1) decrease in time of 28% in favor of pairs
and a medium effect size d = 0.65.
Regarding effort, Gómez [24] reported a significant

(at α = 0.1) decrease in effort of 30% in favor of solos and a
medium effect size d = 0.64.

9176 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

Because the program and the tool support were treated
as blocking factors (obeying the Latin square design used),
it was not possible to assess for possible interactions between
the main treatment (type of programming) and the blocking
factors (tool support and program being coded). The variabil-
ity observed in the measurements related to the tool support
and coded programs suggests the need for further investiga-
tion of a possible influence between these two factors.

III. EXPERIMENTAL SETTING
Considering the issues discussed in the previous section,
we decided to conduct another controlled experiment, therein
varying the experimental design as well as the effect oper-
ationalizations. According to [33], [34], the experiment
reported here can be considered as an operational replica-
tion. The experimental design is varied with the aim of
examining a possible influence based on how either the
tool support used for coding or the type of program being
coded (programming assignment) may affect the type of pro-
gramming (pair or solo).

With respect to the effect operationalizations, one of the
aspects studied in [24] was the time (cost) that pairs and solos
spent coding the programming assignments. We keep this
aspect; in addition, we examine another aspect related to the
quality of the software products (programming assignments)
produced by the pairs and solos.

Following theGoal-Question-Metric (GQM) approach [35],
which facilitates the identification of the object of study, pur-
pose, quality focus, perspective and context of an experiment,
we define the experiment reported here as follows:

‘‘Study pair and solo programming with the purpose of
evaluating how quality and cost could be affected by the
use of an IDE or a text editor as tool support along with
the programs being coded. This study is conducted from the
point of view of the researcher within an academic context.
This context is composed of junior-year students enrolled in a
course of DoE, where they will code, in pairs or individually,
two programming assignments with different tool support.’’

In the previous experiment definition, the treatments:
programming type (pairs and solos), tool support (IDE
and simple text editor) and programs being coded (pro-
grams A and B) act as the independent variables, whereas the
operationalizations of quality and cost act as the dependent
variables. Based on our previous experiment definition, fol-
lowing we present the derived null hypotheses.

Concerning quality:

• H0a : Participants working in pairs and individually
develop software products with similar quality.

• H0b : Coding through an IDE and a simple text editor
yields software products with similar quality.

• H0c : Implementing the specification of program A and
programByields a software product with similar quality.

• H0d : Software product quality is not affected by the rela-
tionship between the type of programming (pair or solo)
and the type of tool support used.

• H0e : Software product quality is not affected by the
relationship between the type of programming and the
type of program being coded.

• H0f : Software product quality is not affected by the
relationship between the type of tool support used and
the type of program being coded.

• H0g : Software product quality is not affected by the
relationship between the type of programming, type of
tool support and type of program being coded.

Concerning cost:

• H0h : Participants working in pairs and individually
spend similar time (cost) coding the programming
assignments.

• H0i : Coding using an IDE and a simple text editor is
performed in a similar amount of time (cost).

• H0j : The implementation of the specification of program
A and program B is performed in a similar amount of
time (cost).

• H0k : Cost is not affected by the relationship between the
type of programming (pair or solo) and the type of tool
support used.

• H0l : Cost is not affected by the relationship between
the type of programming and the type of program being
coded.

• H0m : Cost is not affected by the relationship between the
type of tool support used and the type of program being
coded.

• H0n : Cost is not affected by the relationship between the
type of programming, tool support and type of program
being coded.

For each null hypothesis, we defined a nondirectional
hypothesis as the alternative hypothesis. Thus, the alternative
hypotheses state that at least one of the treatments in each
category (programming type, tool support and programming
assignment) is different with regards to either quality or cost.
In the case of the relationships among treatments, the alterna-
tive hypotheses state that at least one of the treatments belong-
ing to: the type of programming and the type of tool support
used; the type of programming and the type of program being
coded; the type of tool support used and the type of program
being coded; the type of programming, tool support and type
of program being coded is different with regards to either
quality or cost.

A. EXPERIMENTAL DESIGN
The defined hypotheses for this experiment will be tested
using different measurements collected from the participants
of this experiment. The collected measurements belong to
four groups: (1) Participants working in pairs on programs
A and B with an IDE, (2) participants working in pairs on
programs A and B with a simple text editor, (3) participants
working individually on programs A and B with an IDE,
and (4) participants working individually on programs A and
B with a simple text editor. With the collected measurements,
we will contrast them regarding the defined null hypotheses.

VOLUME 5, 2017 9177



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

TABLE 3. Experimental design layout used for the experiment.

With the goal of collecting the maximum number of mea-
surements possible, we used a factorial design with repeated
measurements [36]. A factorial design enables the study
of several factors and the interactions among them. In this
experiment, we applied a 22 factorial design and selected the
main factors as the type of programming (pair and solo) and
the tool support (IDE and text editor). This design is then
repeated (maintained on the same experimental unit) for each
programming assignment in separated sessions. The layout of
this experimental design is shown in Table 3.

As showed in Table 3, two measurements (Meas. 1 and
Meas. 2) are going to be collected for the experimen-
tal unit belonging to the four treatment combinations.
Extracting repeated measurements of the same experimental
unit (pairs or solos) provides an efficient use of resources
compared to extracting measurements from different exper-
imental units [36]. Another characteristic of this experi-
mental design is the reduction of the variance of estimates,
thereby allowing statistical inferences to be made with fewer
participants [36].

B. PARTICIPANTS, TASKS AND OBJECTS
The sample for this experiment was conformed by junior-year
students (i.e., in their third year) enrolled in a DoE course
in a Software Engineering (SE) program at the Autonomous
University of Yucatan (Mexico). This kind of sampling,
also know as convenience sampling, is commonly used in
SE experiments. It is a non-probability sampling technique
where the researcher selects the participants because of they
are conveniently accessible and proximate to the experiment.

The experiment reported here was conducted during the
summer semester of 2013, and it was scheduled to end
in November 2013. In this experiment, there were 24 stu-
dents (8 pairs and 8 solos) in total who assisted and finished
all the programming assignments (out of a total of 28 stu-
dents). According to the Dreyfus and Dreyfus program-
ming expertise classification [37], we categorized partici-
pants as advanced beginners; the participants have working
knowledge of key aspects of Java programming practice.
On average, they reported having 1.94 (SD=0.97) years
of experience with the Java programming language and

TABLE 4. Characteristics of the experimental units.

1.81 (SD=1.03) years of experience with the NetBeans IDE.
Verbal consent was obtained from student participants, and
they were informally advised about the data retained and
that anonymity was fully ensured. No sensitive data were
collected for the experiment.

From a total of 356 credits, which is the minimum num-
ber of credits necessary to complete the SE degree cur-
ricula, at the time of the experiment, the participants had
completed on average 213.40 (SD=49.92) credits of the SE
degree (59.94% completion). Regarding the gender of the
participants, there were 22 males and 6 females. Table 4
shows the gender distribution for each experimental unit,
the identification number of each participant and the number
of measurements performed. A total of 3 out of 19 exper-
imental units did not attend all the planned experimental
sessions (two sessions); therefore, only one measurement
per aspect (quality and cost) was collected from these three
experimental units.

Participants were randomized regarding to gender and allo-
cated into four groups (treatment combinations) according
to the 22 factorial design, thus having: (1) a group of pairs
working with an IDE, (2) a group of pairs working with
a text editor, (3) a group of solos working with an IDE,
and (4) a group of solos working with a text editor. The
treatment combinations were applied two times over the same
experimental unit (the participants coded two programs in
two different sessions), hence satisfying the factorial design
with repeated measurements selected.

Although gender is a factor that can be analyzed [38],
in this research we did not consider it as a study factor mainly
because of the imbalance between the number of women
and men participants, however we randomized participants
according to gender with the aim of our findings can serve
for quantitative synthesis [39] in works that seek to analyze
gender in pair programming.

Before the experiment was conducted, we presented a talk
to the students about eXtreme Programming with special

9178 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

focus on pair programming. In this talk, we explained the
main concepts of this programming practice and how it can
be applied. In another talk, we reinforced the concepts of
pair programming and explained how to compile and run
a Java program using only a text editor and the operating
system console. Finally, we explained to students how to col-
lect the measurements during the experimental sessions. The
collection procedure consisted of writing down the amount of
time that students spent writing a program (we asked them to
record starting and ending times and compute the difference
in minutes). In addition, we asked them to record only logical
defects that they injected during coding.

We explained to students two basic types of defects that
they can commit: syntax and logical defects. In a syntax
defect, the program cannot be compiled; this is especially
important for students working with a simple text editor
because they do not receive syntax hints from the IDE. On the
other hand, when a logical defect is committed, the program
can be compiled and run, but it will not work properly accord-
ing to its specification, i.e., it does not behave as intended. For
this experiment we only focused on logical defects committed
by the participants, leaving for future research the analysis of
other types of defects, such as syntax defects. As tool support,
pairs and solos utilized either the NetBeans IDE or a simple
text editor (notepad, pico or nano) with the Java programming
language. Printed forms were available for time and defect
registration.

Prior to the experimental sessions, a training phase was
conducted. The training phase enables additional control over
experimental conditions, reducing undesired variations in the
measurements. In two separate training sessions, participants
coded two programs that were different to those employed
in the experimental sessions. This training phase allowed the
pairs to be immersed and to gain experience with the pair
programming practice. The experience gained for pairs alle-
viates the issues discussed in pair programming experiments
regarding the lack of training that pairs receive in comparison
to solos programmers [11], [40].

We wrote the specification for two console programs that
participants could code, compile, run and test during each
experimental session. For the first program (identified as
encoder, or program A), we asked participants to code a
simple encoding-decoding program. Given a specified table
that contains letter switches, the program must be able to
encode or decode a line of text. The program receives two
arguments: one that indicates whether to encode or decode
the text and one that indicates the line of text (enclosed by
quotation marks) to process.

For the second program (identified as calculator,
or program B), we asked participants to write a simple cal-
culator that evaluates expressions containing decimal num-
bers along with the operators addition (+), subtraction (−),
multiplication (×), and division (÷). If the expression is
valid, the program prints the results on the screen; other-
wise, the program prints a message indicating an invalid
expression.

C. EXPERIMENT CONDUCT
Once the random assignment of participants to the treatment
combinations was performed (this assignment was done prior
to the training phase), the experimental units (pairs and solos)
worked with the same treatment combination (type of pro-
gramming and tool support assigned) during the training and
experimental sessions, varying only the program being coded
in each session.

The allotted time for each experimental session was
90 minutes. Both sessions were conducted in one of the
computer classrooms of the university. Once most of the
students were in the classroom, we started each session.
In the first experimental session, we gave participants direc-
tions and projected the specification of the program to
code (program A, encoder) onto the screen. In this ses-
sion, two solo programmers spent more time coding than
the planned time assigned to the session, namely, 107 and
147 minutes. Because the first of these two participants
was nearly finished with the programming assignment,
we decided to ask them to wait. We asked the second partici-
pant to pause their programming activities and restart them at
home (while properly performing themeasurement collection
process).

The second experimental session was conducted in a
similar manner as the previous session; we gave the partic-
ipants directions and projected the second specification (pro-
gram B, calculator) onto the screen. In this session, half of
the experimental units (pairs and solos) finished the program-
ming assignment on time. For the other half, we scheduled
an extra session in the same classroom. In this extra session,
two solos and one of the pairs did not finish the programming
assignment; thus, we asked them to finish the assignment at
home.

The programming assignment for each session was consid-
ered as finished or completed once we verified (in each exper-
imental unit) the proper operation of the program against its
specification.

D. METRICS
The metrics operationalized (dependent variables) for the
effect constructs (quality and cost) were defined as: the num-
ber of defects injected per hour (product quality), and the
elapsed time in minutes that the experimental units (pairs and
solos) spent coding the programming assignment until it ran
according to its specifications (cost).

The number of defects injected per hour is a common
metric used in the software process arena [41], in this sense,
we decided to use it in order to represent the quality construct.
Following the suggestions in [42], we evaluated the product
quality based on an external metric. It seems that the use
of internal metrics for assessing product quality can lead to
unreliable results [42], [43].

In the case of cost, we are interested in analyzing the
elapsed time that each experimental unit (either pairs or solos)
spend coding the assignments. Note that we differentiate cost

VOLUME 5, 2017 9179



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

TABLE 5. Measurements collected for quality (defects injected per hour).

TABLE 6. Measurements collected for cost (elapsed time in minutes).

from effort, in the sense that effort is used to measure the
amount of labor spent to perform a task. In the case of PP
experiments, the effort is usually represented as the elapsed
time multiplied by two [24], [44]. For both of the metrics we
defined, we considered pairs and solos as a whole unit, i.e.
the experimental unit.

After the experimental sessions were finished, we col-
lected measurements from 28 participants; however, we had
to withdraw the measurements of three experimental
units (two solos and one pair) because the participants
did not attend experimental session two. This is a restric-
tion for the applied experimental design, it is neces-
sary to collect all the repeated measurements from the
experimental units [36]. Tables 5 and 6 show the mea-
surements collected. Table 5 shows the measurements col-
lected with respect to the number of defects injected per
hour (product quality). Regarding the elapsed time in min-
utes required to code the programming assignments (cost),
in the Table 6 we present the corresponding measurements
collected.

IV. ANALYSIS AND RESULTS
In this section, we present both descriptive and inferen-
tial statistics for the collected measurements. In addition,
we present results from a qualitative analysis referring to
a questionnaire that participants responded to on their pair
programming experience. Tables 7 and 8 show the descrip-
tive statistics for the programming type, tool support and
programming assignment with respect to product quality and
cost.

TABLE 7. Descriptive statistics with regard to number of defects injected
per hour (quality) for programming type, tool support and program being
coded.

TABLE 8. Descriptive statistics with respect to elapsed time (cost,
in minutes) for programming type, tool support and program being coded.

Regarding product quality (Table 7), on average, both types
of programming appear to produce similar defect injection
rates. In the case of the tool support, participants who worked
with an IDE seem to have higher defect injection rates. With
respect to the program being coded, it seems that participants
had higher defect injection rates when coding the encoder
program.

In the case of cost (Table 8), solo programmers seem to
spend more time coding than do pairs. Both groups seem
to require a similar amount of time with both an IDE and a
simple text editor. With respect to the time required to code
both programs, the calculator program required three-times
as much time than did the encoder program.

The descriptive statistics provide an overview of the col-
lected measurements; however, at this point, we are unable to
draw any conclusions with confidence with regard to possible
differences between treatments. Once we have an overview of
the data, we will proceed with the inferential statistics to test
the previously stated null hypotheses. The statistical model
employed according to the factorial design with repeated
measurements is defined in equation (1).

yijkl = µ+ αi + βj + dijl + γk (αβ)ij + (αγ )ik
+ (βγ )jk + (αβγ )ijk + εijkl, (1)

9180 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

TABLE 9. ANOVA results for product quality.

TABLE 10. Pairwise comparisons between tool support and program.

where µ is the general mean, αi is the effect of the ith
treatment (programming type), βj is the effect of the jth
treatment (tool support), dijl is the random experimental error
for the experimental units (pairs and solos) within treat-
ments (programming type and tool support) with variance σ 2

d ,
γk is the effect of the kth program, (αβ)ij is the interaction
between the programming type and the tool support, (αγ )ik
is the interaction between the programming type and the pro-
gram being coded, (βγ )jk is the interaction between the tool
support and the program being coded, and (αβγ )ijk is the
interaction between the programming type, tool support and
the programming assignment. Finally, εijkl is the normally
distributed random experimental error on repeated measure-
ments with variance σ 2

e .
To assess each of the components of this statistical model,

an analysis of variance (ANOVA) is applied. ANOVA relies
on an analysis of the total variability of the collectedmeasure-
ments and the variability partition according to different com-
ponents (in this case, factors and their interactions). ANOVA
provides a statistical test of whether the means of several
groups (of measurements) are all equal. The null hypothesis
is that all groups are simply random samples of the same
population. This implies that all treatments have the same
effect (perhaps none). Rejecting the null hypothesis implies
that different treatments result in different effects. In this
experiment, we have four groups of measurements (pro-
gramming type and tool support combinations), with two
repeated measurements per group (the two programming
assignments).

ANOVA was applied through the use of the R package
ez [45], which implements a function for the analysis of
factorial designs with repeated measurements. Table 9 shows
the ANOVA results with respect to product quality.

As shown in Table 9, the tool support and program compo-
nents exhibit a significant difference at an alpha level of 0.05,
suggesting that defect injection rates are different for different
types of tool support (IDE and simple text editor) and for

different programming assignments (encoder and calculator).
If we set an alpha level of 0.1, which represents a confidence
level of 90%, the interaction between tool support and pro-
gram exhibits a significant difference. Estimating the effect
sizes for these components, a generalized η2 [46] of 0.38,
0.23 and 0.08 was observed for tool support, program, and
the interaction between tool support and program, respec-
tively. According to [47], these effect sizes can be interpreted
as large (η2 > 0.14), large and medium (η2 > 0.06),
respectively.

Because a significant interaction was observed, we con-
ducted a post-hoc test with multiple pairwise comparisons
with the goal of examining differences in all the level com-
binations between tool support and program. Table 10 shows
the post-hoc test results using Tukey’s method [48].

According to the results in Table 10, three pairwise com-
parisons exhibit significant differences (at α = 0.01). In the
first one, a significant difference of 3.5 defects injected per
hour is observed between the encoder and calculator pro-
grams, both programs coded with an IDE. In the second
one, a significant difference of 4.8 defects injected per hour
is observed between the encoder program coded with an
IDE and the calculator program coded with a text editor.
In the third one, a decrease of 3.9 defects injected per hour
is observed when a text editor is used to code the encoder
program. A visual representation of this interaction (tool
support and program) is given in Figure 1.

As shown in Figure 1, the use of an IDE for the encoder
program produces higher defect injection rates than does the
use of a text editor. In the case of the calculator program,
the use of an IDE appears to reduce the defect injection
rates, but only for pairs. Another representation of the defect
injection rates between programming type and tool support
organized by programming assignment is shown in Figure 2.

According to this figure (Figure 2), solo programmers
exhibit a similar pattern when coding both programs, and the
use of a text editor seems to significantly reduce the defect

VOLUME 5, 2017 9181



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

TABLE 11. ANOVA results for cost.

FIGURE 1. Interaction plot between tool support and program with
regard to quality.

FIGURE 2. Interaction plot between programming type and tool support
with respect to quality.

injection rates in comparison to the use of an IDE. This is
partially supported for pairs working on the encoder program.
This appears to be an interaction between programming type
and tool support (although not significant), wherein pairs
seem to inject fewer defects when using an IDE compared
to solos. Conversely, solos seem to inject fewer defects when
using a simple text editor compared to pairs. Regarding the
program, a small number of defects were injected into the
calculator program. In this program, pairs produce similar
defect injection rates with either the use of an IDE or a text
editor.

With regard to cost, measured as the time (in minutes)
that participants spend coding the programming assignments,
the analysis of variance is shown in Table 11. For this aspect,
the program component exhibits a significant difference,

FIGURE 3. Interaction plot between programming type and tool support
with respect to cost.

therein suggesting a significant difference between the coded
programs. This component shows an effect size η2 of 0.28,
which is interpreted as a large effect size [47].

This significant difference is shown in Figure 3; partici-
pants spent less time coding the encoder program than they
did coding the calculator program. Pairs tend to require less
time than do solos, although this difference is not significant.
The use of an IDE seems to reduce the coding time for the
encoder program; however, it increases when an IDE is used
for coding the calculator program. This interaction is not
significant, though.

To draw valid statistical conclusions, the employed statisti-
cal model was checked against the assumptions of normality,
sphericity and randomness. Oneway of assessing normality is
by examining whether the collected measurements conform
to a normal distribution at each level of the within-subject
factor. For the standardized residuals of each level of the
within-subject factor, we used the JarqueâĂ"Bera test for nor-
mality [49], [50]. The null hypothesis of this test assumes that
sample data originate from a normal distribution. Regarding
quality, the standardized residuals for the encoder program
show a p-value of 0.3202, and for the calculator program,
a p-value of 0.0004 is found. Regarding cost, the standardized
residuals for the encoder program show a p-value of 0.1133,
and for the calculator program, a p-value of 0.1823 is found.
With regard to quality, the assumption of normality is vio-

lated for the calculator program. The observed outlier belongs
to the experimental unit eu14, which has the smallest defect
injection rate in the programming type and tool support treat-
ment combination. Although this experimental unit registered

9182 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

a higher than average number of defects detected (the average
for this program was 3.18). This unit spent 479 minutes cod-
ing this program. In the case of the encoder program, the null
hypothesis is accepted in favor of normality. Regarding cost,
the null hypothesis is accepted in favor of normality for both
programs.

The sphericity assumption implies that the variances of
the differences between any two levels of within-subject fac-
tors (factors repeated over the same experimental unit) are
similar. This assumption is always met when there are only
two levels of within-subject factors [51], i.e., two repeated
measurements, as in our case, where the two repeated mea-
surements were for the encoder and calculator programs.
With respect to the randomness assumption, the collected
measurements were sampled randomly and independently of
each other.

It is important to note that the previous assumptions are
related to a univariate statistical model similar to the one
described in equation 1. However, a repeated measurement
model can be seen as a multivariate statistical model wherein
the repeated measurements act as dependent (or response)
variables. Under a multivariate statistical model, two com-
mon assumptions to assess are the multivariate normality and
the homogeneity of covariance matrices [52].

A. QUALITATIVE RESULTS
After the experiment sessions were completed, participants
working in pairs responded to a questionnaire regarding their
perceptions of the use of pair programming. The question-
naire was responded to individually.

The first question referred to the degree of cohesion
achieved (team jelling) during all experimental sessions.
We defined a scale from 1 to 9, where 1 represents the lowest
level of cohesion achieved and 9 the highest level of cohesion
achieved. On average, the participants perceived a good level
of cohesion with their respective partners (8.18, SD=0.73).
For the second question, we asked whether the cohesion

was increased or decreased during the experimental sessions.
With the exception of one respondent (6%), who answered to
have the same level of cohesion during the sessions, the rest
of respondents (94%) stated that the perceived cohesion
increased during the sessions.

For the third question, we asked whether the participant
would work on future assignments with the same partner
given the achieved cohesion. 70% of the respondents would
work on future assignments with the same partner, 12%
would not and 18% perhaps would do it.

The fourth question was related to the role that participants
were mainly involved in. 35% of the respondents stated the
controller as being their main role, 41% acted as monitors
and 24% responded as being equally involved in both roles.

Concerning whether participants changed role during the
experiment (fifth question), 59% of the respondents answered
that they did change roles, whereas 41% maintained the
same role. Finally (sixth question), all respondents stated

to have enjoyed the programming role that they were
involved in.

V. DISCUSSION
Now that the analysis and results have been presented, in this
section, we discuss them in relation to the hypotheses defined
and with previous work.

In terms of quality, which is measured as the number of
defects injected per hour, pairs and solos seem to develop
software with a similar level of quality (failed to reject H0a ).
Coding using an IDE and a simple text editor yields software
products with different levels of quality (H0b is rejected); the
use of an IDE seems to generate higher defect injection rates
than does the use of a simple text editor. The programming
assignments being coded yield software products with differ-
ent levels of quality (H0c is rejected); in this case, participants
coding the program identified as encoder produced higher
defect injection rates compared to those coding the calculator
program. Software product quality is not affected by the
relationship between the type of programming (pair or solo)
and the type of tool support used (failed to reject H0d ).
Software product quality is not affected by the relationship
between the type of programming and the type of program
being coded (failed to rejectH0e ). Software product quality is
affected by the relationship between the type of tool support
used and the type of program being coded (H0f is rejected).
Software product quality is not affected by the relationship
between the type of programming, tool support and program-
ming assignment (failed to reject H0g ).

Because a significant interaction was observed
(at α = 0.1) between tool support and the programming
assignment, interpretations should be based on interaction
effects and not on main effects. A significant difference is
observed for the programming assignment when it is coded
with an IDE; the use of an IDE produced greater defect
injection rates for the encoder program. Another significant
difference is observed for the calculator program coded with
a simple text editor and the encoder program coded with
an IDE; the latter combination (IDE-encoder) yielded the
highest defect injection rates. A third significant difference
is observed for tool support and the encoder program. In this
programming assignment, the use of a simple text editor
produced lower defect detection rates.

Although on average the calculator program presents a
lower cyclomatic complexity (VG = 6.93, SD = 7.79) com-
pared to the encoder program (VG = 16.25, SD = 19.01),
the calculator program is more complicated to code in the
sense that it demands greater effort to be implemented. This
programming assignment implies certain knowledge on how
to address regular expressions.

According to our results, it seems that pairs, irrespective
of the tool support that they use, tend to produce software
products with better quality when they work on complex
coding tasks (such as the calculator program used in our
experiment); in this case, the tool support seems to have no
effect (as shown in Figure 1). Our findings reinforce those

VOLUME 5, 2017 9183



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

reported in [18], [44], wherein has been observed benefi-
cial effects when junior pairs work on more complex sys-
tems [44], and also has been observed that pair programming
performs well when novice pairs encounters challenging pro-
gramming problems. On the other hand, when coding tasks
are less complicated (such as the encoder program used in
our experiment), pairs and solos seem to produce software
with better quality when a simple text editor is used.

In terms of cost, which is measured as the time required
in minutes to complete the programming assignment, pairs
and solos seem to require similar amounts of time to code
the programming assignments (failed to reject H0h ). The
cost of coding using an IDE and that using a simple text
editor are equivalent (failed to reject H0i ). The programming
assignments require different amounts of time to be coded
(H0j is rejected); in this case, participants coding the encoder
program required less time. Cost is not affected by the rela-
tionship between the type of programming (pair or solo) and
the type of tool support used (failed to rejectH0k ). Cost is not
affected by the relationship between the type of programming
and the type of program being coded (failed to reject H0l ).
Cost is not affected by the relationship between the type of
tool support used and the type of program being coded (failed
to rejectH0m ). Cost is not affected by the relationship between
the type of programming, tool support and the programming
assignment (failed to reject H0n ).
With respect to related work, our findings are compared

only with regard to cost. This is because effort is not ana-
lyzed in the present work and because product quality is
not analyzed in [24]. Regarding cost, our results suggest
that pairs complete programming assignments in less time
than do solos, but this difference is not significant. Con-
versely, the authors in [24] observed a significant difference
(at α = 0.1) in favor of pairs, whom also completed
the assignment in less time than did solos. In this sense,
our results are similar to those reported in [17], [44],
and [53]–[58], wherein the authors did not observe significant
differences when applying the pair programming practice.

In reference to the programming assignments, our find-
ings reinforce those reported in [24]; the calculator program
requires more time to code than does the encoder program.
Regarding tool support, our findings are also congruous with
those in [24]; the cost of coding is similar when using an IDE
compared to when using a text editor.

Because tool support and program being coded where
used as blocking factors in [24], it was not possi-
ble to assess possible interaction effects; however, this
was alleviated with the experimental design used in this
work. This design allowed the assessment of interac-
tions between treatments of interest regarding quality and
cost.

A. STUDY LIMITATIONS
Empirical studies are subject to undermining threats. Next,
we describe strategies that we followed to minimize the
threats to validity [59].

Regarding conclusion validity, the measurements collected
during the experiment satisfy the principles of normality,1

sphericity and randomness. However, although we checked
for the statistical model assumptions, in this experiment we
used a small sample which may have an impact on the con-
clusion validity.

With respect to internal validity, the participants were
randomly assigned to treatments, which reduced learning
effects. Boredom or fatigue was reduced by using alternating
training and experimental sessions. The experimental units
were placed in the same classroom, worked under the same
conditions, and sat apart, with no interaction.

Concerning construct validity, cause constructs were oper-
ationalized in the same manner as in previous studies on
the topic; effect constructs were operationalized in the same
manner as in [41] (for quality) and as in [24] (for cost).

With respect to external validity, the use of students instead
of practitioners might have compromised this type of validity.
However, there is evidence that suggests that in some con-
texts, the results of empirical studies that employ students
with enough technical skills are equivalent to the results
of empirical studies that use practitioners [60], [61]. In the
context of pair programming studies, there is evidence in
favor of this claim: pair programming studies that employ
practitioners [44], [54] report findings that are similar to stud-
ies employing students [53], [58]. In this respect, the partici-
pants in this experiment reported having almost two years of
experience with the Java programming language and almost
two years of experience with the NetBeans IDE.

Because there is scarce evidence on the use of an IDE
within the pair programming practice (under a traditional
approach), we decided first to run the experiment under an
academic setting with undergraduate students. However our
experiment can serve as a basis for conducting future replica-
tions in other academic or industrial settings.

VI. CONCLUSION
In this work, we presented a controlled experiment that
assessed the quality and cost of pair and solo programming
with and without the use of an integrated development envi-
ronment (IDE). Although different aspects of pair program-
ming have been studied, there is no work that examines the
effects of using or not using a tool support such as an IDE
under a traditional setting of PP, in which pairs work at the
same location at the same time with the same computer.

In terms of quality, our results suggest that the use of an
IDE produces higher defect injection rates (for both pairs
and solos) when the programming assignment is not very
complicated. Nevertheless, defect injection rates seem to
decrease when pairs work on more complicated program-
ming assignments, irrespective of the tool support that they
use.

1Particularly, in the case of cost, normality is satisfied; for quality, normal-
ity is assumed only for the encoder program. In reference to the calculator
program, a departure from normality was observed due to the presence of an
outlier, as discussed in Section IV.

9184 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

At first glance, instinct may suggest that the use of an IDE
ismore effective than the use of a text editor; however, the evi-
dence presented here suggests the opposite. One possible
reason for our findings is that when entry-level programmers
use an IDE, it is common for programmers to write some lines
of code and then compile and run it (as we observed in this
experiment). It is possible that this mechanism interrupts the
concentration flow required for coding. On the other hand,
when a text editor is used for coding, programmers tend to
prolong the compiling and running process; they have to use a
console and manually perform these operations. It is possible
that this mechanism encourages a longer concentration flow,
which in our case produced lower defect injection rates.
In an academic context, these findings suggest that students
enrolled in programming courses should reinforce the use of
a text editor for a certain period of time with the goal of
obtaining greater concentration while coding.

In terms of cost, the programming assignment effects the
time required to complete the assignment. Finally, regarding
both studied aspects (quality and cost), pairs and solos behave
in a similar manner. Future replications of this experiment
need to be conducted to gain additional insight into the find-
ings presented here.

REFERENCES
[1] M. M. M. Safwan, G. Thavarajah, N. Vijayarajah, K. Senduran, and

C. D. Manawadu, ‘‘An empirical study of agile software development
methodologies: A Sri Lankan perspective,’’ Int. J. Comput. Appl., vol. 84,
no. 8, pp. 1–7, Dec. 2013.

[2] P. Rodríguez, J. Markkula, M. Oivo, and K. Turula, ‘‘Survey on agile and
lean usage in finnish software industry,’’ in Proc. ACM IEEE Int. Symp.
Empirical Softw. Eng. Meas. (ESEM), Sep. 2012, pp. 139–148.

[3] Y. Y. Yusuf and E. O. Adeleye, ‘‘A comparative study of lean and agile
manufacturing with a related survey of current practices in the UK,’’ Int. J.
Prod. Res., vol. 40, no. 17, pp. 4545–4562, 2002.

[4] H. Corbucci, A. Goldman, E. Katayama, F. Kon, C. Melo, and V. Santos,
‘‘Genesis and evolution of the agile movement in Brazil—Perspective from
academia and industry,’’ in Proc. 25th Brazilian Symp. Softw. Eng. (SBES),
Sep. 2011, pp. 98–107.

[5] O. Salo and P. Abrahamsson, ‘‘Agile methods in European embedded soft-
ware development organisations: A survey on the actual use and usefulness
of extreme programming and scrum,’’ IET Softw., vol. 2, no. 1, pp. 58–64,
Feb. 2008.

[6] T. Dybå and T. Dingsøyr, ‘‘Empirical studies of agile software devel-
opment: A systematic review,’’ Inf. Softw. Technol., vol. 50, nos. 9–10,
pp. 833–859, Aug. 2008.

[7] A. Begel and N. Nagappan, ‘‘Usage and perceptions of agile software
development in an industrial context: An exploratory study,’’ in Proc. 1st
Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Sep. 2007, pp. 255–264.

[8] K. Beck, ‘‘Embracing change with extreme programming,’’ Computer,
vol. 32, no. 10, pp. 70–77, Oct. 1999.

[9] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley, 2000.

[10] J. T. Nosek, ‘‘The case for collaborative programming,’’ Commun. ACM,
vol. 41, no. 3, pp. 105–108, Mar. 1998.

[11] L. Williams, R. R. Kessler, W. Cunningham, and R. Jeffries, ‘‘Strengthen-
ing the case for pair programming,’’ IEEE Softw., vol. 17, no. 4, pp. 19–25,
Jul. 2000.

[12] J. E. Tomayko, ‘‘A comparison of pair programming to inspections for
software defect reduction,’’ Comput. Sci. Edu., vol. 12, no. 3, pp. 213–222,
2002.

[13] C. McDowell, B. Hanks, and L. Werner, ‘‘Experimenting with pair pro-
gramming in the classroom,’’ in Proc. 8th Annu. Conf. Innov. Technol.
Comput. Sci. Edu. (ITiCSE), 2003, pp. 60–64.

[14] C. McDowell, L. Werner, H. E. Bullock, and J. Fernald, ‘‘The impact of
pair programming on student performance, perception and persistence,’’ in
Proc. 25th Int. Conf. Softw. Eng. (ICSE), 2003, pp. 602–607.

[15] K. M. Lui and K. C. C. Chan, ‘‘When does a pair outperform two indi-
viduals?’’ in Proc. 4th Int. Conf. Extreme Programm. Agile Process. Softw.
Eng. (XP), 2003, pp. 225–233.

[16] G. Canfora, A. Cimitile, and C. A. Visaggio, ‘‘Empirical study on the
productivity of the pair programming,’’ inExtreme Programming and Agile
Processes in Software Engineering (Lecture Notes in Computer Science),
vol. 3556, H. Baumeister, M. Marchesi, and M. Holcombe, Eds. Berlin,
Germany: Springer, 2005, pp. 92–99.

[17] M. M. Müller, ‘‘Two controlled experiments concerning the comparison
of pair programming to peer review,’’ J. Syst. Softw., vol. 78, no. 2,
pp. 166–179, 2005.

[18] K. M. Lui and K. C. C. Chan, ‘‘Pair programming productivity: Novice-
novice vs. expert-expert,’’ Int. J. Human-Comput. Stud., vol. 64, no. 9,
pp. 915–925, Sep. 2006.

[19] S. Xu and V. Rajlich, ‘‘Empirical validation of test-driven pair program-
ming in game development,’’ in Proc. 5th IEEE/ACIS Int. Conf. Comput.
Inf. Sci., 1st IEEE/ACIS Int. Workshop Compon.-Based Softw. Eng., Softw.
Archit. Reuse (ICIS-COMSAR), Jul. 2006, pp. 500–505.

[20] M. A. Domino, R. W. Collins, and A. R. Hevner, ‘‘Controlled experimen-
tation on adaptations of pair programming,’’ Inf. Technol. Manage., vol. 8,
no. 4, pp. 297–312, Dec. 2007.

[21] G. Canfora, A. Cimitile, F. Garcia, M. Piattini, and C. A. Visaggio, ‘‘Eval-
uating performances of pair designing in industry,’’ J. Syst. Softw., vol. 80,
no. 8, pp. 1317–1327, 2007.

[22] T. Bipp, A. Lepper, and D. Schmedding, ‘‘Pair programming in software
development teams—An empirical study of its benefits,’’ Inf. Softw. Tech-
nol., vol. 50, no. 3, pp. 231–240, 2008.

[23] K. M. Lui, K. C. C. Chan, and J. Nosek, ‘‘The effect of pairs in program
design tasks,’’ IEEE Trans. Softw. Eng., vol. 34, no. 2, pp. 197–211,
Mar. 2008.

[24] O. S. Gómez, J. L. Batún, and R. A. Aguilar, ‘‘Pair versus solo
programming—An experience report from a course on design of experi-
ments in software engineering,’’ Int. J. Comput. Sci. Issues, vol. 10, no. 1,
pp. 734–742, Jan. 2013.

[25] F. Maurer, ‘‘Supporting distributed extreme programming,’’ in Extreme
Programming and Agile Methods—XP/Agile Universe (Lecture Notes in
Computer Science), vol. 2418, D. Wells and L. Williams, Eds. Berlin,
Germany: Springer, 2002, pp. 13–22.

[26] D. Stotts, L. Williams, N. Nagappan, P. Baheti, D. Jen, and
A. Jackson, ‘‘Virtual teaming: Experiments and experiences with
distributed pair programming,’’ in Extreme Programming and Agile
Methods—XP/Agile Universe (Lecture Notes in Computer Science),
vol. 2753, F. Maurer and D. Wells, Eds. Berlin, Germany: Springer, 2003,
pp. 129–141.

[27] H. Natsu, J. Favela, A. L. Moran, D. Decouchant, and
A. M. Martinez-Enriquez, ‘‘Distributed pair programming on the
Web,’’ in Proc. 4th Mexican Int. Conf. Comput. Sci. (ENC), Sep. 2003,
pp. 81–88.

[28] S. Atsuta and S. Matsuura, ‘‘eXtreme programming support tool in dis-
tributed environment,’’ in Proc. 28th Annu. Int. Comput. Softw. Appl.
Conf. (COMPSAC), vol. 2, Sep. 2004, pp. 32–33.

[29] C.-W. Ho, S. Raha, E. Gehringer, and L.Williams, ‘‘Sangam: A distributed
pair programming plug-in for Eclipse,’’ in Proc. OOPSLA Workshop
Eclipse Technol. eXchange (eclipse), 2004, pp. 73–77.

[30] T. Schümmer and S. Lukosch, ‘‘Understanding tools and practices for
distributed pair programming,’’ J. Universal Comput. Sci., vol. 15, no. 16,
pp. 3101–3125, Oct. 2009.

[31] D.Winkler, S. Biffl, and A. Kaltenbach, ‘‘Evaluating tools that support pair
programming in a distributed engineering environment,’’ in Proc. 14th Int.
Conf. Eval. Assessment Softw. Eng. (EASE), 2010, pp. 54–63.

[32] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimen-
tation. Norwell, MA, USA: Kluwer, 2001.

[33] O. S. Gómez, N. Juristo, and S. Vegas, ‘‘Understanding replication of
experiments in software engineering: A classification,’’ Inf. Softw. Tech-
nol., vol. 56, no. 8, pp. 1033–1048, 2014.

[34] O. S. Gómez, ‘‘Tipología de Replicaciones para la Síntesis de Experimen-
tos en Ingeniería del Software,’’ Ph.D. dissertation, Facultad Informática,
Univ. Politécnica Madrid, Madrid, Spain, May 2012.

[35] V. Basili, G. Caldiera, and H. Rombach, ‘‘Goal question metric paradigm,’’
in Encyclopedia of Software Engineering. New York, NY, USA: Wiley,
1994, pp. 528–532.

[36] R. O. Kuehl, Design of Experiments: Statistical Principles of Research
Design and Analysis, 2nd ed. Pacific Grove, CA, USA: Duxbury-Thomson
Learning, 2000.

VOLUME 5, 2017 9185



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

[37] H. L. Dreyfus, S. E. Dreyfus, and T. Athanasiou, Mind Over Machine:
The Power of Human Intuition and Expertise in the Era of the Computer.
New York, NY, USA: Blackwell, 1986.

[38] K. S. Choi, ‘‘A comparative analysis of different gender pair combinations
in pair programming,’’ Behaviour Inf. Technol., vol. 34, no. 8, pp. 825–837,
Aug. 2015.

[39] L. V. Hedges and I. Olkin, Statistical Methods for Meta-Analysis. Orlando,
FL, USA: Academic, 1985.

[40] J. Aranda. (Mar. 2007). Pair Programming Evaluated, accessed on
Aug. 29, 2015. [Online]. Available: https://catenary.wordpress.com/
2007/03/12/pair-programming-evaluated/

[41] W. S. Humphrey, A Discipline for Software Engineering. Boston, MA,
USA: Addison-Wesley, 1995.

[42] N. Salleh, E. Mendes, and J. Grundy, ‘‘Empirical studies of pair pro-
gramming for CS/SE teaching in higher education: A systematic liter-
ature review,’’ IEEE Trans. Softw. Eng., vol. 37, no. 4, pp. 509–525,
Jul./Aug. 2011.

[43] J. Vanhanen and C. Lassenius, ‘‘Effects of pair programming at the devel-
opment team level: An experiment,’’ in Proc. Int. Symp. Empirical Softw.
Eng., Nov. 2005, p. 10.

[44] E. Arisholm, H. Gallis, T. Dybå, and D. I. Sjøberg, ‘‘Evaluating pair pro-
gramming with respect to system complexity and programmer expertise,’’
IEEE Trans. Softw. Eng., vol. 33, no. 2, pp. 65–86, Feb. 2007.

[45] M. A. Lawrence. (2013). ez: Easy Analysis and Visualization of
Factorial Experiments, R Package Version 4.2-2. [Online]. Available:
http://CRAN.R-project.org/package=ez

[46] R. Bakeman, ‘‘Recommended effect size statistics for repeated measures
designs,’’ Behavior Res. Methods, vol. 37, no. 3, pp. 379–384, 2005.

[47] J. Cohen, Statistical Power Analysis for the Behavioral Sciences. Hillsdale,
NJ, USA: Lawrence Erlbaum Associates, 1988.

[48] J. W. Tukey, ‘‘Comparing individual means in the analysis of variance,’’
Biometrics, vol. 5, no. 2, pp. 99–114, 1949.

[49] A. K. Bera and C. M. Jarque, ‘‘Model specification tests: A simultaneous
approach,’’ J. Econometrics, vol. 20, no. 1, pp. 59–82, 1982.

[50] C. M. Jarque and A. K. Bera, ‘‘A test for normality of observations
and regression residuals,’’ Int. Statist. Rev., vol. 55, no. 2, pp. 163–172,
Aug. 1987.

[51] S. E. Maxwell, H. D. Delaney, and K. Kelley, Designing Experiments and
Analyzing Data: A Model Comparison Perspective, 2nd ed. Orlando, FL,
USA: Academic, May 2003.

[52] R. A. Johnson and D. W. Wichern, Eds., Applied Multivariate Statistical
Analysis. Upper Saddle River, NJ, USA: Prentice-Hall, 1988.

[53] J. Nawrocki and A. Wojciechowski, ‘‘Experimental evaluation of pair
programming,’’ in Proc. 12th Eur. Softw. Control Metrics Conf., London,
U.K., Apr. 2001, pp. 269–276.

[54] M. Rostaher and M. Hericko, ‘‘Tracking test first pair programming—
An experiment,’’ in Extreme Programming and Agile Methods—XP/Agile
Universe (Lecture Notes in Computer Science), vol. 2418, D. Wells and
L. Williams, Eds. Berlin, Germany: Springer, 2002, pp. 174–184.

[55] S. Heiberg, U. Puus, P. Salumaa, and A. Seeba, ‘‘Pair-programming effect
on developers productivity,’’ inExtreme Programming and Agile Processes
in Software Engineering (Lecture Notes in Computer Science), vol. 2675,
M. Marchesi and G. Succi, Eds. Berlin, Germany: Springer, 2003,
pp. 215–224.

[56] S. F. Freeman, B. K. Jaeger, and J. C. Brougham, ‘‘Pair programming:More
learning and less anxiety in a first programming course,’’ in Proc. ASEE
Ann. Conf., 2003, pp. 8885–8893.

[57] L. Madeyski, ‘‘Preliminary analysis of the effects of pair programming and
test-driven development on the external code quality,’’ inProc. Conf. Softw.
Eng., Evol. Emerg. Technol., 2005, pp. 113–123.

[58] L. Madeyski, ‘‘The impact of pair programming and test-driven devel-
opment on package dependencies in object-oriented design—An experi-
ment,’’ in Product-Focused Software Process Improvement (Lecture Notes
in Computer Science), vol. 4034, J. Münch and M. Vierimaa, Eds. Berlin,
Germany: Springer, 2006, pp. 278–289.

[59] D. T. Campbell and J. C. Stanley, Experimental and Quasi-Experimental
Designs for Research. Boston, MA, USA: Houghton Mifflin, Jun. 1963.

[60] P. Runeson, ‘‘Using students as experiment subjects—An analysis on
graduate and freshmen student data,’’ in Proc. 7th Int. Conf. Empirical
Assess. Softw. Eng., 2003, pp. 95–102.

[61] M. Ciolkowski, D. Muthig, and J. Rech, ‘‘Using academic courses for
empirical validation of software development processes,’’ in Proc. 30th
EUROMICRO Conf., 2004, pp. 354–361.

OMAR S. GÓMEZ received the master’s
degree in software engineering from the Cen-
ter for Research in Mathematics, CIMAT,
Mexico, and the Ph.D. degree in software
and systems engineering from the Techni-
cal University of Madrid, Spain. He is cur-
rently pursuing the Ph.D. degree with the
University ofOulu, Finland. Hewas a SENESCYT-
Prometeo Researcher (initiative of the Ecuadorian
Government that seeks to strengthen research,

academy, and knowledge transference) with the Polytechnic School of
Chimborazo, Ecuador. He is currently a Computer Engineer with the Uni-
versity of Guadalajara, Mexico. He is also an Adjunct Associate Professor
with the Escuela Superior Politécnica de Chimborazo, Ecuador. His research
interest focuses on experimentation in software engineering as well as on
issues related to quality and software design.

ANTONIO A. AGUILETA received the bachelor’s
degree in computer science from the Autonomous
University of Yucatan, Mexico, and the mas-
ter’s degree in computing science from the
Monterrey Institute of Technology and Higher
Education, ITESM, Mexico. He is currently a
full-time Professor and member of the Academic
Group of Technologies for Training in Software
Engineeringwith the Faculty ofMathematics, Uni-
versidad Autónoma de Yucatán. His research inter-

ests involve software engineering and educational informatics.

RAÚL A. AGUILAR received the bachelor’s
degree in computer science from the Autonomous
University ofYucatan,Mexico, and the Ph.D. degree
in computer science from the Technical Univer-
sity of Madrid, Spain. He is currently a full-
time Professor with the Faculty of Mathematics,
Universidad Autónoma de Yucatán. His research
interests include software engineering and educa-
tional informatics.

JUAN P. UCÁN received the degree in computer
science from the Faculty of Mathematics,
Autonomous University of Yucatan, Mexico,
the master’s degree in computer systems, with
specialization in software engineering, from the
Technological Institute ofMerida, Mexico, and the
Ph.D. degree in computer systems from Southern
University, Mexico. He is currently a full-time
Professor with the Faculty of Mathematics and a
member of the Academic Group of Technologies

for Training in software engineering, Universidad Autónoma de Yucatán.
His research interest focuses on topics related to software engineering, Web
engineering, and educational informatics.

9186 VOLUME 5, 2017



O. S. Gómez et al.: Empirical Study on the Impact of an IDE Tool

RAÚL H. ROSERO received the degree in
computer engineering from the Central University
of Ecuador, the Higher Diploma degree in software
development process management from the Army
University, Ecuador, and the master’s degree in
applied computer science from the Polytechnic
School of Chimborazo, Equador. He is currently
pursuing the Ph.D. degree in systems and com-
puter engineering with the National University of
San Marcos, Peru. His current research area is test-

ing, Agile methods, and the verification and validation of software.

KAREN CORTES-VERDIN received the bachelor’s
degree in informatics from the University of
Veracruz, Mexico, the M.Sc. degree in informa-
tion systems engineering from the University of
Manchester, Institute of Science and Technology,
the master’s degree in software engineering from
the Center for Research in Mathematics, and the
Ph.D. degree in computer science from the Center
for Research in Mathematics. She is currently a
Professor with Universidad Veracruzana, Mexico.

Her research interests include software architecture, software design, soft-
ware product lines. and software quality.

VOLUME 5, 2017 9187


