
SPECIAL SECTION ON ANALYSIS AND SYNTHESIS OF LARGE-SCALE SYSTEMS

Received March 20, 2017, accepted May 2, 2017, date of publication May 4, 2017, date of current version June 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2701406

Cache Coherence Scheme for HCS-Based CMP
and Its System Reliability Analysis
SIZHAO LI AND DONGHUI GUO, (Senior Member, IEEE)
Department of Electronic Engineering, School of Information Science and Engineering, Xiamen University, Xiamen 361005, China

Corresponding author: Donghui Guo (dhguo@xmu.edu.cn)

This work was supported by the National Natural Science Foundation of China (General Program) under Grant 61274133.

ABSTRACT In previous work, a new network switch architecture, hybrid circuit-switched (HCS) network,
has been proposed and evaluated. In doing so, it has been studied for use in a multi-processor system,
with a focus on power and throughput. However, cache coherence and its connection with chip reliability
have not been fully studied previously for multi-processor systems. In this paper, we study this problem
by discussing the implementation of cache coherence on a HCS-based chip multi-processor and present a
way to model the reliability of these protocols based on fault tree analysis and two-terminal networking
models. We focus our efforts on three cache coherence protocols: Write-Once, Modified, Exclusive, Shared,
Invalid (MESI), and Modified, Owned, Exclusive, Shared, Invalid (MOESI), and obtain expressions for the
reliability probabilities of the system. Our results show that theWrite-Once protocol is 14% less reliable than
MOESI, while the MESI protocol is 2.5% less reliable than MOESI. We also demonstrate that the reliability
of these protocols are 40.22% and 59.83% better, on average, when implemented on an HCS network rather
than an elastic buffer-based network or a bus-based network, respectively.

INDEX TERMS Cache coherence, networking switch, system reliability, fault tree analysis (FTA),
2-terminal model.

I. INTRODUCTION
With the stagnation of Moore’s Law and the end of Denard
Scaling, our reliance on multi-core processor arrays is
steadily growing as we try to provide higher performance at
lower power budgets. In this multi-core eta, there is a new
focus on cache coherency, and its protocols, for chip multi-
processors (CMP) [1] as well as system reliability. Ensuring
that read operations have access to the latest written value [2]
is of particular importance for correctness of operation when
we think in context of CMPs. While we look at consistency
as a global issue concerning programmingmodels, coherency
protocols are necessary to ensure correctness at a hardware-
level. However, as we approach sub 10 nanometer CMOS
designs, there are increased concerns surrounding the reliabil-
ity of such systems. Thus, modern CMPs need to have robust
communication schemes for reliable coherency amongst the
cores.

In the past, several bus-based monitoring cache coherency
protocols have been proposed [3]–[5]. They usually rely on
write-update and write-invalidate operations to ensure data
consistency. As described in [6], the new state records data
which some processors do not need to update, and notifies
the shared memory not to update the cache line in these

processors, thereby reducing the number of write-update,
and greatly improving the bus efficiency [7]. Although this
scheme reduces the number of write-updates, it does not
consider that the write-invalidates that must be transferred
on the bus [8]. In [9], protocols concerned with recording
invalid cache lines are proposed. Using the new state to
recording invalid cache line, [9] suggests that invalid data
broadcasts on the bus can be prevented. Both of the previously
described schemes have been implemented on their corre-
sponding multi-processor architecture.

In previous work, the Hybird Circuit-Switched (HCS)
structure was proposed, which is an on-chip network for
large-scale CMPs [10]. However, application of coherence
protocols to this architecture was not discussed. So, in this
work, we shall focus on the HCS structure and establishmath-
ematical models, to verify the feasibility of cache coherence
protocols on the HCS structure.

Three key aspects of modern microprocessor design are:
power, on-chip storage and reliability [1], [11], [12]. In this
work, we will set up mathematical models to describe the
reliability of cache coherence protocols, and utilize these
models to verify whether different cache coherence protocols
are feasible and reliable on theHCS architecture. The study of

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

7205

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

the reliability of networks has been attempted before in works
such as [13] and [15]. In particular, [13] presented a reliability
model for a mesh network, but cache coherence protocols
were not discussed in this study. Reference [16] analyzed the
MTTF (mean time to failure) of data caches and compared
the cache memory block using different cache replacement
policies.

In order to calculate the reliability of cache coherence pro-
tocols, a fault tree analysis (FTA) model has been proposed
and discussed in [17]. In this work, we use the FTAmodel and
also explore the 2-terminal model in this paper. Both models
are capable of describing the reliability of mesh networks.

The FTA model is a logical diagram; it uses event symbols
and logic gate symbols to describe the causality between
the events in the system [20]. Cache coherence protocol for
CMPs rely on multiple states to resolve data inconsistencies;
FTA can demonstrate the reliability of the cache coherence
protocol intuitively. Thus, we can establish a FTA model
for the cache coherence to evaluate the reliability. We also
explore the Order Binary Decision Diagram (OBDD) method
to calculate reliability for the large-scale networks [13].
The OBDD denotes a boolean function, at the same time
it describes the value of boolean function and reduces the
redundancy state. In our system, cache coherence deals
with data inconsistency for every processor (node), and the
pipeline channels (edge) deal with data transmission. We use
the OBDD method [13] to construct the 2-terminal model,
and analyze the reliability of node and edge for network.
However, in [13], the node was considered unreliable and the
edge was considered reliable. However, our work assumes
that edges in the network are not reliable.

Reliability analysis can be classified into ex-ante anal-
ysis, processing analysis and ex-post analysis [18], [19]:
(1) Ex-ante analysis refers to predicting and preventing occur-
rence of faults and hazards in product design stage. (2) Pro-
cessing analysis refers to forecasting the faults through fault
monitoring and diagnosis technology in the product using
stage. (3) Ex-post analysis refers to analyzing failure mech-
anism in the failure occurring stage. The goal of our work is
to analyze existing protocols on the HCS network during its
operation, so, we select the processing analysis method.

The contribution of this work can be summarized in two
points. First, we present an analysis on the reliability of cache
coherency schemes on different networks. Second, we use
the OBDD method to analyze node and edge reliability. This
differs from previous works that have focussed on either node
or edge reliability alone.

The rest of this paper is organized as follows: Section 2
briefly discusses cache coherence protocols for multi- pro-
cessor architectures, and explains the difference between the
HCS networks and EB networks. In Section 3, we introduce
the analysis of the reliability of a multi-processor system.
Then, in Section 4, we propose the reliability model for cache
coherence protocols on a multi-processor. Finally, simulation
results and discussions are presented in Section 5, after which
Section 6 concludes the paper.

II. CACHE COHERENCE PROTOCOLS FOR
MULTI-PROCESSOR ARCHITECTURES
This section discusses CMP architectures. In earlier designs,
the bus architecture, shown in Fig. 1, was a very popular
option. However, with the increasing number of cores, the
efficiency of the bus architecture has reduced dramatically,
prompting the adoption of the network-based architectures.
In this work, we analyze the reliability of a 64-core 2D mesh
structure, with HCS.

FIGURE 1. Bus architecture.

A. MESH STRUCTURE FOR MULTI-PROCESSOR
An HCS network is shown for a large-scale CMPs in Fig. 2.
An HCS network consists of three components: network
interfaces (NI), pipeline channels, and switches [10].

In the architecture shown, each NI that generates a data
packet is linked to an L1 local cache, and all processors have
a shared memory. Pipeline channels store packets generated
by the NI, via a First-In-First-Out (FIFO) channel. The switch
is comprised of five routing ports: one port for NI and four
ports for transmission. A data arbiter selects data packet in
the pipeline channel to be transmitted.

FIGURE 2. HCS and cache structure.

The links in an HCS network differ from that in an EB
network. The links in an EB network (EB channels) are
constructed using serial flip-flops (FF) [22], as illustrated in
Fig. 3(a). In contrast, the HCS pipeline channels are con-
structed via parallel FFs, shown in Fig. 3(b) [10]. According
to [22], the EB control logic uses 2 FFs, while the pipeline
channel controller uses 4 FFs. Note that the structure of the
EB channel creates multiple single-point failures, where a
failure in a single FF can disrupt all communications. The
reliability of the link RL , will be calculated based on these
structures.

B. CACHE COHERENCE PROTOCOL
Ensuring data consistency is a key problem in HCS and EB
mesh structures. Cache coherence refers to the data consis-
tency between local caches and main memory. If data has

7206 VOLUME 5, 2017

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

FIGURE 3. (a) serial FF and (b) parallel FF.

been modified in the LLC (low level cache), then it also
must be modified in the HLC (high level cache) immediately.
In a multi-processor, there may be inconsistent data between
caches because the data didn’t transfer from the HLC to the
LLC [23], [24]. Data inconsistency can lead to program errors
eventually, and the system will produce incorrect result that
may lead to other errors or even a system crash. Therefore,
solving the cache coherency problem is a major step towards
system reliability.

In this work we will analyze the system reliability for
different protocols. While several coherency protocols have
be proposed and are in practice, we will discuss three classic
coherency protocols. Other coherency protocols can be sim-
ilar in spirit, with additional states added to address specific
concerns or needs of the system.

1) WRITE-ONCE
The write-once [25] protocol is one of the earliest write-
invalidate protocols. It is write-back and write-through com-
prehensive. The protocol defines four states in each node to
identify the current state of the cache line: Invalid, Valid,
Dirty, and Reserved. The invalid state indicates that the cur-
rent cache line does not contain valid data. Valid indicates that
the current data is the latest in the LLC, and there is a copy
of the cache line in the HLC and there may be a copy in the
cache line of other cores. Reserved also indicates that the data
of current cache is the latest, and the HLC has a copy data of
the cache line, however there are no other copies of the cache
line on other cores. A dirty state represents that the data is the
only copy and is not coherent with the main memory or any
other cache line.

2) MESI AND MOESI
MESI (aka Illinois protocol) [26] is a cache coherence pro-
tocol widely used to support the write back strategy. As the
name suggests, it defines four states: Modified, Shared,
Exclusive, and Invalid.

In the modified state, the data only exists in the current
LLC, and is different from HLC. Similarly, in the exclusive

state, the data only exists in current LLC, but it is consistent
to the HLC. In the shared state, data may be stored in other
caches and is consistent with theHLC. Lastly, the invalid state
describes a cache line that is invalid, similar to the write-once
protocol.

The MOESI protocol [27] is similar to MESI, but it adds
another state: Owned. In this state, the data available in the
cache line is the latest and there must be a copy of this data
in other local caches or LLCs. However, only the cache with
the owned status may modify the data.

III. MULTI-PROCESSOR SYSTEM RELIABILITY
The growing popularity of CMPs mandates that rigourous
analysis be done on their reliability; several studies have
looked in to this [28]. With respect to this work, on-chip
networks are becoming an integral part of CMPs and there
have been past works that have dealt with their reliability,
[13], [14]. For example, Yeh et al. [13] present a reliability
analysis of multiple network structures via a quantitative
analysis of data transmission over the network. However,
these works just analyze the network reliability, and do not
consider micro-architecture of the network structures or the
coherency protocols. Hence, we explore the reliability of
CMP networks in this work. First, we use fault tree anal-
ysis (FTA) to build a reliability model for common multi-
processor models. Then, we use the Bayes formula to analyze
the HCS network.

A. FAILURE MODEL AND RELIABILITY FUNCTION
When a processor is unable to complete its designated func-
tion, it is called a failure. We can use probability to describe
the reliability of a system.

First we introduce the following three key concepts:
a) We define a time (t) function to denote the reliability

of a multi-processor Rmp(t). If T just represents the cache
coherence protocol life, then the event (T > t) indicates that
the system can work in time [0, t].

Rmp(t) =

{
Pr(T > t), t ≥ 0,
1, t < 0.

(1)

If the event indicates that the system life is less than t , it is
a failure in [0, t], u ∈ [0, t]. So, Fmp(t) = Pr(T ≤ t) is called
the failure distribution function of the multi-processor,

Fmp(t) = Pr(T ≤ t) =
∫ t

0
fmp(u)du, t > 0 (2)

If this probability density function fmp(t) is known, then
when given value T we can calculate Rmp(t).

Rmp(t) = 1− Fmp(t) =
∫
∞

t
fmp(u)du (3)

where Rmp(t) is the no failure probability of the state in the
time interval (0, t]. From formulas (2) and (3), we can get
Rmp(0) = 1, Rmp(∞) = 0, Fmp(0) = 0 and Fmp(∞) = 1.
Note that with an increasing value of t , the failure possibility
increases and the working time possibility reduces.

VOLUME 5, 2017 7207

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

b) The system failure rate is an important index in our
model. It is the primary data required to calculate the relia-
bility index. The system failure rate is defined at time t and
under the conditions that the protocol is working before time t
and that failure occurs in the time interval (t, t + 1t]. It is
denoted as zmp(t).

zmp(t) = lim
1t−→0

Pr(t < T ≤ t +1t|T > t)
1t

= lim
1t−→0

Fmp(t +1t)− Fmp(t)
1t

·
1

Rmp(t)

=
fmp(t)
Rmp(t)

(4)

c) We define the life of the system as the total working
time before the failure occurrs. So, the Mean Time to Failure
is also the expectation of the system life (MTTFmp),

MTTFmp = E(T) =
∫
∞

0
tfmp(t)dt =

∫
∞

0
Rmp(t)dt (5)

The system failure rate is random and represents cache
failure via the distribution function of failure. Depeding on
the applied principle, failure can occur in discrete distribution
or continuous distribution. However, the data error, due to
system failure, is a continuous distribution in the cache and is
represented through continuous distribution. So, fmp(t) meets
an exponential distribution [30].

B. SYSTEM ANALYSIS
The system is composed of many components that are
connected according to a certain production objective. The
reliability of the system is a function of the reliability of
its components and the structure of the system. The goal
of system analysis, given component failure data and the
system structure, is to predict the reliability of the systems
via reliability indices such as failure probabilities. In this
section, we use FTA and 2-terminal method to analyze system
reliability.

This section also explores the reliability of the HCS net-
work via a network analysis method. If the logic diagram and
the failure probability of each component is known, through
appropriate operations, the whole systemï£¡ï£¡s reliability
index can be derived. Note that in order to use the network
analysis method, a logic diagram of the object must exist and
be expressed clearly.

We shall now discuss the analysis of various system topolo-
gies:

1) SERIAL SYSTEM
In a serial system, the failure of any unit can result in failure
of the whole system [31].

Assume that the life of the i-th processor in the system is
ti(i = 1, 2, . . . , n), and t1, t2, . . ., tn are independent of each
other. Then the i-th processor’s reliability can be obtained
from Equation (1),

Rmp(t) = P|ti > t| (i = 1, 2, . . . , n) (6)

where t is the prescribed working time. Due to the serial
nature of the system, its life is τ = min(t1, t2, . . . , tn), and
thus the system reliability can be expressed by:

Rmp(t) = P|τ > t| = P|t1 > t, t2 > t, . . . , tn > t|

=

n∏
i=1

P|ti > t| =
n∏
i=1

Ri(t) (7)

If the i-th processor’s failure rate is λi(t), then the unit
reliability is:

Ri(t) = exp[−
∫ t

0
zi(u)du] (8)

From equations (7) and (8), the system reliability can be
expressed as:

Rmp(t) =
n∏
i=1

Ri(t) = exp[−
n∑
i=1

∫ t

0
zi(u)du]

= exp[−
∫ t

0
zs(u)du] (9)

where, zs(t) =
∑n

i=1 zi(t) is the system failure rate.
The serial system’s mean time to failure is

MTTFs =
∫
∞

0
Rs(t)dt =

∫
∞

0
exp[−

∫ t

0
zs(u)du] (10)

This analysis reveals three key points. First, the reliability
of a serial system,Rs(t), is equal to the product of unit reliabil-
ities Ri. Second, the reliability of a serial system, Rs(t), is less
than or at most equal to the reliability of the least reliable unit
in the system. Third, from equation (10), when the number of
components, n is increased, the MTTFs decreases i.e., when
the number of units in the serial system increases, the system
reliability lowers.

2) PARALLEL SYSTEM
A system is called a parallel system if the entire system fails
when all units fail [31].

Assume that the life of the i-th processor in the system
is ti(i = 1, 2, . . . , n), and t1, t2, . . ., tn are independent of
each other. The i-th processor’s reliability can be described
as Rmp(t) = P|ti > t|(i = 1, 2, . . . , n), given that the
initial time t = 0, all units are normal, and begin to oper-
ate at exactly the same time. The parallel system’s life is
τ = max(t1, t2, . . . , tn). Thus, the system reliability can be
expressed as:

Rmp(t) = P|τ > t| = 1− P|t1 ≤ t, t2 ≤ t, . . . , tn ≤ t|

= 1−
n∏
i=1

[1− Ri(t)] (11)

When the i-th processor’s failure rate is zi , the system
reliability is:

Rmp(t) = 1−
n∏
i=1

(1− e−zit) (12)

7208 VOLUME 5, 2017

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

The parallel system’s mean time to failure is

MTTFp =
∫
∞

0
Rmp(t)dt = −

∑
1≤i<j≤n

1
zi + zj

+ · · ·

+ (−1)n−1(
n∑
i=1

zi)−1 (13)

3) SERIAL-PARALLEL (HYBRID CONNECT) SYSTEM
When the serial and parallel structures co-exist in the system,
it is called a hybrid connected system. The entire system
meets the criterion for serial or parallel, and smaller sub-parts
are described as parallel or serial in structure. The reliability
of such a system is solved step by step. First by calculating
the reliability of smaller sub-parts, and then combining them
to derive the reliability of the entire parallel (or serial) system.

4) 2-TERMINAL RELIABILITY FUNCTION
FTA cannot describe the mesh architecture accurately, so we
can use the 2-terminal model to evaluate network.

A graph G = (U ,E) consists of two sets: U is the node
set, and E is the edge set. A edge e is working if two nodes
u1, u2 are connected. This working path is: 2-working path.
The 2-working path include all edges which are connected to
the two nodes either directly or indirectly [30]. Therefore, the
2-terminal reliability is the probability that a 2-working path
exists between each pair of all nodes. Then, the reliability for
network can be described by R(G,8,9). Where,8→ [0, 1]
is the probability that a node fault occurs, and 9 → [0, 1] is
the probability that an edge fault occurs.

We define two states in the graphG: working and faulty and
the working probability distribution of components (nodes
and edges) meets the 0 − 1 distribution. A random variable
xi represents the i-th component such that xi = 1 represents
the i-th component working, with probability Pr{xi = 1}
and xi = 0 indicates that the i-th component is faulty, with
probability Pr = {xi = 0} = 1 − Pr{xi = 1}. Thus, the
random variable x = (x0, x1, · · · , xn−1) represents the state
of a network G that has n components. The probability of the
network in the state X can be expressed as

Pr{x = X} =
n−1∏
i=0

(xi × Pr{xi = 1} + {1− xi} × Pr{xi = 0})

(15)

Based on the state of each component, working or faulty,
the state space of the network state,� is createdwith 2n states.
So the boolean function is

fb(x) =

{
1, if all nodes can link,
0, otherwise.

(16)

And the reliability of networking can be expressed as

Rel(G) =
∑
x∈�

Pr{fb(x) = 1} (17)

Based on function (15), a binary tree can directly express
a boolean function. However, binary tree have redundant

states, so Binary Decision Diagrams (BDD) were proposed to
express boolean functions [21]. In the BDD structure, a circle
node is used to represent a boolean variable and a rectangle is
used to represent logical true or false. Every circle node has
two edges, in which the full line implies true and the dotted
line implies false.

If the BDD created by the function can be in accordance
with a determined variable order, then it is called an Ordered
Binary Decision Diagram (OBDD) [13]. The operations on a
OBDD includes the following.

1) and operation (∧): The and operation results in a OBDD
function which is the boolean AND of the input OBDDs i.e.
(a∧b) and (c∧d) produce (a∧b)∧ (c∧d) as shown in fig. 4.

FIGURE 4. and operation of the OBDD.

2) or operation (∨): The or operation result in a OBDD
function which is the boolean OR of the input OBDDs i.e.
(a∧b) and (c∧d) produce (a∧b)∨ (c∧d) as shown in fig. 5.

FIGURE 5. or operation of the OBDD.

Traditionally, reliability analysis has assumed that the edge
was reliable and the nodewas unreliable [32].However, in this
work, we analyze the reliability of node and edge in the HCS
network. To calculate the reliability, we begin with the OBDD
method to establish a method to analyze cache coherence on
a HCS network. We use the OBDD method so that we may

VOLUME 5, 2017 7209

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

build the 2-terminal model effectively, and reduce redundant
nodes.

The reliability evaluation algorithm, based on OBDD,
includes two steps: constructing the OBDD for the network
and traversing the OBDD to calculate network reliability:

(a) Constructing the OBDD(G)
Step 1 If source and end are merged into a single node,

then return OBDD(true).
Step 2 If there is redundant node in the current sub-

network, then redundant node should be removed to
reduce invalid calculation. Otherwise, execute the next
step.

Step 3 Check whether the current sub-network is recorded
in the hash table of the isomorphic sub-network or not. If there
is a record, return OBDD node and save it in the hash table.
Otherwise, execute the next step.

Step 4 For each edge e from source:
1) To simplify network, we can execute the operation of

deleting an edge, which will give the sub-networkG−e: delete
one of edge e from the source, combine both nodes of edge e.

2) Use ‘‘Step 1’’ to construct OBDD for sub-network G−e,
then return OBDD(G−e).
3) Execute the OBDD logic operation:
OBDD(G′) = OBDD(e) and OBDD(G−e)
OBDD(G) = OBDD(G) or OBDD(G′)
Step 5 The OBDD(G) will be recorded to the hash table.
(b) Calculating network reliability
We calculate the reliability of the network by traversing

the OBDD. We use a recursive formula, (14), as shown at
the bottom of this page, where OBDD(G)|xk=1 is xk = 1 of
the OBDD, i.e. xk is the 1-child for the node; OBDD(G)|xk=0
is xk = 0 of the OBDD, i.e. xk is the 0-child for the
node. Pr(xk = 1) is the working probability of the edge
ek ; Pr(xk = 0) is the fault probability of the edge ek . Thus,
the reliability of the cache coherence protocol can be used to
calculate node reliability and data transmission reliability can
be used as edge reliability. Assuming obdd-true and obdd-
false represent logical true and logical false respectively in the
OBDD structure, and the initial value of k is 0. Calculating
network reliability can be done as follows:

Step 1 Access the variable xk for the root node in OBDD,
to obtain the work probability pk of the corresponding edge.

Step 2 Determination of OBDD(G) value: If it is
obdd-true, then return value 1.0; if it is obdd-false, then
return value 0.0. Else, goto next step.
Step 3Determine whether this OBDD in the hash table has

reliability value or not. If it exists, then return this reliability
value. Else, goto next step.

FIGURE 6. Write-Once serial flow chart.

Step 4 Calculate Rel(OBDD(G)|xk=0 and
Rel(OBDD(G)|xk=1.
Step 5 The reliability value will be inserted into hash table,

and then return the reliability of G, given by:
Rel(OBDD(G)) = pk × Rel(OBDD(G)|xk=1 + (1− pk)×

Rel(OBDD(G)|xk=0
Step 6 Return to calculate network reliability.

IV. RELIABILITY MODEL FOR CACHE COHERENCE
PROTOCOLS
By the definition of reliability for the multi-processor system,
we get the required numerical value of the reliability model.
These values are also required in some other reliabilitymodel.

Using the earlier defined parameters for reliability of the
system, a numerical value can be derived to express the
reliability of a CMP system based on an estimated reliability
model. [29] uses the failure rate model and the MTTF to set
up reliability model for a software system. We build on these
medthods to develop our models. We establish a relability
model for the HCS network using the Fault tree analsysis
(FTA) model and the Baye’s network model, discussed in
section 3. In this section we discuss the modeling process.

A. RELIABILITY MODELS OF CACHE
COHERENCE PROTOCOLS
We begin our analysis for the simplest of the three protocols;
Write-Once. In the Write-Once protocol, each state affects
the whole system i.e. a fault in any state can lead to cache
inconsistency. The Write-Once protocol is composed of four
states: Invalid(I), Valid(V), Reserved(R) and Dirty(D). When
each state is functional, the whole protocol can work. So, the
Write-Once protocol can be modeled as a serial system. The
following formula refers to the Write-Once reliability model
and shown in Fig. 6.

Rwrite−once = RI · RV · RR · RD =
4∏
i=1

Ri

As mentioned earlier, the Write-Once protocol is a serial-
system and can be analyzed as one. When the failure dis-
tribution of each state is an exponential distribution, that is

Rel(OBDD(G)) =

1, if OBDD(G) = ture,
0, if OBDD(G) = false,
Pr(xk = 1)× Rel(OBDD(G)|xk=1)
+ Pr(xk = 0)× Rel(OBDD(G)|xk=0), 0 6 k < n, others.

(14)

7210 VOLUME 5, 2017

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

FIGURE 7. MESI serial-parallel flow chart.

Ri(t) = e−λit , then the system reliability is

Rwrite−once =
4∏
i=1

e−λit = e−λξ t

The failure rate is the probability of the loss of system
functions in the stipulated conditions and within the specified
time. λI , λV , λR and λD represent the parameters of exponen-
tial distribution I, V, R and D. Each state has a certain failure
rate, the failure rate of the system is

z(t) = λξ = λI + λV + λR + λD =
4∑
i=1

λi

MTTFwrite−once =
1
λξ
=

1∑4
i=1 λi

Building on this, we now analyze theMESI protocol. In the
MESI protocol, Exclusive(E) is a special case of Shared (S)
and we model MESI as a serial-parallel system. The model
for the serial-parallel MESI system is shown in Fig. 7(a).
In Fig 7(a), the state M is recorded as RM and I is recorded
as RI , state E and S are in parallel and we can record these
as Rp. Finally, RM , RI and Rp cascade into Rs as shown
in Fig. 7(b). The following formula describes the MESI reli-
ability model,

Rp = RE + RS − RERS
RMESI = RMRpRI = RM (RE + RS − RERS)RI

λξ = λM + λE + λS + λI =

4∑
i=1

λi

The probability density function is

f (t) = λξ e−λξ t

So the failure rate function of the system is

z(t) =
f (t)

RMESI (t)
=

λξ e−(λE+λS)t

e−λE t + e−λS t + e−(λE+λS)t

MTTFMESI =
∫
∞

0
RMESI (t)dt

Finally, the MOESI protocol is similar to the MESI proto-
col. RM and RI have the same functions, and state O, state E
and state S can also be considered as a parallel system, which
can be recorded as Rp. We can use the Fig. 7 method to set up
mathematical model. This model differs from what is shown

FIGURE 8. MOESI fault tree.

FIGURE 9. The process of the 2 × 2 mesh to the 4 × 4 mesh.

in Fig. 8, a fault tree [20]. The fault treemodel is an alternative
description for reliability. In the fault tree model, if the system
is serial, all the nodes are connected to a OR gate, and if the
system is parallel, it can be modeled via an AND gate.

This model can be used to express the following formula:

Rp = RE + RO + RS − RERO − RORS − RERS + RERORS

λξ = λM + λO + λE + λS + λI =

5∑
i=1

λi

So, the failure rate function is given by the formula (18),
as shown at the bottom of this page.

B. ANALYSIS OF MULTI-PROCESSOR RELIABILITY MODEL
The HCS network has a symmetrical structure. Each NI has
the same weight and a minimal subsystem can be seen as a
2 × 2 2D mesh structure. After computing the reliability of
this subsystem, these four nodes can be seen a new node,
we can also use this method to compute the reliability of
a 4 × 4 mesh, as shown Fig. 9. Finally, the reliability of an
8×8mesh can be calculated. Having derived the reliability of
the network, a cache coherence protocol can be implemented
on top of HCS or EB.

To calculate the system reliability, which includes the reli-
ability of all pairs of nodes, we use the 2-terminal reliability
model. Fig. 10 illustrates the computation of the reliability of
a node. In Fig. 10, we illustrate the process for n1 to other
nodes. Fig. 11 is the OBDD, and use it to calculate 2 × 2
network reliability.

To complete the process shown in Fig. 9, we need a
value for the reliability of the edge, Re. We assume that the

z(t) =
f (t)

RMOESI (t)
=

λξ e−(λE+λO+λS)t

e−λE t + e−λOt + e−λS t − e−(λE+λO)t − e−(λE+λS)t − e−(λO+λS)t + e−(λE+λO+λS)t
(18)

VOLUME 5, 2017 7211

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

FIGURE 10. The process of construct the OBDD.

flip-flops (FF) reliability is RF . Since the EB channel has
serial flip flops, its reliability is given as ReE = (RF)4. For the
pipelined channel in the HCS network, ReH = 1− (1−RF)4.
This network is isomorphic, so RN = Rn1 = Rn2 = Rn3 =
Rn4 and Re = Re1 = Re2 = Re3 = Re4.
Thus, using themethods illustrated in the section, for a 2×2

network, the reliability of a 64-core network can be computed
by sequentially reducing the the analysis down to a 2 × 2
network.

V. SIMULATION RESULTS AND DISCUSSION
Evaluating the reliability of cache coherence protocols can
help improve overall system stability. We have used our

FIGURE 11. OBDD.

models to perform experiments comparing Write-Once,
MESI andMOESI schemes. This section discusses the results
of the MATLAB simulations based on the methods described
in section 4, and a Virtex-7 FPGA is used verify the correct-
ness of the model.

A. CACHE COHERENCE RELIABILITY RESULT
For a quantitative analysis of the mathematical models, we
only evaluate the protocol, not a specific hardware platform.
Through simulations, we can assess the advantages and disad-
vantages of each protocol. Table 1 summarizes the reliability
models of the three protocols we evaluate. Based on Table 1,
we can compute the MTTF, and use these results to compare
the results on the FPGA. Since, the failure rate of the control

7212 VOLUME 5, 2017

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

TABLE 1. The reliability index of three protocols.

TABLE 2. Write-once protocol comparison.

TABLE 3. MESI protocol comparison.

TABLE 4. MOESI protocol comparison.

logic block is usually a fixed value: λ = 0.31 × 10−6 [30],
we assume that the failure rates of all states are the same
in all three cache coherence protocols, and that the failure
distribution is exponential. Table 2 to Table 4 summarize the
results and findings for the three cache coherence protocols.
They present the final MTTF computed for the stanford
benchmark.

Using the derived model, Fig. 12 and Fig. 13 show the
results of our evaluation. From Fig. 12, we can see that
RWrite−Once < RMESI < RMOESI , i.e., MOESI is the most
reliable protocol, but only by a small margin when compared

FIGURE 12. The reliability function curve diagram.

FIGURE 13. The failure rate function curve diagram.

to the MESI protocol. In Fig. 12, zWrite−Once is a constant
because it is the serial model in which all the parameters
are constant. Over an extended period of time, zMESI has the
lowest failure rate, and during the same time, the failure rate
of MOESI is consistently higher. This is one of the reasons
that researchers suggest the use of MESI protocol [3].

B. HCS RELIABILITY RESULT
In previous work, our HCS network has been imple-
mented [10], but only evaluated for power, area and through-
put. In this work, we will use data acquired from ModelSim
simulations and FPGA emulation.

We now set up a model for HCS reliability, which we will
compare with a bus structure. Note that the bus structure is a
series system, so RB = RN × (Re1 × Re2 × Re3).
Using results from Fig. 12, we extract reliability val-

ues at different times. The values we select for each node
(Write-once, MESI, MOESI) are: Rn1 = (0.90, 0.95, 0.96),
Rn2 = (0.80, 0.90, 0.92), Rn3 = (0.70, 0.82, 0.85) and
Rn4 = (0.60, 0.79, 0.83).

VOLUME 5, 2017 7213

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

These values represent the cache line reliability of the
nodes shown in Fig. 10, and assume RF = 0.9. So, we can
get ReE = 0.81 and ReH = 0.9999.

Having derived the reliability of the four nodes, these four
nodes can be seen as a single new node. Four of these super-
nodes can be used to analyze an HCS of 16 nodes. Using
this method, the reliability of the entire 64 node HCS can be
deduced.

The result of this evaluation is shown in Fig. 14.We can see
that the reliability of the HCS structure is better than the EB
and bus structure, and the reliability of MOESI is higher than
that of others, which is agreement with our earlier analysis.

FIGURE 14. Compare the reliability of cache coherence protocol between
HCS, EB and Bus.

VI. CONCLUSION
In this work, we proposed a model for cache coherence relia-
bility, and compared the reliability of the HCS network with
the EB network and the bus structure. There have been very
few efforts in literature that have used mathematical models
for reliability analysis. So, we proposed a reliability model
for cache coherence protocol.

In this paper, we extend previous studies and, through a
mathematical method, establish the reliability model of three
cache coherence protocols. This work will help improve the
reliability of hardware design. In particular we proposed a
new math model for cache coherence protocols with the fol-
lowing: a) the failure model, MTTF and reliability function
can describe the stability of cache coherence protocol; b)
using fault tree model and Bayes formula to analyze the cache
coherence of HCS network reliability.

By using these models to analyze a hardware system, a
reliability result can be achieved. The results are presented
in Section 5, in Fig. 11, the MOESI reliability is the highest,
but in Fig. 12, before t equals 6.23 × 106, the failure rate of

MESI is far less than that of MOESI. And now, though most
hardware systems use the MESI protocol, they have not been
mathematically verified. HCS network is more reliable than
EB and bus structure. So we will focus our future studies on
the HCS network in the future, based on these results. For
example, we will investigate memory management, process
scheduling, etc.

ACKNOWLEDGMENTS
The authors would like to thank their laboratory team mem-
ber’s assistance.

REFERENCES
[1] A. Ros, M. E. Acacio, and J. M. Garcia, ‘‘A direct coherence protocol

for many-core chip multiprocessors,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 21, no. 12, pp. 1779–1792, Dec. 2010.

[2] H. Hossain, S. Dwarkadas, andM. C. Huang, ‘‘ POPS: Coherence protocol
optimization for both private and shared data,’’ in Proc. Parallel Archit.
Compil. Techn. (PACT), 2011, pp. 45–55.

[3] G. Delzanno, ‘‘Automatic verification of parameterized cache coherence
protocols,’’ in Computer Aided Verification (Lecture Notes in Computer
Science). 2000.

[4] P. Stenstrom, ‘‘A survey of cache coherence schemes for multiprocessors,’’
Computer, vol. 23, no. 6, pp. 12–24, 1990.

[5] P. G. de Massas and F. Pétrot, ‘‘Comparison of memory write policies for
NoC based multicore cache coherent systems,’’ in Proc. Design, Autom.
Test Eur. (DATE), 2008, pp. 997–1002.

[6] Q. Yang, G. Thangadurai, and L. N. Bhuyan, ‘‘Design of an adaptive cache
coherence protocol for large scale multiprocessors,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 3, no. 3, pp. 281–293, May 1992.

[7] X. Yao and J. Wang, ‘‘RIMAC: A novel redundancy-based hierarchical
cache architecture for energy efficient, high performance storage systems,’’
in Proc. 1st ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst. (EuroSys),
2006, pp. 249–262.

[8] G. Quintana-Ortí, F. D. Igual, E. S. Quintana-Ortí, and R. van de Geijn,
‘‘Solving dense linear systems on platforms with multiple hardware accel-
erators,’’ in Proc. 14th ACM SIGPLAN Symp. Principles Pract. Parallel
Program., 2009, pp. 121–130.

[9] M. Heinrich, V. Soundararajan, J. Hennessy, and A. Gupta, ‘‘A quanti-
tative analysis of the performance and scalability of distributed shared
memory cache coherence protocols,’’ IEEE Trans. Comput., vol. 48, no. 2,
pp. 205–217, Feb. 1999.

[10] H. Luo, S. Wei, D. Chen, and D. Guo, ‘‘Hybrid circuit-switched network
for on-chip communication in large-scale chip-multiprocessors,’’ J. Paral-
lel Distrib. Comput., vol. 74, no. 9, pp. 2818–2830, 2014.

[11] A. M. Saleh, J. J. Serrano, and J. H. Patel, ‘‘Reliability of scrubbing
recovery-techniques formemory systems,’’ IEEE Trans. Rel., vol. 39, no. 1,
pp. 114–122, Apr. 1990.

[12] S. Borkar, ‘‘Thousand core chips: A technology perspective,’’ in Proc. 44th
Annu. Design Autom. Conf., 2007, pp. 746–749.

[13] F.-M. Yeh, S.-K. Lu, and S.-Y. Kuo, ‘‘OBDD-based evaluation of
K-terminal network reliability,’’ IEEE Trans. Rel., vol. 51, no. 4,
pp. 443–451, Dec. 2002.

[14] M. Imai and T. Yoneda, ‘‘Fault diagnosis and reconfiguration method for
network-on-chip based multiple processor systems with restricted private
memories,’’ IEICE Trans. Inf. Syst., vol. E96-D, no. 9, pp. 1914–1925,
2013.

[15] L. Yang, S. Li, B. Xu, and Y. Xiao, ‘‘An OBDD-based method for the
reliability analysis of construction system,’’ in Proc. Int. Conf. Manage.
Service Sci. (MASS), 2010, pp. 1–4.

[16] M. Maghsoudloo and H. T. Zarandi, ‘‘Reliability improvement in private
non-uniform cache architecture using two enhanced structures for coher-
ence protocols and replacement policies,’’ Microprocessor Microsyst.,
vol. 38, no. 6, pp. 552–564, 2014.

[17] S. Li, S. Lin, D. Chen, W. E. Wong, and D. Guo, ‘‘Analysis of system
reliability for cache coherence scheme in multi-processor,’’ in Proc. IEEE
8th Int. Conf. Softw. Secur. Rel.-Companion (SERE-C), Jun./Jul. 2014,
pp. 247–251.

[18] M. Carey, ‘‘Ex ante heuristic measures of schedule reliability,’’ Transp.
Res. B, Method., vol. 33, no. 7, pp. 473–494, 1999.

7214 VOLUME 5, 2017

S. Li, D. Guo: Cache Coherence Scheme for HCS-Based CMP and Its System Reliability Analysis

[19] F. Borrás and J. T. Pastor, ‘‘The ex-post evaluation of the minimum local
reliability level: An enhanced probabilistic location set covering model,’’
Ann. Oper. Res., vol. 111, no. 1, pp. 51–74, 2002.

[20] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, ‘‘Fault tree analysis,
methods, and applications—A review,’’ IEEE Trans. Rel., vol. R-34, no. 3,
pp. 194–203, Aug. 1985.

[21] R. E. Bryant, ‘‘Symbolic Boolean manipulation with ordered binary-
decision diagrams,’’ACMComput. Surv., vol. 24, no. 3, pp. 293–318, 1992.

[22] G. Michelogiannakis and W. J. Dally, ‘‘Elastic buffer flow control for
on-chip networks,’’ IEEE Trans. Comput., vol. 62, no. 2, pp. 295–309,
Feb. 2013.

[23] J. Handy, The Cache Memory Book. San Mateo, CA, USA: Morgan
Kaufmann, 1998.

[24] P. Prieto, V. Puente, and J.-A. Gregorio, ‘‘Multilevel cache modeling for
chip-multiprocessor systems,’’ IEEE Comput. Archit. Lett., vol. 10, no. 2,
pp. 49–52, Jul./Dec. 2011.

[25] J. R. Goodman, ‘‘Using cache memory to reduce processor-memory
traffic,’’ in Proc. 10th Annu. Int. Symp. Comput. Archit. (ISCA), 1984,
pp. 124–131.

[26] M. S. Papamarcos and J. H. Patel, ‘‘A low-overhead coherence solution for
multiprocessors with private cache memories,’’ in Proc. 11th Annu. Int.
Symp. Comput. Archit. (ISCA), 1983, pp. 348–354.

[27] AMD64 Architecture Programmer’s Manual Volume 2: System Program-
ming, Adv. Micro Devices, Sunnyvale, CA, USA, 2013.

[28] G. Beltrame, C. Bolchini, L. Fossati, A. Miele, and D. Sciuto,
‘‘A framework for reliability assessment and enhancement in multi-
processor systems-on-chip,’’ in Proc. 22nd IEEE Int. Symp. Defect Fault-
Tolerance VLSI Syst. (DFT), Sep. 2007, pp. 132–142.

[29] S. Inoue and S. Yamada, ‘‘Generalized discrete software reliability model-
ing with effect of program size,’’ IEEE Trans. Syst. Man, Cybern. A, Syst.
Humans, vol. 37, no. 2, pp. 170–179, Mar. 2007.

[30] M.Rausand andA.Høyland, SystemReliability Theory:Models, Statistical
Methods, and Applications. Hoboken, NJ, USA: Wiley, 2004.

[31] Y. Yamato, N. Shigematsu, and N. Miura, ‘‘Evaluation of agile software
develeopment method for carrier cloud service platform development,’’
IEICE Trans. Inf. Syst., vol. E97-D, no. 11, pp. 2959–2962, 2014.

[32] G. Hardy, C. Lucet, and N. Limnios, ‘‘K-terminal network reliability
measures with binary decision diagrams,’’ IEEE Trans. Rel., vol. 56, no. 3,
pp. 506–515, Sep. 2007.

SIZHAO LI received the B.S. degree from Jilin
University, Changchun, China, in 2007, and the
M.S.E. degree from the University of Science
and Technology of China, Hefei, China, in 2010.
He is currently pursuing the Ph.D. degree in elec-
tronic engineering with Xiamen University. He is
involved in software behavior feature and solving
cache coherence based on NoC. His research inter-
ests include system reliability analysis, computer
architecture, and hardware-software co-design.

DONGHUI GUO received the B.S. degree in radio
physics, the M.S. degree, and the Ph.D. degree
in semiconductor from Xiamen University, China,
in 1988, 1991, and 1994, respectively. In 1994,
he joined Xiamen University as a FacultyMember,
where he has been a Full Professor, since 2002.
He held a post-doctoral, a research fellow, a senior
scientist, and a visiting scholar position, respec-
tively, with the CityU of Hong Kong, University of
Ulster, Lawrence Berkeley Laboratory, University

California at Berkeley, and University of Illinois at Urbana-Champaign, and
served as the Vice-Dean with the School of Information Science & Tech-
nology, Xiamen University, from 2008 to 2012. He is currently the Director
of the IC Design & IT Research Center. His research areas include artificial
intelligence, network computing, IC design, nano device, and BioMEMS.

VOLUME 5, 2017 7215

