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ABSTRACT In this paper, we consider the problem of resource allocation in a dense small-cell network.
Each small-cell base station is powered by a renewable energy source and operates in the full-duplex mode.
We account for the rate-dependent energy term for data decoding into the total energy consumption at the
small-cell base station. Owing to this new energy term, the transmitter and receiver operations now draw the
energy from a common source. For a new energy consumption model and high interference scenario, which
arises due to full-duplex communications, we formulate an energy and load aware resource management
optimization problem under the energy causality and total transmit power constraints of the small-cell
base station and uplink user equipments. In particular, the problem minimizes the data queue length of
each network user equipment by jointly designing the beamformers, power, and sub-carrier allocation and
their scheduling. Owing to the non-convexity of the problem, a global solution is inefficient; thus, we
opt for the successive parametric convex approximation method to obtain a sub-optimal solution. This
method solves for the convex approximate of the non-convex problem in each iteration and leads to faster
convergence. For practical implementation, we further develop a distributed algorithm by using the dual
decomposition framework, which relies on limited exchange of information between the involved base
stations. Numerical simulations compare the network scenario which accounts for uplink channel rate-
dependent energy consumption with that which ignores it. Results advocate the need for redesigning of the
resource allocation scheme. In addition, numerical simulations also validate the usefulness of full-duplex
communications over the half-duplex communications in terms of minimizing the sum data queue length of
the users.

INDEX TERMS 5G, small cells, full-duplex communications, energy harvesting communications,
rate-dependent decoding energy, successive parametric convex approximation, radio resource management.

I. INTRODUCTION
The future generation of mobile communications is envi-
sioned to provide a 1000-fold increase in data rate and
enhanced user experience. In this respect, the fifth genera-
tion (5G) radio access technology is engineered to provide
a total solution to satisfy a wider range of network require-
ments for 2020 and beyond. Dense deployment of small cells
is predicted to be one of the key technologies to achieve
humongous data rate promised by the 5G cellular network
standard [1]. Small cells increase the throughput and user
experience by bringing the base stations closer to the users,
especially in high-traffic areas. Furthermore, small cells are

low power, low cost and easy to deploy without much plan-
ning as compared to macro cells.

Owing to arbitrary and dense deployment, not all small
cell base stations (SBSs) have the privilege to draw power
from the grid source. Thus, alternatively, energy harvested
from nature is a viable source to power the majority of
them [2]. The clear contribution of using harvested energy
is reduced CO2 emission into the environment [3]. Energy
can be harvested from nature using solar and wind sources.
Although such sources provide a greener environment, the
energy casualty and randomness in arrival leaves the SBS
sometimes inactive, thus incurring service interruption [4].
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In order to shorten the transceiver inactive state due to the
unavailability of energy, numerousworks reconsider the com-
munication system design and techniques when powered by
an intermittent source of energy [5]–[11].

Simultaneous transmission and reception of signals on the
same time-frequency resource, i.e., full-duplex (FD) com-
munications, is another technique to improve the spectral
efficiency of the network. Although this technique has been
known, it has not been used due to hardware incapability to
handle self-interference (SI) [12]. SI arises due to the high
power transmit signal listened by the collocated receiver,
and thus diminishes the intended low power received sig-
nal. Recently, efforts have been made to cancel SI in both
analog and digital domains jointly, e.g., [13]–[15], such that
FD communications becomes a reality. These works essen-
tially validate the applicability of FD communications for
a short distance, where the transceiver transmits with lower
power. Thus, the FD transceiver has been considered for
small cells, which have a short range of operation [16]–[18].
Furthermore, since the small cells have a range of operation
of approximately 100 meters, the energy spent in decoding
the received data is non-negligible [19], [20]. Hence, recent
works [10], [11], [21], [22] accounted for the received data
rate-dependent decoding energy (DE) in their problems for
a more realistic formulation. DE is required to process the
received data that are protected by some outer code, such as
turbo or low-density parity check codes.

At the network level, FD communications receives interfer-
ence from both within the cell and neighboring cells, which
is significant. Recently, a few works [17], [23]–[25] stud-
ied the increase due to the inter-cell interference where the
base station in each cell is deployed with an FD transceiver.
Goyal et al. [17] explored the problem of user selection and
power allocation to efficiently mitigate the excessive inter-
ference. Mungara and Lozano [23] studied the interference
surge due to FD communications and characterized the actual
increase in system spectral efficiency via stocastic geometry.
Ciriket al. [24] considered FD SBSs and user equipments
(UEs), and proposed the transmit and receiver beamformer
design by maximizing the system sum rate. Chen et al. [25]
considered the energy harvesting SBSs and to eliminate both
the inter- and intra-cell interference, they proposed transmit
and receive beamformers under the energy causality con-
straint. However, none of these works accounted for the fact
that a non-negligible amount of energy comparable to the
transmit energy of the SBSs is consumed in the decoding
operation of the received signal. Hence, by accounting for
the DE term in the total energy consumption expression at
the SBSs makes the system model practical and appropri-
ate.Owing to this newly introduced term, the available har-
vested energy at the SBS is now shared among the transmitter
and receiver operations, unlike its previous use only for the
transmitter operations. Optimal energy sharing, on the other
hand, depends on the downlink (DL) and uplink (UL) channel
conditions. Besides, the data rates achieved by the UL UEs
are dependent on the available energy at the SBS as well.

Hence, the solutions obtained in all previous works are not
any more applicable in this scenario.

In this paper, we consider a two-tier heterogeneous net-
work (HetNet) consisting of a macro cell and many small
cells. In the small cell tier, all SBSs operate in the FD mode
and serve simultaneously multiple DL and UL UEs. Since
the wireless traffic is non-uniform, each UE has a different
amount of data in its buffer to be transmitted. Hence, min-
imizing the data queue length of the UEs is an appropri-
ate objective for network operators as it tends to avoid the
excessive resource allocation. With the goal of efficiently
managing the network resources in an excessive surge of
interference due to FD communications, we formulate a
problem to jointly design the transmit beamformer, power
and sub-carrier allocation, and UEs scheduling. The problem
minimizes the length of the data queue of each UE, under
the energy casualty and total transmit energy constraint. The
energy casualty constraint ensures that the amount of energy
used by the SBSs does not exceed the amount of energy
harvested. The distinct features of this paper are summarized
as follows:
• We consider a realistic scenario of densely deployed FD
small cells that are powered by energy harvesting (EH)
source, as all SBSs cannot be powered by grid source.
We also account for the received data rate-dependent
DE into the power consumption model. Then, a novel
optimization problem is formulated that minimizes the
data queue length of UEs for the joint design of trans-
mit beamformers and power allocation under the SBS
energy casualty constraint. The solution implicitly pro-
vides the sub-carrier allocation and UEs scheduling.

• The formulated problem is non-convex and solving
it optimally is computationally intractable. Hence, we
transform and approximate the original problem into a
tractable and convex form, respectively. Then, we solve
the convex approximated problem by using the succes-
sive parametric convex approximation (SPCA) frame-
work [26] and propose a centralized algorithm.

• For practical applicability, we further propose a
distributed algorithm by using the framework of dual
decomposition, where the convex approximated prob-
lem is decomposed into multiple independent sub-
problems corresponding to each active base station (BS),
which can hence be solved locally with minimum infor-
mation exchange.

The rest of the paper is organized as follows. Section II
introduces the system model and formulates the optimiza-
tion problem. Section III develops a low-complexity central-
ized algorithm based on the SPCA framework to solve the
formulated optimization problem. Section IV discusses the
development of a distributed algorithm for the formulated
optimization problem. Section V presents numerical results
and discussions. Finally, conclusion of the paper is given in
Section VI.
Nomenclature: We use bold uppercase letters to denote

matrices and bold lowercase letters to denote vectors.

VOLUME 5, 2017 11279



A. Yadav et al.: Energy and Traffic Aware Full-Duplex Communications for 5G Systems

FIGURE 1. A typical network depiction with multiple FD SBSs serving
multiple DL and UL UEs and a HD MBS is operating in UL mode.

(x)H and (x)T stand for the Hermitian and transpose operation
on x, respectively. |x| represents the absolute of x ∈ C, while
||x||2 is the `2-norm of x. tr{·} and E{·} denote the trace
and expectation operators, respectively. IL denotes the L × L
dimension identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
We consider a two-tier multi-carrier HetNet consisting of
one half-duplex (HD) macro base station (MBS) and B EH
FD SBSs in the macrocell and small cell tiers, respectively,
serving a few HD UEs. The total system spectrum is shared
among the two tiers in the network. Each SBS is installed with
a rechargeable battery and an EH device, which are used to
store and collect the harvested energy, respectively. TheMBS
is equipped with M antennas, whereas SBSs are equipped
with MT + MR antennas, of which MT antennas are used to
transmit data on the DL channel andMR antennas are used to
receive data on the UL channel, as shown in Fig. 1. Each base
station b, including SBSs and MBS, belongs to a set denoted
by B = {1, . . . ,B + 1}. The sets of all DL and UL UEs are
denoted by D = {1, . . . ,KD} and U = {1, . . . ,KU}, respec-
tively. We assume that data for the DL UE i are transmitted
only from one SBS, and are denoted by bi ∈ B. Similarly,
the data of UL UE j are processed by only one SBS, and are
denoted by bj ∈ B.1 The sets of all DL andULUEs associated
to SBS b are denoted by Db ∈ D and Ub ∈ U , respectively.
The SBSs send and receive data simultaneously to KD UEs
on the DL channels and from KU UEs on the UL channels,
respectively. We further assume that the MBS is serving the
UEs on the UL channels. A total of N equal bandwidth sub-
channels belonging to the set N = {1. . . . ,N } are available
in the system.

1For clarity, considering Fig. 1, for DL UEs i = {1, 2, 3, 4}, the serving
BS for UEs {1, 2} is b = b1 = b2 = 2 and for UEs {3, 4} is b = b3 =
b4 = 3. Similarly, for UL UEs j = {1, . . . , 5}, the serving BS for UEs {1, 2}
is b = b1 = b2 = 2 and so on.

The received signal over sub-channel n at DL UE i is
given by

yDi,n = hHbi,i,nwi,nsDi,n +
KD∑
k 6=i

hHbk ,i,nwk,nsDk,n︸ ︷︷ ︸
MUI + CCI due to all DL UEs

+

KU∑
j=1

gj,i,n
√
pj,nsUj,n︸ ︷︷ ︸

CCI due to all UL UEs

+nDi,n, (1)

where wi,n and pj,n are the beamforming vector and power
coefficient corresponding to the DL and UL UEs i and j,
respectively, on sub-channel n. hbi,i,n ∈ CMT×1 is the channel
vector from SBS bi to DL UE i and gj,i,n is the complex chan-
nel coefficient fromULUE j to DLUE i on the sub-channel n.
Each channel coefficient includes path loss and small-scale
fading components. sDi,n and s

U
j,n are the unit energy data sym-

bol corresponding to the DL and UL UEs, respectively. The
term nDi,n ∼ CN (0, σ 2

n ) is the additive white Gaussian noise
(AWGN). In (1), the first and second terms on the right-hand
side represent the intended signal, and the aggregate of intra-
cell multiuser interference (MUI) and inter-cell co-channel
interference (CCI) due to all DL transmissions, respectively.
The third term represents the CCI due to all UL transmissions.
The received signal-to-interference plus noise ratio (SINR) of
DL UE i over sub-channel n can be written as

γ Di,n =
hHbi,i,nWi,nhbi,i,n

σ 2
n +

∑KD
k 6=i h

H
bk ,i,nWk,nhHbk ,i,n +

∑KU
j=1 pj,n|gj,i,n|

2
,

(2)

where Wi,n = wi,nwH
i,n is a positive semi-definite (PSD)

matrix.
Next, for the UL transmission, the received signal vector

of UE j over sub-channel n at base station bj is given by

yUj,n = hbj,j,n
√
pj,nsUj,n +

KU∑
l 6=j

hbj,l,n
√
pl,nsUl,n

+

KD∑
i=1

Hbj,bi,nwi,nsDi,n︸ ︷︷ ︸
SI + CCI from all DL UEs

+nUj,n, (3)

where hbj,j,n ∈ CMR×1 is the channel vector from UL UE
j to SBS bj and nUj,n ∼ CN (0, σ 2

n IMR ) is the AWGN noise
vector. In (3), the first right-hand side term is the intended
signal. The second right-hand side term represents the intra-
cell multiple access interference and inter-cell CCI due to
all UL transmissions. The third term represents the total
CCI due to inter-cell DL transmissions including SI, where
Hbj,bi,n is the channel matrix from SBS bj to SBS bi. In order
to recover each UL UE data, we treat the SI and CCI as
background noise and apply the minimum mean square error
(MMSE) successive interference cancellation receiver. Then,
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the received SINR of UL UE j over sub-channel n is given by

γ Uj,n = pj,nhHbj,j,n

(
σ 2
n IMR +

KU∑
l>j

pl,nhbj,l,nh
H
bj,l,n

+

KD∑
i=1

Hbj,bi,nWi,nHH
bj,bi,n

)−1
hbj,j,n. (4)

Let QDi denote the number of backlogged bits assigned for
DLUE i at the beginning of a given scheduling period. At that
instant, the number of bits by which the backlogged bits can
be reduced is given by

qDi = QDi −
N∑
n=1

log2(1+ γ
D
i,n), (5)

where the second right-hand side term is the transmission
rate achieved by DL UE i. Similarly, on the UL channel, the
number of bits by which the backlogged bits for UL UE j can
be reduced is given by

qUj = QUj −
N∑
n=1

log2(1+ γ
U
j,n), (6)

whereQUj denotes the number of backlogged bits correspond-
ing to ULUE j and the second right-hand side term represents
the number of transmitted bits by UL UE j.

B. ENERGY ARRIVAL AND CONSUMPTION MODEL
We consider a generic energy arrival process, which is inde-
pendent of the type of renewable energy source and method,
at each SBS. The maximum storage size of the rechargeable
battery is denoted by Bmax, which is same for all SBSs.
At an SBS b, the battery is used to store the energy har-
vested, i.e., TPb,H over the scheduling period T as well as
the leftover energy TPb,B from the previous period; hence,
Bmax � TPb,H. We assume that the SBS knows the exact
amount of energy available in the battery before the beginning
of the next scheduling period. Hence, for a given scheduling
period, the energy available at the SBS b is given as:

TPb = min{Bmax,TPb,H + TPb,B}, (7)

where the min(·, ·) operator ensures the constraint on the
maximum battery size.

In short distance communications, the energies consumed
in the circuit and decoding become comparable or even
dominate the actual transmit power [19], [20]. Hence, it is
important to include them into the total power consumption,
especially when the energy comes from a renewable source.
Consequently, the transmitter and receiver operations, and
circuitry draw their energies from a common source that is
available at the SBS; thus, the total power consumption is
expressed as:

Ptot,b =
N∑
n=1

∑
i∈Db

tr(Wi,n)+ Pcirb +
N∑
n=1

∑
j∈Ub

Pdecj,n (Rj,n), (8)

where Pcirb = MTPrf + Pst is the total circuit power con-
sumption, in which Prf and Pst correspond to the active
radio frequency blocks, and to the cooling and power supply,
respectively. Pdecj,n is the power consumption for decoding UL
UE j in sub-carrier n, where Rj,n = log2(1 + γ

U
j,n) is the

achievable rate of the UE. It should be noted that the decoding
power consumption is a function of the data rate of theUE: for
example, for anULUE j,Pdecj,n (Rj,n) = αjRj,n where αjmodels
the decoder efficiency, being decoder specific [21], [27].

C. OPTIMIZATION PROBLEM FORMULATION
In this paper, we jointly design the beamforming vectors and
power coefficients for the DL and UL UEs, respectively, such
that the total number of backlogged bits in the system is
minimized. In particular, we minimize the `2-norm of the
deviation metrics given in (5) and (6). The main reason for
using the `2-norm in the objective function is that it gives
priority to the UE with a large queued data in the buffer [28].

Now, by denoting W = {W1, . . . ,WB+1}, where Wb =

[WDb(1),1, . . . ,WDb(|Db|),N ] and p = {p1, . . . ,pB+1}, where
pb = [pUb(1),1, . . . , pUb(|Ub|),N ], the optimization problem
to be solved at the beginning of each scheduling period is
formulated as

min
W,p
‖qD‖2 + ‖qU‖2 (9a)

s.t.
N∑
n=1

∑
i∈Db

tr(Wi,n) ≤ Pb,max ∀b, (9b)

Ptot,b ≤ Pb ∀b, (9c)
N∑
n=1

pj,n ≤ Pu,max ∀j ∈ U , (9d)

rank(Wi,n) = 1 ∀i ∈ D, ∀n, (9e)

Wi,n � 0 ∀i ∈ D, ∀n, (9f)

pj,n ≥ 0 ∀j ∈ U , ∀n, (9g)

where qD and qU have the elements qDi , i ∈ {1, . . . ,KD}

and qUj , j ∈ {1, . . . ,KU}, respectively. Pb,max is the bth SBS
maximum total transmit power constraint on the DL channel,
and Pu,max is the individual UE transmit power constraint
on the UL channel. It is worth noting that (9)2 implicitly
solves the problem of sub-carrier allocation and UE schedul-
ing as well. Hence, the optimization problem jointly designs
the beamformers, power and sub-carrier allocation and UE
scheduling. An UE is scheduled whenever it is allocated a
non-zero power on a sub-carrier; otherwise, it is not.
In (9), the objective function (9a) ensures avoidance of the

redundant resource allocation, which is limited by the data
queue length of the UEs. Further, constraint (9b) ensures that
the maximum transmit power allowed by SBS b for the DL
transmission is limited by Pb,max. Constraint (9c) ensures the
energy causality constraint, i.e., the bth SBS total power con-
sumption should not exceed the harvested amount. In general,

2Note that (9) represents equations (9a)-(9g). A similar notation is
employed throughout the paper.
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it is difficult to solve the above optimization problem due to
the rank-one constraint (9e). Hence, we relax this constraint
and proceed with the relaxed problem, which is expressed as

minimize
W,p

‖qD‖2 + ‖qU‖2 (10a)

s.t. (9b)− (9d), (9f), (9g). (10b)

Then, we apply a few equivalent transformations to further
increase the tractability.

III. PROPOSED ALGORITHM
This section develops a low-complexity iterative algorithm
based on the SPCA method [26], which has been exten-
sively applied to efficiently solving the non-convex prob-
lems which arise in wireless communication systems design,
e.g., [16], [22], [28]. Observe that (10) also has a non-concave
objective function and constraint (9c) with the involved vari-
ables, and thus cannot be solved efficiently. Hence, we per-
form a few equivalent transformations to make the problem
tractable, along with a few convex approximations to
non-convex components.

A. EQUIVALENT TRANSFORMATIONS
We start by dealing with the non-concave objective (10a) and
constraint (9c), and re-write (10) equivalently as

min
W,p,
t

∥∥q̃D∥∥2 + ∥∥q̃U∥∥2 (11a)

s.t. γ Di,n ≥ e
tDi,n − 1, ∀i ∈ D, ∀n, (11b)

γ Uj,n ≥ e
tUj,n − 1 ∀j ∈ U , ∀n, (11c)

N∑
n=1

∑
i∈Db

tr(Wi,n) ≤ Pb,max ∀b, (11d)

Pcirb +
N∑
n=1

(∑
j∈Ub

αjtUj,n +
∑
i∈Db

tr(Wi,n)
)
≤ Pb ∀b,

(11e)

(9d), (9f), (9g), (11f)

where t = {t1, . . . , tB+1}, with tb = [tDDb(1),1
, . . . , tDDb(|Db|),N

,

tUUb(1),1 . . . , t
U
Ub(|Ub|),N ],

3 and tb � 0∀b is a vector of newly

introduced slack variables. Further, q̃D = QDi −
∑N

n=1 t
D
i,n

and q̃U = QUj −
∑N

n=1 t
U
j,n. The equivalence of (10) and (11)

is due to the fact that constraints (11b) and (11c) are
active at the optimum and that maximizing t maximizes the
SINR (2), and consequently, minimizes the objective func-
tion. After the above transformation, the objective function
becomes convex and the constraint (11e) becomes linear
with respect to (w.r.t.) the involved variables. However,
problem (11) is still non-convex because of the non-convex
constraints (11b) and (11c). We tackle these non-convex
constraints one by one by equivalently transforming them into
tractable forms. First, by introducing a set of new variables

3B(i) and |B| denote the ith element and cardinality of set B, respectively.

β = {β1, . . . ,βB+1}, with βb = [βDb(1),1, . . . , βDb(|Db|),N ],
the non-convex constraint (11b) can be expressed equiva-
lently as

hHbi,i,nWi,nhbi,i,n ≥ (et
D
i,n − 1)βi,n, (12a)

σ 2
n +

KD∑
k 6=i

hHbk ,i,nWk,nhbk ,i,n +
KU∑
j=1

pj,n|gj,i,n|2 ≤ βi,n,

(12b)

where (12b) is convex. The variable βi,n is essentially the
maximum interference-plus-noise received by DL UE i on
sub-channel n. Constraint (12a) can be made more tractable
by decomposing it into the following inequalities:

hHbi,i,nWi,nhbi,i,n ≥ zDi,nβi,n, (13a)

et
D
i,n ≤ zDi,n + 1, (13b)

where zDi,n ≥ 0∀i ∈ D,∀n are the newly introduced variables.
The equivalence of (12a) and (13) is attributed to the fact
that inequalities (13a) and (13b) are active at the optimality.
We now turn our attention to constraint (11c). We decompose
the inequality in (11c) into a set of three new inequalities as

x2j,nh
H
bj,j,nX

−1
j,n hbj,j,n, ≥ zUj,n, (14a)

pj,n ≥ x2j,n, (14b)

et
U
j,n − 1 ≤ zUj,n, (14c)

where Xj,n , σ 2
n IMR +

∑KU
l>j pl,nhbj,l,nh

H
bj,l,n +

∑KD
i=1

HH
bj,bi,nWi,nHH

bj,bi,n, and x2j,n and zUj,n ≥ 0∀j ∈ U ,∀n are
the auxiliary variables. The introduction of slack variable xj,n
helps in identifying the convexity hidden in the right-hand
side of (14a), which is useful in applying the convex approx-
imation techniques in the next subsection. Constraints (14b)
and (14c) are convex and only (14b) takes the SOC form.
Now, using the equivalent transformations discussed

above, the relaxed problem (10) can be rewritten as

min
W,p,β,t

x,z

∥∥q̃D∥∥2 + ∥∥q̃U∥∥2 (15a)

s.t. hHbi,i,nWi,nhbi,i,n ≥ z
D
i,nβi,n ∀i ∈ D, ∀n, (15b)

et
D
i,n ≤ zDi,n + 1 ∀i ∈ D, ∀n, (15c)

σ 2
n +

KD∑
k 6=i

hHbk ,i,nWk,nhbk ,i,n +
KU∑
j=1

pj,n|gj,i,n|2 ≤ βi,n

∀i ∈ D, ∀n, (15d)

x2j,nh
H
bj,j,nX

−1
j,n hbj,j,n ≥ z

U
j,n ∀j ∈ U , n, (15e)

pj,n ≥ x2j,n ∀j ∈ U , ∀n, (15f)

et
U
j,n ≤ zUj,n + 1 ∀j ∈ U , ∀n, (15g)

(9d), (9f), (9g), (11d), (11e). (15h)

We observe that the transformed problem (15) is now more
tractable as compared to the original form. However, it is
still non-convex due to the presence of two non-convex con-
straints (15b) and (15e). To handle these two constraints,
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in the next subsection, we approximate them with a convex
function at a point of operation.

B. CONVEX APPROXIMATIONS
We start with (15b), where the right-hand side of the inequal-
ity is neither a convex nor a concave function of zDi,n and βi,n.
To overcome this obstacle, we first employ an upper bound
convex approximation of the right-hand side by the following
inequality as [26]

f (zDi,n, βi,n) = zDi,nβi,n ≤ F(z
D
i,n, βi,n, ξ )

,
1
2ξ
β2i,n +

ξ

2
(zDi,n)

2
∀ξ > 0. (16)

For ξ = βi,n/zDi,n, we can easily check that

f (zi,n, βi,n) = F(zDi,n, βi,n, ξ ), (17)

∇f (zDi,n, βDi,b,n) = ∇F(z
D
i,n, βi,n, ξ ), (18)

where ∇f denotes the gradient of f . With the satisfaction
of the above two conditions, the local convergence of the
iterative algorithm can be established [29].

Next, we turn our attention to the non-convex
inequality (15e), which can be expressed equivalently as
zUj,n − x2j,nh

H
bj,j,nX

−1
j,n hbj,j,n ≤ 0. According to [16] and [30],

h(xj,n,pU\{j},W) = x2j,nh
H
bj,j,nX

−1
j,n hbj,j,n is jointly convex

w.r.t. the variables involved, where pU\{j} is a vector, which
consists of all UL UEs power coefficients except the jth
UE. In order to make the non-convex inequality convex, we
approximate −h(xj,n,pU\{j},W) with a first-order approxi-
mation around a feasible point (xj,n(r),pU\{j}(r),W(r)) as
follows

h(xj,n,pU\{j},W)

≤ H (xj,n,pU\{j},W, xj,n(r),pU\{j}(r),W(r))

= h(xj,n(r),pU\{j}(r),W(r))− 2xj,n(r)hHbj,j,n(Xj,n(r))−1

×hbj,j,n(xj,n − xj,n(r))+ tr
[
(xj,n(r))2(Xj,n(r))−1hbj,j,n

hHbj,j,n(Xj,n(r))−1(Xj,n − (Xj,n(r))−1)
]
, (19)

where r is the iteration index. Note that the above approxima-
tion satisfies the three conditions mentioned in [29], which
are important to ensure the local convergence of the iterative
algorithm.

By applying the approximations discussed above, and
denoting z = {z1, . . . , zB+1}, where zb = [zDDb(1),1

, . . . ,

zDDb(|Db|),N
, zUUb(1),1 . . . , z

U
Ub(|Ub|),N ] and x = {x1, . . . , xB+1},

where xb = [xUb(1),1, . . . , xUb(|Ub|),N ], problem (10) can
be solved by iteratively solving the following approximated
convex problem, which is formulated at the (r+1)th iteration
index as

min
X

∥∥q̃D∥∥2 + ∥∥q̃U∥∥2 (20a)

s.t. hHbi,i,nWi,nhbi,i,n
≥ F(zDi,n, βi,n, ξ (r)) ∀i ∈ D, ∀n, (20b)

H (xj,n,pU\{j},W, xj,n(r),pU\{j}(r),W(r))

≤ zUj,n ∀j ∈ U , ∀n, (20c)

(9d), (9f), (9g), (11d), (11e),

(15c), (15d), (15f), (15g). (20d)

where X = {X1, . . . ,XB+1} and Xb collects the variables
corresponding to the BS b, i.e., {Wb,pb,βb, tb, xb, zb}. Note
that β, t, x, and z are not the actual optimization variables;
however, they get updated by the optimum values at the end
of each iteration. By denoting h = [h1,1,1, . . . ,hB,KD,N ]
and g = [g1,1,1, . . . , gKD,KU,N ], the pseudo code for the
proposed resource allocation optimization algorithm for FD
small cell (RAOFDS) is summarized in Algorithm 1. After
the algorithm converges, a rank-one solution is obtained using
the randomization trick [31].

Algorithm 1 Centralized Iterative Resource Allocation Opti-
mization for Full-Duplex Small Cell (RAOFDS) Algorithm

Input: h, g, σ 2
n , P

cir
b , Pb,max, Pb, α, Pu,max Imax,1.

Output: W, p.
1: InitializeW(r), p(r), β(r), t(r), x(r), z(r)
2: Set r := 0;
3: repeat
4: Solve (20) for local optimal values of w?, p?, β?, t?,

x?, z?;
5: Set r := r + 1;
6: Update w(r) = w?, p(r) = p?, β(r) = β?, t(r) = t?,

x(r) = x?, z(r) = z?, ξi,n(r) = β?i,n/z
?
i,n ∀i,∀n;

7: until Queue convergence or r ≥ Imax,1
8: Perform randomization to extract a rank-one solution.

C. EXPONENTIAL CONE APPROXIMATION
Furthermore, we observe that constraints (15c) and (15g) are
exponential cone; hence, problem (20) is considered as a gen-
eralized nonlinear convex program, which can be solved by
using nonlinear solvers, e.g., Matlab’s Fmincon. In general,
the nonlinear solver has a high complexity and thus, requires
a large number of iterations to converge. Problem (20) can
be solved with lower complexity by approximating the expo-
nential cone constraints as second-order cone (SOC) con-
straints [32]. A generic inequality of type ex ≤ y can be
approximated by a system of conic inequalities as

κm+4 ≤ y, (21a)

||2+ x/2m−1 1− κ1||2 ≤ 1+ κ1, (21b)

||5/3+ x/2m 1− κ2||2 ≤ 1+ κ2, (21c)

||2κ1 1− κ3||2 ≤ 1+ κ3, (21d)

19/17+ κ2 + 1/24κ3 ≤ κ4, (21e)

||2κi−1 1−κi||2 ≤ 1+κi, i = 5, 6, . . . ,m+ 3, (21f)

||2κm+3 1− κm+4||2 ≤ 1+ κm+4, (21g)

where the parameterm determines the accuracy of the approx-
imation and κi, i = 1, . . . , (m + 4) are newly introduced
variables.
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D. CONVERGENCE AND COMPLEXITY ANALYSIS
For the convergence analysis of Algorithm 1, we follow the
steps outlined in [26]. First, we denote the return objective
function value and a set of feasible optimal solutions at the
r th iteration of the algorithm by J (r) and 4(r), respectively.
Then, because of the convex approximation in (20b) and the
linear approximation in (20c), the updating rule in Algo-
rithm 1 ensures that 4(r) is feasible at the (r + 1)th iteration.
Consequently, J (r + 1) ≤ J (r) always holds and hence,
Algorithm 1 yields a non-increasing sequence of objective
function values. Furthermore, since the objective function
J is bounded from below and above due to the ‖·‖2 ≥ 0
and total transmit power constraints, respectively, the conver-
gence of Algorithm 1, w.r.t. the objective function values is
guaranteed.

The worse case per-iteration computational cost of
Algorithm 1 is discussed. Since (20) is a SOC program,
we use the result from [33] to calculate the computational
cost of solving the problem. In the complexity calculation,
we replace each exponential cone constraint of (20) with the
approximate SOC constraints, i.e., (21). After the replace-
ments, the problem hasNB(m+8)(KD+KU) variables, andKU
SOC constraints of sizeKU, and (KD+KU)(m+4) constraints
of size 3. Thus, the worse case per-iteration computational
cost of solving the problem is O(NB(m + 8)(K 3

U + K
2
UKD +

(K 2
U+K

2
D)(m+4))), where the small order terms are ignored.

IV. DISTRIBUTED SOLUTION
Note that the algorithm developed in the previous section
requires the global channel state information (CSI) knowl-
edge to arrive at a solution and is referred to as the centralized
algorithm. Acquiring the global CSI needs extra resources
and it is practically impossible for a dense network. Thus,
in this section, we apply a practical distributed approach to
solve (20), where the MBS and SBSs only need to know
local CSI. Moreover, turning to a distributed approach is
evident as it avoids the exchange of overwhelming overhead
data. In this approach, each BS independently designs the
beamformers and power allocations of the local UEs with
minimal exchange of a few control variables among the BSs.

In order to implement a distributed approach, we employ
the dual decomposition framework [34] and follow similar
steps as in [35]. In this technique, a large separable problem
is decomposed into smaller sub-problems that can be solved
efficiently. Owing to the separability of the objective function
w.r.t. each BS, (20) can be written equivalently as

minimize
X

∑
b∈B

∥∥q̃D,b∥∥2 +∑
b∈B

∥∥q̃U,b∥∥2 (22a)

s.t. (20b)− (20d), (22b)

where q̃D,b and q̃U,b denote the queue deviations of the
DL and UL UEs associated to b, respectively. However,
constraints in (22b) are not separable; in particular, con-
straints (15d) and (20c) are coupled through the inter-cell

CCI terms. To this end, we rewrite (22) as

min
X

∑
b∈B

∥∥q̃D,b∥∥2 +∑
b∈B

∥∥q̃U,b∥∥2 (23a)

s.t. σ 2
n +

∑
k∈Db\{i}

hHbk ,i,nWk,nhbk ,i,n +
∑
b̄∈B̄b

ψ
(b)
b̄,i,n

+

∑
j∈Ub

pj,n|gj,i,n|2 +
∑
b̄∈B̄b

φ
(b)
b̄,i,n
≤ βi,n ∀i ∈ D, ∀n,

(23b)

ψ
(b)
b,i,n ≥

∑
k∈Db

hHb,i,nWk,nhb,i,n ∀b, ∀i ∈ D̄b, ∀n,

(23c)

φ
(b)
b,i,n ≥

∑
l∈Ub

pl,n|gl,i,n|2 ∀b, ∀i ∈ D̄b, ∀n, (23d)

9
(b)
b,j,n �

∑
l∈Ub

pl,nhbj,l,nh
H
bj,l,n ∀b, ∀j ∈ Ūb,∀n,

(23e)

8
(b)
b,j,n �

∑
i∈Db

Hb,bj,nWi,nHH
b,bj,n ∀b, ∀j ∈ Ūb, ∀n,

(23f)

ψ
(b)
b,i,n = ψ

(bi)
b,i,n ∀b ∈ B̄bi , ∀i, ∀n, (23g)

φ
(b)
b,i,n = φ

(bi)
b,i,n ∀b ∈ B̄bi , ∀i, ∀n, (23h)

9
(b)
b,j,n = 9

(bj)
b,j,n ∀b ∈ B̄bj , ∀j, ∀n, (23i)

8
(b)
b,j,n = 8

(bj)
b,j,n ∀b ∈ B̄bj , ∀j, ∀n, (23j)

(9d), (9f), (9g), (11d), (11e), (15d), (15f), (15g),

(23k)

where B̄b, D̄b and Ūb denote the sets B \ {b}, D \
{Db} and U \ {Ub}, respectively. Here, Xj,n , σ 2

n IMR +∑|Ub|
l>j pl,nhbj,l,nh

H
bj,l,n +

∑B
b̄6=b9

(b)
b̄,j,n
+
∑|Db|

i=1 HH
bj,bi,nWi,n

HH
bj,bi,n +

∑B
b̄ 6=b8

(b)
b̄,j,n

. ψb,i,n and φb,i,n are newly intro-
duced positive auxiliary variables, respectively, representing
the inter-cell CCI caused by the DL and UL transmissions
of BS b to the neighboring cells DL UE i ∈ D̄b. Similarly,
9b,j,n and 8b,j,n are newly introduced PSD auxiliary matrix
variables, respectively, representing the inter-cell CCI covari-
ance matrices caused by the UL and DL transmissions of the
BS b to the neighboring cells UL UE j ∈ Ūb. The equality
constraints (23g)-(23j) are introduced to further simplify the
decoupling. They essentially say that the coupling interfer-
ence variable must be equal, e.g., ψb,i,n ∀i ∈ D̄b couples
exactly two BSs, i.e., the generating BS b and the interference
receiving BS bi [35]. Superscript (·) denotes the local copy of
the variable. The equivalence between (22) and (23) is due
to the fact that constraints (23b)-(23f) hold with equality at
optimality. Furthermore, if we allow these variables to be
fixed, (23) can easily be decoupled into B + 1 independent
subproblems w.r.t. each BS.
In order to decouple the above problem, we apply the dual

decomposition technique. For that, we first write the partial
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Lagrangian dual of (23) w.r.t. the equality constraints as

L(X ,ψ,φ,8, θ ,ω,2,�)
=

∑
b∈B

∥∥q̃D,b∥∥2 +∑
b∈B

∥∥q̃U,b∥∥2
+

N∑
n=1

∑
i∈Db

∑
b∈B̄bi

θb,i,n(ψ
(b)
b,i,n − ψ

(bi)
b,i,n)

+

N∑
n=1

∑
i∈Db

∑
b∈B̄bi

ωb,i,n(φ
(b)
b,i,n − φ

(bi)
b,i,n)

+

N∑
n=1

∑
j∈Ub

∑
b∈B̄bj

tr(2b,j,n(9
(b)
b,j,n −9

(bj)
b,j,n))

+

N∑
n=1

∑
j∈Ub

∑
b∈B̄bj

tr(�b,j,n(8
(b)
b,j,n −8

(bj)
b,j,n)) (24)

=

∑
b∈B

∥∥q̃D,b∥∥2 +∑
b∈B

∥∥q̃U,b∥∥2
+

∑
b∈B

N∑
n=1

( ∑
i∈D̄b

θb,i,nψ
(b)
b,i,n −

∑
b̄∈B̄b

∑
i∈Db

θb̄,i,nψ
(b)
b̄,i,n

)

+

∑
b∈B

N∑
n=1

( ∑
i∈D̄b

ωb,i,nφ
(b)
b,i,n −

∑
b̄∈B̄b

∑
i∈Db

ωb̄,i,nφ
(b)
b̄,i,n

)

+

∑
b∈B

N∑
n=1

(∑
j∈Ūb

tr(2b,j,n9
(b)
b,j,n)

−

∑
b̄∈B̄b

∑
j∈Ub

tr(2b̄,j,n9
(b)
b̄,j,n

)
)

+

∑
b∈B

N∑
n=1

(∑
j∈Ūb

tr(�b,j,n8
(b)
b,j,n)

−

∑
b̄∈B̄b

∑
j∈Ub

tr(�b̄,j,n8
(b)
b̄,j,n

)
)
, (25)

where θb,i,n ≥ 0, ωb,i,n ≥ 0 ∀i, ∀b ∈ B̄bi , ∀n, are the real val-
ued Lagrange multipliers associated with constraints (23g),
(23h), and 2b,j,n � 0,�b,j,n � 0∀j,∀b ∈ B̄bj ,∀n are PSD
Lagrange multipliers associated with constraints (23i), and
(23j), respectively. ψ and θ collect {ψ (1), . . . ,ψ (B+1)

} and
{θ1, . . . , θB+1}, respectively. Variablesψ (b) and θb denote the
collection of interference terms and Lagrangian multipliers
corresponding to BS b and are expressed as

ψ (b)
= [ψ (b)

b,D̄b(1),1
, . . . , ψ

(b)
b,D̄b(|D̄b|),N

, ψ
(b)
B̄b(1),Db(1),1

, . . . ,

ψ
(b)
B̄b(1),Db(|Db|),N

, ψ
(b)
B̄b(|B̄b|),Db(1),1

, . . . ,

ψ
(b)
B̄b(|B̄b|),Db(|Db|),N

],

and

θb = [θb,D̄b(1),1
, . . . , θb,D̄b(|D̄b|),N

,−θB̄b(1),Db(1),1
, . . . ,

− θB̄b(1),Db(|Db|),N
,−θB̄b(|B̄b|),Db(1),1

, . . . ,

− θB̄b(|B̄b|),Db(|Db|),N
],

respectively. Other sets of variables in (24), i.e., φ, 9, 8,
ω,2, and � are similarly represented.
The dual objective function of (23) is given as

g(θ ,ω,2,�) = min
X ,ψ,φ,
9,8

L(X ,ψ,φ,9,8, θ ,ω,2,�)

(26a)

s.t (23c)− (23g), (23k), (26b)

and the corresponding dual problem is given as

max
θ ,ω,2,�

g(θ ,ω,2,�). (27)

Finally, for fixed Lagrangian dual variables, the indepen-
dent bth sub-problem is expressed as

min
∥∥q̃D,b∥∥2 + ∥∥q̃U,b∥∥2 + N∑

n=1

( ∑
i∈D̄b

θb,i,nψ
(b)
b,i,n

−

∑
b̄∈B̄b

∑
i∈Db

θb̄,i,nψ
(b)
b,i,n

)
+

N∑
n=1

( ∑
i∈D̄b

ωb,i,nφ
(b)
b,i,n

−

∑
b̄∈B̄b

∑
i∈Db

ωb̄,i,nφ
(b)
b,i,n

)
+

N∑
n=1

(∑
j∈Ūb

tr(2b,j,n9
(b)
b,j,n)

−

∑
b̄∈B̄b

∑
j∈Ub

tr(2b̄,j,n9
(b)
B̄b(b),j,n

)
)

+

N∑
n=1

(∑
j∈Ūb

tr(�b,j,n8
(b)
b,j,n)

−

∑
b̄∈B̄b

∑
j∈Ub

tr(�b̄,j,n8
(b)
B̄b(b),j,n

)
)

(28a)

s.t. σ 2
n +

∑
k∈Db\{i}

hHbk ,i,nWk,nhbk ,i,n (28b)

+

∑
b̄∈B̄b

ψb̄,i,n +
∑
j∈Ub

pj,n|gj,i,n|2

+

∑
b̄∈B̄b

φb̄,i,n ≤ βi,n ∀i ∈ Db, ∀n, (28c)

ψ
(b)
b,i,n ≥

∑
k∈Db

hHb,ī,nWk,nhb,ī,n ∀i ∈ D̄b, ∀n, (28d)

φ
(b)
b,i,n ≥

∑
l∈Ub

pl,n|gl,ī,n|
2
∀i ∈ D̄b, n, (28e)

9
(b)
b,j,n �

∑
j∈Ub

pj,nhb,j̄,nh
H
b,j̄,n ∀j ∈ Ūb, ∀n, (28f)

8
(b)
b,j,n �

∑
i∈Db

Hb,bj̄,nWi,nHH
b,bj̄,n
∀j ∈ Ūb, ∀n, (28g)

(23k), (28h)

where the optimization variables are Xb, ψ (b), φ(b), 9(b) and
8(b). Upon solving (28) forψ (b), φ(b),9(b) and8(b)

∀b in the
vth iteration, the interference terms are exchanged between
BSs b and bi as

ψ
(bi)
b,i,n(v+ 1) = 0.5(ψ (b)

b,i,n + ψ
(bi)
b,i,n(v)) ∀b,∀i ∈ D̄b,∀n,

(29)
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φ
(bi)
b,i,n(v+ 1) = 0.5(φ(b)b,i,n + φ

(bi)
b,i,n(v)) ∀b,∀i ∈ D̄b,∀n,

(30)

9
(bi)
b,i,n(v+ 1) = 0.5(9(b)

b,i,n +9
(bi)
b,i,n(v)) ∀b,∀j ∈ Ūb,∀n,

(31)

8
(bi)
b,i,n(v+ 1) = 0.5(8(b)

b,i,n +8
(bi)
b,i,n(v)) ∀b,∀j ∈ Ūb,∀n.

(32)

The solutions to the subproblems are optimal because of
the convexity of (28). However, the obtained optimal solu-
tion may not be the optimal for (20) because the fixed dual
variables are not optimal. Hence, we solve the master dual
problem to obtain the optimal dual variables for the vth
iteration using the subgradient method [30] as:

θb,i,n(v+ 1) = [θb,i,n(v)+ ε1(v)(ψ
(b)
b,i,n(v)− ψ

(bi)
b,i,n(v))]

∀b,∀i,∀n, (33)

ωb,i,n(v+ 1) = [ωb,i,n(v)+ ε2(v)(φ
(b)
b,i,n(v)− φ

(bi)
b,i,n(v))]

∀b,∀i,∀n, (34)

2b,j,n(v+ 1) = [2b,j,n(v)+ ε3(v)(8
(b)
b,j,n(v)−8

(bj)
b,j,n(v))

T ]

∀b,∀j,∀n, (35)

�b,j,n(v+ 1) = [�b,j,n(v)+ ε4(v)(9
(b)
b,j,n(v)−9

(bj)
b,j,n(v))

T ]

∀b,∀j,∀n, (36)

where ε1, ε2, ε3, and ε4 are the positive step sizes correspond-
ing to the Lagrangianmultipliers. The convergence properties
of the dual problem is dependent on the proper selection of
the step sizes. The pseudo code of the distributed algorithm
is summarized in Algorithm 2.

Algorithm 2 Distributed Iterative resource allocation opti-
mization for full-duplex small cell (RAOFDS) Algorithm

Input: h, g, σn, Pcirb , Pb,max, Pb, Pu,max, α, Imax,1, Imax,2.
Output: W, p.
1: InitializeX (r) and initializeψ(v), φ(v),9(v),8(v), θ (v),
ω(v),2(v), �(v) with all zero values.

2: Set r := 0; v := 0;
3: repeat BS b ∈ B
4: repeat
5: Solve (28) for φb(v),ψb(v),9b(v), and

8b(v) and exchange them between the BSs;
6: Update Lagrange multipliers using (33)–(36);
7: Set v := v+ 1;
8: untilConvergence of Lagrange multipliers or

v ≥ Imax,2
9: Update X (r) = X ? and ξi,n(r) = β?i,n/z

?
i,n ∀i ∈

Db, b ∈ B,∀n;
10: r := r + 1; v := 0;
11: until Queue convergence or r ≥ Imax,1
12: Perform randomization to extract a rank-one solution.

V. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we present the throughput performance
results, which are obtained by using the centralized and

distributed RAOFDS Algorithms 1 and 2, respectively, under
various settings using Monte Carlo simulations.

We consider an urban outdoor deployment scenario with
an MBS, which has the operating range of radius 500 m and
is located at the origin in the plane R2. The SBSs, with the
operating range of 50 m, are randomly deployed within the
operating range of the MBS. The locations of SBSs follow an
independent Poisson point process (PPP)8s ∈ R2 with inten-
sity λs. The UEs are randomly positioned within the MBS
operating range and their locations follow the PPP 8u ∈ R2

with intensity λu. Every SBS and UE has the same maximum
transmission power of Pb,max and Pu,max, respectively. The SI
channel between the co-located transmitter-receiver antenna
pair of an SBS is modelled by using the Rician distribution

as CN (
√
σ 2
SIK/(1+ K )HSI, (σ 2

SI/(1+K ))IMR⊗ IMT ), where
HSI is a deterministic matrix, K is the Rician factor with
value 1, and σ 2

SI is the SI level represents the ratio of the
average SI power before and after the SI cancellation stage.
⊗ is a Kronecker product operator. The other channels in
the system are assumed to be Rayleigh faded. The path loss
and shadowing loss between the various channels are calcu-
lated using the parameters mentioned in Table 1. All other
system parameters used in simulations are summarized in
Table 1. Furthermore, we consider three system scenarios for
comparison, which are referred to as; i) Setup-A: SBSs are
powered by the grid source, ii) Setup-B: SBSs are powered
by a renewable energy source, and iii) Setup-C: SBSs are
powered by a renewable energy source and draw energy for
decoding UL UEs data. The Setup-A and B account for the
energy consumed at the transmitter side operations and ignore
the receiver side while the Setup-C accounts for both the sides
operations simultaneously.

TABLE 1. Simulation parameters.

Fig. 2 shows the typical placement of a MBS along with
ten SBSs and their DL and UL UEs; these numbers are used
in simulations, unless otherwise mentioned. The locations of
the SBS and UEs are obtained using the values λs = 10 km−2

and λu = 20 km−2, respectively. Hence, we have a total of
10 SBSs, 20 DL and 20 UL UEs in the network. The UEs are
assumed to be already associated either to a SBS or the MBS.
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FIGURE 2. Location of MBS, SBSs, DL and UL UEs used in the simulations.

Particularly, in the simulation setup, two DL and two ULUEs
are associated to each SBS. The UEs which are out of range
of any SBS get associated to the MBS. The number of bits
waiting in the data buffer of each DL and UL UE are stored in
vectors as QD = [6 7 4 5 3 2 2 2 2 3 1 1 2 2 2 3 2 2 3 7 0 0] and
QU = [3 7 3 5 7 3 2 3 1 3 3 3 3 1 2 2 2 2 3 2 1 1], respectively.
The two zeros at the end in theQD vector are inserted to ensure
that no DL transmission at the MBS. The energy harvesting
rate at each SBS is assumed to be different from each other.
Further, in numerical examples, the plots corresponding to the
HD communications are obtained when the SBSs are operat-
ing in the frequency division duplexing mode and under the
system setup-C. In particular, the DL UEs share one half and
UL UEs share another half of the total system bandwidth for
their respective transmissions.

FIGURE 3. Convergence of the proposed SPCA-based RAOFDS algorithm
with respect to the SPCA iteration index.

We first discuss the convergence behavior of the proposed
centralized and distributed RAOFDS algorithms. In Fig. 3,
the total number of bits that remain in the network is plotted
after each SPCA iteration step. Firstly, it can be verified that

the FD communications achieve higher total queue devia-
tion than the conventional HD communications. Secondly,
it can be verified that the centralized algorithm, which is
plotted for system setups A, B and C, converges after approxi-
mately 65 iterations. Furthermore, from the figurewe can also
observe the significant performances gaps among the setup
A, B and C. Specifically, Setup-C has a higher number of
bits left in the network when compared with Setup-A and
Setup-B. It is worth mentioning that the system settings used
in Setup-C are the closest to a real situation, and offer optimal
usage of resources available in a network under that situation.
On the other hand, the distributed algorithm, which is plotted
for system Setup-C, in Fig. 3, converges approximately after
290 iterations. The reason for this slow convergence lies in the
dual decomposition method in which the objective function
values start oscillating before arriving at the convergence.

For the sake of presentation clarity, we show the perfor-
mance of the centralizedAlgorithm 1 in the rest of the section.
It is worth noting that the distributed Algorithm 2 provides
similar results when converges.

FIGURE 4. DL and UL sum rate of the network with different SI values
used at each SBS.

In Fig. 4, the sum rate achieved by the DL and UL UEs
with respect to the different values of SI variance is compared
under three scenarios. As expected, the UL UEs sum rate
decreases with the SI variance. That is, the better the isolation
between the transmitter and receiver antennas of the SBS the
higher the sum rate achieved by the UL UEs.

In Fig. 5, we study the effect of different normalized energy
arrival rates, i.e., Pb,H/(Pcirb + Pb,max), at the SBSs on the
sum rate achieved by the DL and UL UEs for Setup-B and
Setup-C. For simplicity, in this example, we assume that all
SBSs have the same EH arrival rate. The sum rate achieved
under Setup-A is independent of the energy arrivals; how-
ever, it is shown in the figure for comparison purposes. For
Setup-B, when the energy arrival rate is low, the UL rate is
higher than the DL rate as the SBS has lower available power
for the DL UEs; thus, it causes less interference to the UL
transmissions. In the high EH rate regime, the DL channels
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FIGURE 5. DL and UL sum rate of the network with different normalized
EH arrival rates at each SBS.

achieve higher rate than the UL channels, which now receive
higher interference from the high power DL transmissions.
The situation is reversed for Setup-C, where the DL sum rates
dominate in all EH rate regimes over the UL sum rates. In
Setup-C, the SBS has to share the harvested energy between
the DL and UL UEs. Lower energy availability at the SBS
restricts theULUEs to transmit at lower power, thus incurring
less interference to the DLUEs. For the HD communications,
we can observe that the total sum rate, which is an aggregate
of the sum rate of DL and UL channels, improves with energy
harvesting rate; however, remains lower than that of the FD
communications.

FIGURE 6. DL and UL sum rate versus the DE parameters used by
each SBS.

In Fig. 6, we study the effect of the DE parameter on the
achieved sum rates obtained for Setup-C. Although the sum
rates of Setup-A and B are not affected by the DE parameter,
they are plotted for comparison purposes. The UL sum rate
decreases with the increase in the portion of DE consumed
at the SBS. In Setup-C, the UL UEs rates are controlled by
the availability of the DE at the SBS. If the values of the

DE parameter is small, the SBS needs to share small portion
of the available energy with the UL UEs in order to satisfy
the power consumption constraint. This, in-effect, restricts
the UL UEs from transmitting at lower power. Consequently,
lower interference is experienced by the DL UEs, and thus,
the sum rate has been improved as compared to Setup-B.
High DE parameter values further restrict the UL UEs from
transmitting at lower power, and hence DL UEs experience
low interference. For the HD communications, which have
no SI, the lower values of DE parameter allows the UL UEs
to transmit at higher power while restricts them to use lower
transmit power for the higher values of DE parameter. Hence,
the UL and DL sum rate decreases and increases, respectively
with the DE parameter values.

FIGURE 7. DL and UL sum rate of the network versus number of
sub-carriers used in the network.

In Fig. 7, we compare the achieved sum rates for different
numbers of sub-carriers employed by the network, under
the three considered scenarios. In all cases, the sum rates
increase with the number of sub-carriers, and worsen when
the number of sub-carriers is limited to one. In such case, the
interference seen by the UEs is the highest. The performance
of the network improves significantly when the number of
sub-carriers is two, as some interference among the DL and
UL channels is avoided. The performance starts improving
when more sub-carriers are employed by the network. When
the number of sub-carriers is equal to the number of SBSs,
each SBS communicates orthogonally on one sub-carrier,
thus completely eliminating the inter-cell interference.

Finally, in Fig. 8, we compare the queue deviation of the
network with different SBS deployment intensities, for the
three considered scenarios. In this example, we assume that
each UE has six bits of data in the queue at the beginning of
the transmission period. The queue deviation of the network
increases with the number of SBSs in all three setups. This
is because using more SBSs generates an increased interfer-
ence, which leads to a higher queue deviation. Furthermore,
as expected, Setup-C sees a larger queue deviation due to the
EH and DE consumption constraints.
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FIGURE 8. Total queue deviation of the network with SBS intensity.

VI. CONCLUSION
We have investigated the performance of densely deployed
FD small cell BSs at the network level. We assume that each
SBS for its transceiver operations depends on the energy col-
lected from a renewable source. Owing to the SBS short range
of operation, the energy required for performing the decoding
of the UL UEs data is non-negligible and is a function of
UEs data rates. Hence, the energy harvested at the SBS is
shared among theDL andULUEs. Under the practical energy
consumption model, a joint beamformer and power alloca-
tion design, which minimizes the UEs data queue lengths,
is proposed. The proposed optimization problem implic-
itly performs the sub-carrier allocation and UEs scheduling.
A sub-optimal and iterative SPCA-based method is employed
to circumvent the high-complexity approach in solving the
non-convex problem. Centralized and decentralized algo-
rithms are developed to solve the optimization problem.
These algorithms have similar performances; however, the
decentralized one requires less overheads while it exhibits a
slower convergence. Through numerical simulations, the per-
formances of the proposed design under the practical energy
consumptionmodel is compared with the case when the DE is
ignored. Results show the performance gap and advocate the
need for redesigning the beamformers and power allocations
schemes. Results also validate that the FD communications
achieve higher total queue deviation when compared to the
HD communications.
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