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ABSTRACT A supply of minerals is critical to socioeconomic development. However, such a supply also
induces negative impacts on environment and ecology, e.g., leading to dust emission and deposition. An ultra-
low-grade magnetite has been exploited as a new iron type since 2001 in China. In this paper, two Landsat
images were used for monitoring foliar dust in Changhe River Mining Area, China. First, models were
established to estimate foliar dust using vegetation indices (VIs) differences according to laboratory spectral
measurements; normalized differenced VI was selected as an optimal VI for estimating foliar dust amount
based on both field and laboratory spectral measurements (RMSE = 6.58 g/m2), and finally, the spatial
patterns of foliar dust were analyzed by using ancillary high-resolution data. The result showed that most
foliar dust distributed near ore transportation roads and around mining sites and tailings ponds, which was
related to ultra-low-grade characteristics of the iron ore due to large-area extraction and tailings occupation,
and large-amount dust emission released from ore transportation. The remote sensing method for estimating
foliar dust may be beneficial for environmental management in mining areas.

INDEX TERMS Dust estimation, landsat image, VI difference, ultra-low-grade magnetite, vegetation
change.

I. INTRODUCTION
Vegetation covers approximately 70 percent of the Earth’s
land surface and is one of the most important compo-
nents of ecosystems. It is frequently influenced by human
activities [1], [2]. The mining industry plays a crucial role
in supplying minerals and energy for global society [3],
but it also significantly affects the growth and distribu-
tion of vegetation surrounding mining areas. In a mining
area, mining activities, ore transportation, mineral process-
ing and tailings discharge can make an effect on vege-
tation through direct damage and indirect environmental
stress [4]–[8].

With the development of economy, global demand for steel
has accelerated since 2000, and thus iron ore mining activi-
ties have become intensive accordingly [6], [9]. Brazil and
Australia are currently the world’s leading producers of high-
grade iron ore [10]. In China, iron resource is abundant, but
high-grade ores are scarce [11]. Therefore, an ultra-low-grade

magnetite, with the total iron content lower than 20%, has
been extracted by open-pit mining and processed massively
since 2001 in Chengde, Hebei Province, China [12]–[14].
Because the ratio of concentration (the number of tons of
ore required to produce 1 ton of concentrate) is too high
(from 8 to 12), large amount of ore is mined and transported
to processing plants by truck, and large amount of tailings
is produced [15]. Thus, many environmental and ecological
problems are produced including vegetation damage and dust
pollution due to mining activities [14]. Knowledge about
vegetation change would provide valuable insight into the
climatic, edaphic, geologic, and physiographic characteristics
of an area [16]. Therefore, it is necessary to monitor the
vegetation condition overtime and determine what changes
are taking place. For this case, fortunately, remote sensing
is a very useful technology for vegetation monitoring [17].
However, while the spatial resolution of some remote sensing
sensors (e.g., MODIS) is often too coarse to be suitable
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FIGURE 1. Location of the study area. Left: GoogleEarth image; Right: Landsat OLI image (bands 6, 5, 4 vs. RGB). The red
box in the image shows the location of dust deposit map in Fig. 9.

for detecting vegetation change in a mining area, Landsat
sensors may offer great possibilities to fill this gap with a
moderate 30-m spatial resolution and long-term data record.
It means that rates and spatial patterns of vegetation changes
can be extracted from Landsat images. There are many
successful studies on remote sensing of vegetation change
in a mining area. For example, in a gold mining area,
Almeida-Filho and Shimabukuro [5] used time series of
Landsat TM images for mapping and monitoring vegeta-
tion degradation based on image classification techniques.
It was found that the degraded areas increased firstly and
then vegetation was recovered soon over mining areas after
1994. In a coal mining area, Tian et al. [18] used Normalized
Differenced Vegetation Index (NDVI) time series to cap-
ture the fine scale vegetation changes. In some abandoned
lead mines, NDVI extracted from Landsat data was used to
quantify the variation of vegetation condition, and the results
indicated that extensive vegetation degradation had occurred
at a number of previous mining sites during the last several
decades [19].

Without considering seasonal and ephemeral influences,
vegetation changes can be summarized as abrupt changes
and gradual changes [20]. Abrupt changes are often associ-
ated with major alterations in land cover with a significant
change, whereas gradual changes are related to ‘‘within-
state’’ shifts in energy response with a slight change, such
as vegetation damage from insects as an abrupt change and
vegetation decline from air pollution as a gradual change.
Unlike abrupt changes, gradual changes are often overlooked
or ignored [21]. However, there is a strong need for detect-
ing slight vegetation change because of its important role
in ecosystem management [22], [23]. Dust pollution is one
of main environmental problems which can lead to a slight
change of vegetation [24], [25]. Its negative effect on vege-
tation in urban areas has caused people’s attention [26], [27].

Deposited dust on plant leaves can be used as indicators of the
accumulation of inorganic pollutants along an urbanization
gradient [26]. For example, to map dustfall distribution in the
City of Beijing, satellite and ground based spectral data were
integrated to assess dustfall weight in the city [27]. However,
less attention has been paid to mining areas. Usually, dust in
physical and chemical properties in a mining area is different
from other areas. Therefore, the spectral response of some
vegetation polluted with dust created by mining activities
may be expected to be different from that in an urban area
and thus some vegetation indices that might be suitable for
monitoring urban vegetation change may not work for quan-
tifying the effect of dust pollution on vegetation condition in
mining areas.

Therefore, given the vegetation change in an ultra-low-
grade magnetite mining area, the specific objectives of our
study are to,

1) calibrate relationships between deposited dust on leaves
and Vegetation Indices (VIs) in the ultra-low-degrade mag-
netite area based on laboratory measurements and field obser-
vations, and

2) estimate the foliar dust by using VI differenc-
ing approach for mapping foliar dust in the mining
area.

II. STUDY AREA
The study area, called Changhe River Minging Area (about
134 km2), is located in Kuancheng County, Chengde, Hebei
Province, North China (see Fig. 1). It is estimated to have
2.7 billion tons of iron ore in the study area, which accounts
for one third of the magnetite reserves in Hebei Province.
The yearly production of iron concentrate was about 8 mil-
lion tons in 2010. With a mountainous landform, the study
area has an average elevation of 300 to 500 meters and is
covered by dense vegetation. Changhe River is a main river
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FIGURE 2. A flowchart consisting of five steps for detecting vegetation change in the mining area.

in this area. It has a continental monsoon climate with an
annual precipitation of 662.5 mm and an annual temperature
of 8.7◦. There are several vegetation layers distributing in
the study area, including arbor layer, shrub layer and herb
layer. Tree species in the arbor layer mainly include Popu-
lus cathayana, Pinus tabuliformis, Armeniaca sibirica, and
Castanea mollissima. There are many shrub species, such
as Vitexnegundo var. heterophylla, Lespedeza bicolor, and
Ziziphusjujuba var. spinosagrowing in the shrub layer, and
a lot of herb species including Bothriochloa ischaemum,
Artemisia sacrorum, Commelina communis are often seen in
the herb layer.

III. MATERIALS AND METHODS
A. A WORK FLOWCHART
In order to detect vegetation change using remote sensing
data in this study, five steps were taken (see Fig. 2): 1) Field
work for observing in situ vegetation condition and mea-
suring dust amount; 2) laboratory spectral measurement for
estimating dust based on VIs; 3) Landsat image processing
for analyzing VIs differences; 4) accuracy assessment and

selecting VIs; and 5) estimating dust amount and analyzing
its spatial patterns.

B. FIELDWORK
Types of vegetation changes were visually assessed in the
field trip. The field observation data could be used to validate
results of remote sensing detection for the vegetation change
analysis. According to our field observation, dust emission as
a major factor led to vegetation decline in the mining area.
Field measurement of dust was conducted from August 5
to August 9, 2013 (see field plot locations shown in a star
symbol in Fig. 1). It would be used to validate the remote
sensing estimation of the dust. There was no rain during the
field data sampling. Since Landsat TM and OLI data were
used for dust estimation, the sampling plot size was set to
30m×30m to match the image pixel size. The 15 sampling
plots were located within relatively homogenous patches with
their size>50m×50m with an aid of a GPS equipment. Nine
to sixteen leaves evenly located within each sampling plot
were collected and washed in distilled water and then the
water was dried at 70◦C to obtain the dust amount. Then
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TABLE 1. Summary of eight vegetation indices (VIs).

the weight of dust and the area of leaves were measured
respectively to calculate the weight of dust per unit area
(g/m2) as the dust amount per pixel averagely.

C. LABORATORY EXPERIMENT FOR CALIBRATING
RELATIONSHIPS BETWEEN VI DIFFERENCE AND DUST
DIFFERENCE
The laboratory experiment was carried out to measure spec-
tra from plant leaves on which varying levels of dust were
applied in order to quantify a relationship between dust
amount and leaf spectra. For this case, dust deposited upon
leaves around a road was collected using a soft brush and
then scattered on the poplar tree leaves uniformly level by
level with an increment of 4 g/m2. The dust contains 43.33%
SiO2, 16.71% CaO, 9.35% TFe, 9.30% MgO, 8.92% Al2O3,
and 4.26% FeO. For the different levels, corresponding spec-
tra were measured respectively with HR-1024 spectrometer
(American Spectra Vista Corporation (SVC)). The SVC spec-
trometer covers a spectral range of 350-2500 nm with a vary-
ing spectral resolution 3.5 nm for 350-1000 nm, 9.5 nm for
1000-1890 nm, and 6.5 nm for 1890-2500 nm. Halogen lamp
was selected as the light source, with an altitude angle of 60◦.
Then, eight commonly-used broad-band VIs were chosen and
calculated to analyze their relationships with dust amount
covering the leaves such that the final foliar dust difference
might be spectrally estimated according to the calibrated rela-
tionships with VI differences (Table 1). Simple Ratio (SR) is
the first VI designed to monitor vegetation status [28]. NDVI
is the most frequently used VI without assumptions regard-
ing land cover classes, soil type or climatic conditions [29].
Soil Adjusted Vegetation Index (SAVI) is widely used to

TABLE 2. Landsat images used for detecting the vegetation change in the
study area.

describe dynamic soil-vegetation systems from remotely
sensed data because it can minimize the influence of soil
brightness [30]. Transformed Soil Adjusted Vegetation Index
(TSAVI) and Perpendicular Vegetation Index (PVI) can also
reduce soil background effect by considering the parameters
of soil line [31], [32]. Non-Linear Index (NLI) is chosen due
to its advantage in removing leaf angle distribution influence
and view azimuth effect [33]. Modified Simple Ratio (MSR)
is less sensitive to canopy optical and geometrical properties
to assess vegetation conditions [34]. Tasselled Cap transfor-
mation greenness (TCgreenness) was designed to describe the
amount of green biomass by using Landsat TM bands [35].

D. IMAGE PROCESSING AND VIs DIFFERENCING
Two scenes of Landsat TM and OLI images (path 122 and
row 32) were selected for the vegetation change detection
(downloaded from USGS, http://glovis.usgs.gov/). The two
scenes of images were acquired on August 8, 2001 and
August 9, 2013, respectively (Table 2). The two images were
first geometrically registered. Then, the images were atmo-
spherically corrected to surface reflectance by using the Fast
Line-of-Slight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) module of ENVI software [38]. Finally the eight
VIs were calculated respectively using the surface reflectance
spectra retrieved from the two images.

Because the two images were acquired under different
conditions (e.g., sensor difference and light condition differ-
ence), there would be differences between the two images for
calculating the VIs [39]. Therefore, some unchanged areas
(shown in a flag symbol in Fig. 1) based on field observation
were selected to calculate the cross-image VI differences by
using the following equation:

VICross = VIOLI − VITM (1)

where VICross is the VI difference value between OLI and
TM images in the unchanged areas; VIOLI is the VI value
calculated from theOLI image; andVITM is the VI value from
the TM image. The VICross was assumed as spatially uniform
on the entire image. It was used to compensate the image
difference due to imaging condition differences, and thus
a VI difference could be finally calculated by using following
equation:

VIDiff = VIAfter − VIBefore − VICross (2)

where VIDiff is the VI difference; VIBefore is the VI value
before mining (i.e., calculated from 2001 TM image);
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and VIAfter is the VI value after mining (i.e., calculated from
2013OLI image). According to image interpretation and field
observation, pixels were mixed with vegetation and other
features when NDVI was smaller than 0.3. To remove the
effects of non-vegetated areas, pixels with NDVI < 0.3 in
2001 image were masked out in the difference image.

E. VI SELECTION
One of the main purposes for vegetation change detection in
this study is to determine the dust amount in the mining area.
Therefore, it is necessary to select an optimal VI that could
lead to best dust estimation result. For this case, with the cor-
relation coefficient (R) and root mean square error (RMSE)
statistics as criteria, the dust estimation results created with
different VI-difference-based regressionmodels derived from
the laboratory spectral measurements were compared with
in situ measured value. Consequently, an optimal VI (with
a highest R and lowest RMSE value) was selected, which
would be used for detecting vegetation change in the mining
area from 2001 to 2013.

F. FOLIAR DUST ESTIMATION
The spatial patterns and driving forces of vegetation
change were analyzed in the study area by referring
to high-resolution images, which were available through
GoogleEarth as the ancillary data. They were pan-sharpened
color composite images with a resolution of approximate
0.4 m, and acquired from GeoEye satellite on September 20,
2013. Using the images, we could draw boundaries of mining
sites and tailings ponds and extract the fine information of ore
transportation road and river in the mining area to help spatial
pattern analysis.

IV. RESULTS
A. FIELD MEASUREMENT
Based on the field observation, the vegetation near an ore
transportation roadwas significantly influenced by dust emis-
sion (see Fig. 3). In the field trip, dust was measured in the
15 sampling plots near Changfeng and Jingcheng mine sites.
The maximum dust was 78.20 g/m2.

B. RELATIONSHIPS BETWEEN FOLIAR DUST
AND SPECTRA
In the laboratory experiment, the dust levels ranged from 0 to
80 g/m2. It was observed that with increase of dust amount,
the red reflectance increased and the near-infrared reflectance
decreased (see Fig. 4). Furthermore, the commonly-used
VIs were calculated based on the spectral measurements
(see Fig. 5). The statistical results showed that all the VIs
were highly correlated with dust amount, linearly or logarith-
mically (Table 3).

C. VI DIFFERENCES AND VI SELECTION
After the two Landsat images acquired in 2001 and 2013
were atmospherically corrected to the surface reflectance, the

FIGURE 3. Vegetation influenced by dust in the study area. a) Affected
vegetation near the ore transportation road. b) Dust-covered leaves.

FIGURE 4. Spectra of dust-covered leaf with different dust amount.

eight VIs were calculated and VICross was also calculated
according to Equation (1). Their calculation results were
summarized in Table 4.

Based on the relationships between VI differences and
foliar dust difference (Table 3), the dust difference could be
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FIGURE 5. A comparison of spectral response to foliar dust variation for
the eight VIs.

TABLE 3. Relationship between VI difference and foliar dust amount
difference (n = 21).

TABLE 4. Cross-image VI difference between landsat TM and OLI sensors
for the unchanged areas.

estimated by VI differences extracted from the two image
data. Before the mining activities, since dust emission had
little influence on plant leaves in this study area, the dust
amount was set to zero in TM image acquired in 2001.
Therefore, the dust amount in OLI image acquired in 2013
could be estimated directly using following equation:

D = VIDiff · L (3)

where D is the dust amount in the year 2013, VIDiff is the VI
difference between VIafter and VIbefore and L is a coefficient
(e.g., -286.5 g/m2 for NDVI) derived from laboratory results
in Table 3. We used the measured dust values from the 15
sampling plots to assess the accuracy of the dust amount
estimated using each VIDiff. The assessment results were
listed in Table 5. From the table, the result showed that the
dust values estimated using NDVI difference resulted in the
lowest RMSE and highest R (RMSE=6.58 g/m2, R=0.90)

TABLE 5. Accuracy of dust estimation based on VIs difference (n=15).

compared to those with the other VIs (Table 5). Therefore,
NDVI was selected as an optimal VI for dust estimation.

D. FOLIAR DUST ESTIMATION IN THE MINING AREA
From the unchanged samples, the standard deviation
(σ ) value of NDVI difference was 0.025. For detecting
unchanged and changed vegetation, the standard deviation
multiplied by a constant (γ , which is from 2.5 to 3.5) is
often used to determine the threshold [40]. Considering the
difference of sensors, atmospheric condition and solar illu-
mination, γ was set a value of 3.5 in this study. On the
other hand, given that ultra-low-grade magnetite could not
release toxic element into soil and water under non-acidic
conditions [41], the dust pollution was considered as a main
stress factor influencing vegetation growth. According to
laboratory result, NDVI was decreased by 0.3 when the dust
was 80 g/m2. Therefore, the NDVI difference values [-0.3 to -
0.088(γ σ )] were selected for the foliar dust estimation using
Equation (3). Then the dust distribution was mapped using
the NDVI difference image (see Fig. 6). The mapped result
was close to the measured value (RMSE= 6.58 g/m2, n=15)
(see Fig. 7).

Information of river, road, mining site and tailings pond
was extracted according to GoogleEarth-based image (see
Fig. 8). The result indicated that the dusty points were located
along both roadsides and around the mining sites (see Fig. 9).

V. DISCUSSION
NDVI was selected as the VI for dust estimation due to
its best performance. In the study, only the poplar (Populus
cathayana) leaves were selected to load the dust samples in
the laboratory spectral measurement, which might be in favor
of using NDVI. However, there still are major tree species
such as Populus cathayana, Pinus tabuliformis, Armeniaca
sibirica, and Castanea mollissima distributed in this study
area, which are not suitable for using SAVI and TSAVI
for detecting vegetation change [2]. Therefore, SAVI and
TSAVI couldn’t perform very well among these VIs because
they are not suited for environments with various vegetation
types [2]. PVI could reduce background influence on the
tree canopy spectra at low vegetative covers [28]. However,
vegetative coverage is generally medium to high in the study
area. Thus, PVI couldn’t perform very well among these
VIs. Furthermore, it was found that NLI and MSR were
not applicable in our study, although they are not sensitive
to leaf angle distribution and canopy optical and geometri-
cal properties. In short, NDVI was suitable for foliar dust
estimation in this study because it is applicable for various
vegetation species/types. This conclusion was consistent with
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FIGURE 6. Dust mapped by NDVI difference image in the study area. The blue box in the image
shows the location of dust map in Fig. 9.

FIGURE 7. Measured foliar dust values of the 15 sampling plots against
their predicted dust values using the NDVI difference estimating model.

those drawn by other studies in which NDVI was more
useful than other VIs in monitoring change of vegetation
conditions [2]. In fact, NDVI was widely used for land-cover
change detection [42]–[44].

When using NDVI difference to estimate dust amount in
this study, the radiometric difference between the two scenes
of images, caused by sensor difference and light condition
difference, could be ignored. This is because the NDVI pro-
cessing itself could remove or compress partial effect of
atmospheric and soil, etc. on target spectra (vegetation spectra
in this study), and NDVI difference could also weaken the

FIGURE 8. Information of river, road, mining site and tailings pond
extracted from GoogleEarth image.

effect of radiometric difference between the two images on
the estimated result of dust using NDVI as an explanatory
variable. We know that OLI sensor is different from TM sen-
sor because their band widths are different (OLI bands with
narrower band widths than TM). The light conditions were
also slightly different because of the different Sun azimuth
and elevation angle (Table 2). Therefore, cross-image cali-
bration was necessary when using VI differencing approach
to estimate vegetation changes. The cross-image NDVI
difference (0.019) in our studywas close to the result (0.0165)
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FIGURE 9. Dust mapped by NDVI difference image in the mining area.

obtained by Gong et al. [37] although they compared ETM+
with OLI in their study and we compared TMwith OLI in our
study.

Additionally, yearly NDVI might be affected by climate
factors including temperature (T ) and precipitation (P).
In the study area, temperature would make more sense to
affect NDVI [45]. Fortunately, the mean annual tempera-
ture is 8.30 ◦C in 2001 and 8.34 ◦C in 2013, while the precip-
itation was normal in both two years. Therefore, the NDVI
difference caused by climate factors could be overlooked
in this study. In case there exists a significant variation of
climate factors (T , P) during the 12 years, which may lead
to the NDVI change for those vegetation cover unchanged
areas, our small value (0.019) of the VICross could normalize
and compensate the effect of the variation on the NDVI
change. Moreover, weather condition should be considered
during the data collection. Rain may scour the dust on leaves.
Therefore, rainy days should be avoided to ensure the validity
of data when remote sensing data and field foliar dust data are
collected.

The dust emissionwas serious due to the frequent ore trans-
portation by truck in the study area. For example, the annual
fine iron concentration is one million tons, which means
about 30 thousand tons of ore needed per day. One truck
load was about 50 tons, and there were should 600 trucks
for the transportation per day. The transportation derived dust
emission is so intensive daily that both roadsides are filled
with the dust. In our study, RMSE of dust estimation was
6.58 g/m2. There were some reasons for the estimate error.

Firstly, the relationship between NDVI difference and dust
was developed in a laboratory experiment. In the experiment,
we flatten the leaf for spectral measurement on the black
background and we didn’t consider the canopy structure fac-
tor. However, the tree leaf inclination is actually more than
0 degree. Therefore, it would contribute to error. Secondly,
within a pixel area (30 m × 30 m), there might exist other
components besides poplar trees, such as road surface, which
could be deposited by dust. Such a pixel could be called a
mixed pixel, although it might just include a small portion
of other components. Thus, the estimated dust amount based
on pure pixel would be different from the true value from
a mixed pixel. Additionally, in fact, dust might affect the
metabolic process of a leaf and then change its structure
and pigments, which would have an impact on the leaf
spectra [46]. However, this process was not considered in this
laboratory experiment of ours.

VI. CONCLUSIONS
Based on both field and laboratory spectral measurements,
foliar dust was estimated and mapped using NDVI differ-
ence approach with Landsat images in the ultra-low-grade
magnetite mining area, Changhe River Mining Area, China.
The result was validated and analyzed by field observations
and GoogleEarth image. The main conclusions were drawn
through this study as follows.

1) According to laboratory spectral measurements, mod-
els might be established to estimate foliar dust using VI
differences.
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2) Due to the high accuracy of dust estimation (i.e., RMSE
= 6.58 g/m2, R2

= 0.803), NDVI might be selected to
estimate dust amount using Landsat imagery. Spatial analysis
results indicated that dust-covered vegetation distributed near
the ore transportation roads and around mining sites and
tailings ponds.

3) The ultra-low-grade magnetite exploiting needs to
extract and transport massive iron ore and generates massive
tailings. This ore processing would lead to heavy dust pol-
lution, which finally results in vegetation degradation in a
mining area.

In an ultra-low-grade magnetite mining area, dust emission
is greater than other areas. Therefore, the study area was
selected in this area. However, the method can be adopted
for other areas by considering the dust sample difference.
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