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ABSTRACT Light detection and ranging (LIDAR) has become a part and parcel of ongoing research in
autonomous vehicles. LIDAR efficiently captures data during day and night alike; yet, data accuracy is
affected in altered weather conditions. LIDAR data fusion with sensors, such as color camera, hyperspectral
camera, and RADAR, proves to be a viable solution to improve the quality of data and add spectral
information. LIDAR 3-D point cloud containing intensity data are transformed to 2-D intensity images for
the said purpose. LIDAR produces large point cloud, but, while generating images for limited field of view,
data sparsity results in poor quality images. Moreover, 3-D to 2-D data transformation also involves data
reduction, which further deteriorates the quality of images. This paper focuses on generating intensity images
from LIDAR data using interpolation techniques, including bi-linear, natural neighbor, bi-cubic, kriging,
inverse distance, and weighted and nearest neighbor interpolation. The main focus is to test the suitability
of interpolation methods for 2-D image generation, and analyze the quality of the generated 2-D image.
Image similarity metrics, such as root mean square error, normalized least square error, peak signal-to-noise
ratio, correlation, difference entropy, mutual information, and structural similarity index measurement, are
utilized for camera and LIDAR image matching, and their ability to compare images from heterogeneous
sensors is also analyzed. Generated images can further be used for data fusion purpose. Images generated
using LIDAR points have a relevant distance matrix as well, which can be used to find the distance of any
given pixel from the image. In addiiton, the accuracy of interpolated distance data is evaluated as well by
comparing it with the original distance values of traffic cones placed in front of vehicle. Results show that
the inverse distance weighted interpolation outperforms other selected methods in 2-D image quality, and
images from nearest neighbor appear brighter subjectively.

INDEX TERMS Image generation, intelligent vehicles, interpolation, sensor fusion.

I. INTRODUCTION
Light Detection And Ranging (LIDAR) has become an essen-
tial part of ongoing research in autonomous vehicles. LIDAR
iswidely used inmany applications including urban planning,
telecommunication, and security services and most recently
in intelligent vehicles for environment sensing. The capacity
of LIDAR to capture data during all time of the day alike
makes it very attractive solution to capture 3D surface infor-
mation [1]. Moreover, LIDAR can work well during day and
night and even shadows do not affect its performance. Mod-
ern advanced High Definition LIDAR (HDL) like Velodyne
HDL-64E can produce exponentially more data intensive

point cloud (1.3 million points per second) [2]. Besides it
is equipped with a GPS (Global Positioning System) as well
which is used for mapping and tracking purposes. However,
this GPS faces hindrances in urban areas, in that case RFID
(Radio Frequency Identification) technology [3], [4] can be
used for tracking and positioning. In a similar fashion, use of
IOT (Internet of Things) sensors is another potential approach
[5] which is being tested by many researchers for similar
purposes. LIDAR is a laser scanning technology which can
provide very accurate distance and intensity information in
a fast manner. However, this technology is not beyond lim-
itations. In spite the fact that LIDAR is less affected by
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change in weather; precipitation and rain scatters as well
as absorbs its waves and captured data suffers from noise
and disparity. Additionally LIDAR data do not contain color
information. LIDAR data is often fused with other sensors
like color camera, hyperspectral camera, RADAR etc. to
add spectral information which achieves increased object
detection accuracy and robustness [6]–[8]. Conventionally,
LIDAR 3D data is transformed into 2D images for data
fusion. Data transformation is not a trivial task for many
reasons. Firstly, Velodyne LIDARwhen mounted on vehicles
is intended to generate points for 360◦ Field of View (FoV)
while camera has small FoV in comparison. So, restricting
LIDAR FoV reduces data points thus resulting in low res-
olution image when 3D to 2D transformation is performed.
Secondly, LIDAR has orthographic projection which needs
to be converted to perspective projection to match camera
projection. This projection transformation is often not very
ideal. Last but not least, to formulate 2D images from LIDAR
scattered data points, interpolation is performed which may
produce very different results depending upon the density of
the data.

This paper focuses on transforming LIDAR 3D point cloud
to 2D images using various interpolation techniques and
analyzing the quality of the generated images. The quality
of generated images is evaluated using image similarity as
a quality parameter and various image similarity metrics are
used. Moreover, generated 2D images also have associated
distance matrix and its accuracy is checked by comparing it
with actual distance of placed objects at manually measured
distance.

This paper is organized in the following manner. Section 2
describes the related work. Section 3 narrates the interpola-
tion techniques used for the experiment. Section 4 is about the
experiment setup, methodology and data acquisition. Experi-
ment results are discussed in section 5. In the end conclusion
is drawn.

II. RELATED WORK
LIDAR is a remote sensing technology which has been used
since 1960’s for a variety of tasks including flood risk map-
ping, oil and gas exploration surveys, engineering & con-
struction surveys, coastal area mapping, forestry and urban
modelling etc. Now such technology has been deployed in
transport planning, accident/crime scene generation, imaging
and visualization and gaming as well. It has been very attrac-
tive solution for environment sensing in autonomous vehi-
cles for the last decade especially after Defense Advanced
Research Projects Agency (DARPA) challenge in 2005. Other
than being used to create Adaptive Cruise Control (ACC)
system for automobiles, it is widely used to create 3D maps
of the environment for autonomous driving tasks. Google
robotic car is just one of the examples which is equipped
with this high definition LIDAR for pedestrian and obstacle
detection and similar autonomous tasks.

Latest HDL e.g. Velodyne HDL-64E, can produce very
dense points cloud by generating 1.0 million to 1.3 million

points per second. In spite of massive data point cloud,
LIDAR points are scattered and objects detectability becomes
difficult as the distance between LIDAR and object increases.
Moreover, we have blank spots (gaps) where point cloud is
sparse and scattered. In order to cater this problem, often
interpolation is applied to fill in the gaps and have a uniform
distributed point cloud. Image inpainting can also be used
to fill the gaps but often it also uses interpolation. LIDAR
intensity data is used for interpolation and 2D images are
generated which can be fused with other sensors for road
detection [9], curb detection [10], obstacle detection [11],
roadside parked vehicle detection [12], lane detection [13]
and assisting drivers at intersections [14]. Various research
works exist in literature which use interpolation on LIDAR
data to generate Digital Elevation Models (DEM), Digital
Terrain Model (DTM), data fusion and lane detection etc.

Although LIDAR has been widely used in Geographic
Information Systems (GIS), yet quite a few papers are found
which use interpolation techniques on LIDAR data with
respect to autonomous vehicles. P. Steinemann, J. Klappstein,
and J. Dickman propose an algorithm in [15] for automatic
detection of vehicles by registering consecutive outline con-
tours in LIDAR generated surface. A two dimensional bilin-
ear interpolation is used to increase the number of nodes
in contour surface as the initially generated surface from
LIDAR is of low resolution. D. A. Thornton, K. Redmill, and
B. Coifman present in [16] a research on surveying parallel
parking in opposite direction of the travel. Their proposed
algorithm involves the generation and smoothing of GPS
data from LIDAR. Piecewise Cubic Hermite interpolating
Polynomial algorithm is applied to 4 Hz positioning data to
achieve higher frequency data. H. Guan, J. Li, Y. Yu, Z. Ji, and
C. Wang investigate use of LIDAR in [17] to automatically
extract road markings. Initially, LIDAR is used to extract 3D
road surface points. Later, acquired surface is interpolated
into georeferenced features by the use of Inverse Distance
Weighted interpolation method.

L. Smadja, J. Ninot, and T. Gavrilovic work on auto-
matic road extraction in [18] using LIDAR data along with
color camera. In the first stage, LIDAR is used to detect
road boundary candidates. Later, 3D NURUS (Non Uniform
Rational Bezier Spline) parametric curve interpolation is used
to approximate sparse and irregularly spaced LIDAR data
into a regularly spaced grid. A. A. Matkan, M. Hajeb, and S.
Sadeghian introduced a new method in [19] to extract road
from LIDAR data in which classification is performed on
LIDAR data using Support Vector Machines. Since, LIDAR
data has holes so, spline interpolation is utilized to automat-
ically locate and fill these gaps to get a smooth and higher
resolution data grid. D. Gonzales-Augilera, P. Rodriguez-
Gonzalvez, and J. Gomez-Lahoz in [20] investigated the
registering of 3D range images from laser scanners with 2D
high definition image from digital camera using collinearity
condition. They apply bilinear interpolation to alleviate the
influence of gaps in LIDAR data and get higher resolution
image.
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C. Axel in [21] employs Bi-linear interpolation to gener-
ate image from Sick LMS 151 LIDAR which is then fused
with Complementary Metal Oxide Semiconductor (CMOS)
Canon EOS color camera in indoor environment. J. Li in [22]
uses interpolation for data fusion using 2D Hokuyo LIDAR
with Nikon S3000 color camera. First camera projection is
applied to project LIDAR 3D points into a plane and then
an intensity image is acquired by interpolation of LIDAR 2D
points. Nearest Neighbor interpolation technique is applied
for this experiment. B. Yang, P. Sharma, and R. Nevatia
in [23] make use of missing point interpolation to remove
noise and enhance the quality of aerial LIDAR data for
vehicle detection. C. Reinholtz, D. Hong, A. Wicks, and
A. Bacha utilize spline interpolation in [24] for lane detection
using Sick LMS on Ford Escape during DARPA challenge
2007. R. Rao, A. Konda, D. Optiz, and S. Blundell in [25]
investigate Inverse Distance Weighted, Spline, Tinning and
Natural Neighbor interpolation to generate the ground surface
model using terrestrial LIDAR data on vehicle. The use of
interpolation techniques result in high fidelity surface with
good curb, road and obstacle features.

Above cited works have one or more limitations. First,
interpolation is used either to generate a uniformly space
grid or only one interpolation technique is applied; even-
tually, comparing interpolation performance is not possible.
Second, interpolation is used to produce images using point
clouds generated indoor. Since, indoor environments are
often simple, narrow and constrained so point cloud is dense
and almost evenly distributed thus producing good intensity
image. In contrast, outdoor environments are complex where
both LIDAR and other objects like vehicles, pedestrians etc.
are moving at the same time leading to uneven point cloud.
Moreover, in outdoor environment where we don’t have tall
obstacles LIDAR can sense through long distance (up to
100 meters) which causes thin and scattered point cloud. So,
an independent research needs to be initiated to achieve the
following objectives.
• To investigate the feasibility of using interpolation tech-
niques to generate 2D intensity images from 3D point
cloud obtained using Velodyne HDL LIDAR.

• Analyze the quality of interpolated images by using
similarity measure between 2D interpolated image and
a vision camera image.

• Generating a 2D image with associated distance matrix
and evaluating the accuracy of distance data.

• Evaluating the suitability of similarity measurement
techniques for images from heterogeneous sensors.

III. INTERPOLATION
Interpolation is a statistical technique capable of potentially
generating the intermediate unknown points of independent
variables for spatial data. All interpolation methods are
based on Tobler’s first law of geography which states that
‘‘Everything is related to everything else, but near things
are more related than distant things’’ [26]. Since, LIDAR

point cloud is not equally distributed, interpolation is used to
generate unknown points using the position and magnitude of
the known points. A large number of interpolation techniques
exist and their selection depends primarily on the nature of
data. Albeit, many state-of-the-art interpolation techniques
are devised including NEDI (New Edge Directed Interpo-
lation), MEDI (Modified Edge-Directed Interpolation, ICBI
(Iterative Curvature Based Interpolation), etc [27]–[29]. yet,
these techniques are not intended for LIDAR data interpo-
lation. These are adaptive interpolation techniques which
are utilized mainly for image zooming and image resolution
enhancement where we have low resolution camera images.
LIDAR data is irregularly spaced which means that the points
do not have any particular symmetry over the extent of the
areas and we have missing data. So, interpolation techniques
based on gridding methods are inevitable to generate a regu-
larly spaced grid from LIDAR data. We select non-adaptive
interpolation techniques to use in our experiment which are
briefly described here.

A. BI-LINEAR INTERPOLATION
Linear interpolation is a numerical analysis technique which
uses linear polynomials to derive a straight line between the
given known points. Bi-linear interpolation extends this idea
and performs interpolation on both directions. Equation used
for bi-linear interpolation is:

y = y0 + (y1 − y0)
x − x0
x1 − x0

(1)

Where y is the unknown value at x for the interval (x0, x1).

B. NATURAL NEIGHBOR INTERPOLATION
Natural neighbor interpolation invented by Robin Sibson,
uses Voronoi and Delaunay diagrams of a discrete set of
spatial points [30]. In order to interpolate a value, it applies
weight to the closest points based on their proportionate areas.
Equation used for natural neighbor interpolation is:

G(x, y) =
n∑
i=1

wif (xi, yi) (2)

Where G(x, y) is the estimated value of natural neighbor
at (x, y), n is the number of nearest neighbors to be used for
interpolation, f (xi, yi) represents observed values at (xi, yi)
and wi is the associated weight. The weights are calculated
while deciding how much of neighboring area needs to be
stolen when making diagrams.

C. BI-CUBIC INTERPOLATION
Bi-cubic interpolation, an extension to cubic interpolation
is used for two dimensional grid data. Contrary to bi-linear
interpolation whose results has edges, bi-cubic interpolation
produces surfaces with smooth edges. If the function values f
and the derivatives fx , fy and fxy are known for the four corner
(0, 0), (1, 0), (0, 1) and (1, 1) then, interpolated surface is
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given by:

p(x, y) =
3∑
i=0

3∑
j=0

aijx iyj (3)

D. INVERSE DISTANCE WEIGHTED INTERPOLATION
Inverse Distance weighted (IDW) interpolation is one of the
most frequently used interpolation techniques for LIDAR
data. The core idea of this technique is that nearby points are
more alike than those which are far apart. Weights assigned
to the points closer to the prediction location are greater than
those far away. It is calculated using the following equation:

∧
v =

∑n
i=1

1
di
vi∑n

i=1
1
di

(4)

Where vi is the known value and di, . . . , dn show the
distance to the known points.

E. NEAREST NEIGHBOR INTERPOLATION
Nearest Neighbor (NN) interpolation is the simplest of inter-
polation techniques to implement. In lieu of calculating the
weights of the neighboring points this method simply deter-
mines the value of the nearest neighbor and uses its intensity
value for the unknown point.

F. KRIGING
Kriging is one of the famous spatial interpolation techniques
in which the surrounding values are given weights to deter-
mine a predicted value for an unmeasured value. Kriging
thus takes into account both the distance and the degree of
variation of known points to estimate unknown points. It also
provides error estimation for each interpolated point which
is very helpful to determine the confidence of the modeled
sample. Kriging is performed using:

∧
z =

n∑
i=1

wizi (5)

Where zi is the sample value at location i, wi is a weight
and n is the number of samples.

IV. MATERIALS AND METHODS
This section provides the details of the experiment setup,
sensors used for the experiment and methodology adopted to
conduct the experiment.

A. VELODYNE HDL-64E
It is a high definition LIDAR from Velodyne, equipped with
64 laser fixed on upper and lower laser blocks. Both laser
blocks are rotated as a single unit instead of single laser firing
through mirror rotation. Point cloud obtained from Velodyne
HDL is exponentially denser due to its physical design. The
sensor provides a 360◦ horizontal FoV and a 26.8 vertical
FoV while angular resolution is 0.09◦ [2]. For the experiment
15 Hz spin rate is used. Since, laser scanner has errors in
distance and intensity data so, its calibration is also necessary.

FIGURE 1. Sensors’ position on the vehicle.

FIGURE 2. Placement of traffic cones for distance measurement.

For our experiment Matlab routines provided in Velodyne
HDL-64E S2 manual are used for distance and intensity data
correction.

B. GO PRO HERO 4 BLACK
It is a 12.0 Mega Pixel (MP) CMOS vision camera with 94.4
vertical FoV and 122.6 horizontal FoV which can provide a
screen resolution of up to 3840x2160. It’s Frames per Second
(fps) ranges from 24 to 120 depending upon the chosen video
resolution. A video resolution of 1920x1080 with 30 fps is
selected for the experiment.

C. EXPERIMENT SETUP
For data collection Velodyne HDL-64E and Go Pro cam-
era mounted on the vehicle are used in the urban area of
Gyeongsan, Republic of Korea. Camera and LIDAR are
mounted on vehicle roof at the same position. Fig. 1 shows
the sensor placement and their corresponding coordinate sys-
tems. Data is collected between 2:00 and 4:00 pm for clear
weather conditions in themonth of September, 2016. Temper-
ature is 26◦C, visibility 10 km, wind 11 km/h, humidity 62%,
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FIGURE 3. Data flow chart for adopted methodology.

dew point 17◦ and barometer is 1012.00 mb. Data filtering
and transformation is performed using Matlab R2015b by
taking a single frame. One frame implies one 360◦ scan of
LIDAR unless otherwise specified. Intel core i-3 is used for
data transformation and interpolation, with 4GB RAM on
Windows 8.1 operating system.

The purpose of the experiment is to generate 2D images
with distance data as well. Similarly, in addition to checking
the quality of interpolated images, the accuracy of inter-
polated distance data needs to be evaluated. Since, camera
image is used as a reference image for quality analysis, so
in a similar fashion we need reference distance data as well.
We use traffic cones at specific distance to get the reference
distance data. The setting of traffic cones is given in Fig. 2.
We place 5 traffic cones in front of vehicle, each with a
distance of 1 meter from other. The first traffic cone is placed
at exactly 17 meters from the LIDAR. The distance mea-
surement is done manually using measurement tape. Later,
these traffic cones are detected in the interpolated image and
their corresponding interpolated distance is compared with
original distance to check the accuracy of the interpolated
distance data.

Fig. 3 shows the flow chart for the adopted methodology.
In the following each step of the experiment is described
separately in detail.

Step 1: LIDAR scan has data for 360◦ horizontal FoV
however, we need the data which shows only the front view
from vehicle. So, data filtering is performed for 90◦ (LIDAR
angle between 0◦ to 45◦ and 315◦ to 360◦) horizontal FoV.
Step 2: Distance and intensity data is separated from

LIDAR point cloud to generate intensity images. As a result
we get two matrices: first contains the intensity data while
second has distance data. Coordinates are represented using
L(XL , YL , ZL) for LIDAR, C(XC , YC , ZC ) for camera and
i(Xi, Yi) for image displayed on monitor.
Step 3: Intensity data contains intensity values for a given

x, y and z coordinates for LIDAR. Since LIDAR coordinate
system is different than camera, we need to translate the
LIDAR coordinates into camera coordinates. Equation 6 is
used for this transformation:

X = PM

X =

[
x
y
z

]c

M =

[
x
y
z

]L
P =

[
RT3×3 T3×1

]
(6)

Where X is 3×1 matrix for camera image coordinates,
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FIGURE 4. Pinhole camera model.

P shows 3×4 camera extrinsic parameters containing 3×3
rotation and 3×1 translation from LIDAR to camera while
M represents 3×1 3D LIDAR coordinates.
Step 4:Now 3D camera image to 2D image transformation

is performed. Camera calibration is also performed at this
stage on the images containing checkers board to get the
intrinsic and extrinsic parameters of color camera. Camera
3D to 2D image is transformed using the principle of pinhole
camera projection given in Fig. 4.

In Fig. 4, Z represents the optical axis whileUC andVC are
camera world coordinates. Then u and v are obtained using
the triangulation rule as follows:

u = f
x
z

v = f
y
z

(7)

Where u and v are the points in 2D image coordinates and f
is the focal length.
Step 5: 2D image generated fromLIDAR point cloud trans-

formation is of very poor quality. Data interpolation is applied
with the objective to fill in the gaps and improve the resolution
of the image. Selected interpolation techniques are applied to
the low resolution image to get the higher resolution image.
Step 6: Image quality of interpolated images is evaluated

using image similarity measure as a quality parameter; the
more similar it is to the reference image, the higher quality
it possesses. Image similarity methods (metrics) are classi-
fied into objective and subjective methods [31]. Objective
methods are based on theoretical models and Root Mean
Squared Error (RMSE), Signal to Noise Ratio (SNR) are its
two examples. On the other hand, subjective methods are
based on mathematical foundations like Structural Similarity
Index Measurement (SSIM).

Literature is filled with many image similarity methods,
we have selected a few which include both pixel based
intensity and structural similarity methods. We have cho-
sen seven image similarity methods including RMSE, Nor-
malized Least Square Error (NLSE), Peak Signal to Noise
Ratio (PSNR) and Correlation (CORR). RMSE, NLSE,
PSNR and CORR are most commonly used approaches for
image comparison. The definitions of these metrics are given

in Equations 8-11. In given equations R(x, y) and I(x, y)
represents the reference and target image respectively while
M×N shows the size of the image and L is the maximum pixel
value.

RMSE =

√∑M
m=1

∑N
n=1 [R(m, n)− I (m, n)]

2

MN
(8)

NLSE =

√√√√∑M
m=1

∑N
n=1 [R(m, n)− I (m, n)]

2∑M
m=1

∑N
n=1 [R(m, n)]

2
(9)

PSNR = 10 log10

(
L2

1
MN

∑M
m=1

∑N
n=1 [R(m, n)− I (m, n)]

2

)
(10)

CORR =
2
∑M

m=1
∑N

n=1 R(m, n)I (m, n)∑M
m=1

∑N
n=1 R(m, n)2 +

∑M
m=1

∑N
n=1 I (m, n)

2

(11)

Apart from above mentioned methods, three sophisticated
methods Mutual Information (MI), Difference Entropy (DE)
and SSIM [32], [33] are also selected. The SSIM proposed
by Wang and Lohmann [34] uses the foundation of human
perception about the scene. As human visual system is highly
capable of getting the structural information so the loss of
structural information is a good measure for the approxima-
tion of image distortion. The SSIM is measured as:

SSIM =
(2µRµI + c1)+ (2σRσI + c2)(
µ2
R + µ

2
I + c1

) (
σ 2
R + σ

2
I + c2

) (12)

Where µR and µI represent the mean values while σR, σI
and σRI show the corresponding variance values for reference
and target images respectively. Two constants C1 and C2 are
defined to tackle the situations when denominators get close
to zero and are calculated using subjectively selected K1, K2
and dynamic range of the pixel values with C1 = (K1L)2 and
C2 = (K2L)2. The entropy difference is about the difference
between the average amount of information contained in two
images and is calculated using:

DE=

∣∣∣∣∑L−1

g=0
PR(g) log2PR(g)−

∑L−1

g=0
PI (g) log2 PI (g)

∣∣∣∣
(13)

Where PR(g) and PI (g) represent the pixel values for the
reference and target image respectively. The MI metric con-
siders the normalized joint gray level histogram and nor-
malized marginal histogram of the two images. The MI is
calculated using Equation 14, where hRI (i, j) is the normal-
ized joint gray level histogram of two images hR(i) and hI (j).

MI =
∑L

i=1

∑L

j=1
hRI (i, j) log2

hRI (i, j)
hR(i)hI (j)

(14)

Selected image similarity measurement methods are uti-
lized to measure quality of interpolated images.
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FIGURE 5. LIDAR point cloud for scan of 360◦ horizontal FoV.

FIGURE 6. LIDAR filtered point cloud for scan of 90◦ horizontal FoV.

V. RESULTS AND DISCUSSIONS
LIDAR single frame is taken and filtering is
done to get the data for desired FoV. Fig. 5 shows the
result for complete single scan while Fig. 6 shows the
filtered point cloud. After data filtering, LIDAR data

separation into distance and intensity is performed. LIDAR
intensity data is to be used to generate 2D intensity image
while distance data is used to generate distance matrix.
The generated distance matrix contains the distance value
for each pixel of 2D intensity image. Camera intrinsic
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FIGURE 7. (a). Camera image before calibration. (b). Camera image after calibration and correction.

TABLE 1. Results for image similarity metrics.

FIGURE 8. 2D image generated from LIDAR point cloud

and extrinsic parameters are achieved using camera
calibration.

Moreover, due to wide FoV of Go Pro camera, image is
distorted and its correction is necessary as camera image
serves as a reference image to check the quality of interpo-
lated image. Camera calibration is performed using Matlab
calibration toolbox. Fig. 7 shows camera images before (a)
and after (b) calibration.

Now camera 3D to 2D image transformation is carried
out using the principle of pinhole camera. Fig. 8 shows that
initially generated 2D image is of poor quality. Image quality
is affected primarily due to translation of 3D camera coordi-
nates to image coordinates which lead to overlapping of many
pixels. We can see in Fig. 8 that there are blank spaces in
the image, additionally the image is of low resolution. Image
is concentrated in the center while on the sides data is very
sparse. Since, data gathered from LIDAR is dense at center
while it becomes scattered as we move away from the center

of the LIDAR so, objects have more visibility in the center of
the image as compared to at the corners.

Interpolation techniques are applied to fill the gaps and get
higher quality image. Selected interpolation techniques are
applied and results are given in Fig. 9 (a-f).

To evaluate the quality of interpolated images, image sim-
ilarity measuring metrics described in section 4.3 are used.
Table 1 shows the results of selected image similarity metrics
using reference image given in Fig. 10 and images generated
from interpolation techniques.

Results indicate that RMSE and NLSE have almost iden-
tical behavior to discriminate the distortions caused by
interpolation except for the image generated using kriging.
Values of PSNR and CORR for selected interpolations
are identical for all interpolated images, an indication of
their inability to check image similarity from heterogeneous
sensors.

For DE, zero means a perfect match between two images.
DE value shows that Nearest Neighbor interpolated image
is closer to the reference image. With MI, higher value
shows strong relationship between the images; the higher the
MI value, the stronger the similarity between the compared
images is. MI values is higher for IDW, kriging and Bi-cubic
interpolation indicative of higher similarity between interpo-
lated and reference image.With SSIM, a value 1 demonstrates
a perfect match of the given images. Since, SSIM is more
sensitive to degradations caused by blur, compressions and
objects displacements so, the values are lower. SSIM and MI
are in agreement for image similarity results.

Since the purpose of this research is to generate 2D images
with related distance data, so to check the accuracy of
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FIGURE 9. (a). 2D image generated from Bi-linear interpolation. (b). 2D image generated from Bi-cubic interpolation. (c). 2D image generated from
Natural Neighbor interpolation. (d). 2D image generated from kriging interpolation. (e). 2D image generated from IDW interpolation. (f). 2D image
generated from Nearest Neighbor interpolation.

FIGURE 10. Camera reference image.

distance data is also very important. Table 2 shows the error
in interpolated distance for five traffic cones.

Fig. 11 shows that five traffic cone heads are detected and
their corresponding distance are found in the distance matrix.

FIGURE 11. Detected traffic cones.

Table 2 shows that collectively Bi-linear and Nearest
Neighbor has lowest error for distance interpolation. Since,
interpolated distance is subtracted from the original distance,
negative sign indicates that the interpolated distance is greater
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TABLE 2. Results for error (meters) in distance interpolation.

than the original distance. Table 2 shows that Nearest Neigh-
bor interpolation has the lowest (bold value in Table 2) error
in distance while the highest (bold underlined value in Table
2) error in distance is when distance matrix is generated using
kriging. Results indicate that the error in interpolated distance
may vary between 5.0 cm to 13.28 meters.

In spite that image from Nearest Neighbor appears more
bright and sharp, analysis of image similarity metrics indi-
cates that IDW interpolation produces 2D images which are
more similar to camera images with reference to both pixel
intensity and structural composition. However, if we consider
accuracy of distance interpolation Nearest Neighbor interpo-
lation outperforms other interpolation techniques as, it has
the smallest error of 5cm. With huge errors given in Table 2,
use of interpolation techniques especially kriging for distance
data is questionable, however we believe further experiments
may reveal the cause of such errors and improve the accuracy.

VI. CONCLUSIONS
In this paper raw LIDAR data is processed using Matlab to
generate 2D intensity images matching to a specified camera
parameters. First LIDAR data is filtered and separated into
intensity and distance data. Later data is transformed into
2D image using pinhole camera model and camera intrinsic
and extrinsic parameters acquired using camera calibration.
Since, 2D image is of very poor quality and low resolution,
after wards six interpolation techniques Bi-linear, Natural
Neighbor, Bi-cubic, Kriging, Inverse DistanceWeighting and
Nearest Neighbor are utilized to enhance its quality and reso-
lution. Image similarity is used as a quality parameter to eval-
uate interpolated images. Image similarity metrics including
RMSE, NLSE, CORR, PSNR, DE, MI and SSIM are used
to analyze the quality of interpolated images. To check the
accuracy of the distance interpolation, interpolated distance
is compared with the manually measured distance.

Our experiment reveals that interpolation techniques are
suitable enough to generate good images even when the data
is scattered. Results show that IDW interpolation is accurate
with respect to objective image quality while Nearest Neigh-
bor interpolated images appear brighter. Additionally, image
similarity metrics used in the experiment show that images
generated by IDW interpolation are more similar to camera
in terms of both pixel intensity and structural information.

Nearest Neighbor interpolation is more accurate regarding
distance data with a lowest error of 5 cm. It is also observed
that RMSE, NLSE, CORR and PSNR are not good mea-
sures when comparing images from heterogeneous sensors.
Although, interpolation techniques do not seem quite appro-
priate for distance data interpolation as the error reaches up
to 13.28 meters with kriging, yet, further experimentation
may uncover the causes of such huge error in distance data
interpolation. With the current experiment we may assume
that IDW and NN interpolation are suitable enough to inter-
polate LIDAR intensity images. Future work is to study
the impact of LIDAR data density on quality of generated
images. An effort to devise a new interpolation technique is
also under study to interpolate distance data with less error.
Current experiment is performed using Velodyne HDL-64E
under clear weather at noon time and use of other LIDARs or
different weather conditions may lead to deviation in results.

REFERENCES
[1] J. Shan and S. Aparajithan, ‘‘Urban DEM generation from raw LiDAR

data,’’ Photogramm. Eng. Remote Sens., vol. 71, no. 2, pp. 217–226, 2005.
[2] Velodyne LIDAR HDL-64E Manual, accessed on Oct. 4, 2016.

[Online]. Available: http://velodynelidar.com/docs/manuals/63-HDL64
ES2h%20HDL-64E%20S2%20CD%20Users%20Manual.pdf

[3] Z. Wang, N. Ye, R. Malekian, F. Xiao, and R. Wang, ‘‘TrackT: Accurate
tracking of RFID tags with mm-level accuracy using first-order Taylor
series approximation,’’ Ad Hoc Netw., vol. 53, pp. 132–144, Dec. 2016.

[4] R. Malekian, A. F. Kavishe, B. T. Maharaj, P. K. Gupta, G. Singh, and
H. Waschefort, ‘‘Smart vehicle navigation system using hidden Markov
model and RFID technology,’’ Wireless Pers. Commun., vol. 90, no. 4,
pp. 1717–1742, 2016.

[5] J. Prinsloo and R. Malekian, ‘‘Accurate vehicle location system using
RFID, an Internet of Things approach,’’ Sensors, vol. 16, no. 6, p. 825,
2016.

[6] E. G. Parmehr, C. S. Fraser, C. Zhang, and J. Leach, ‘‘Automatic registra-
tion of optical imagery with 3D LiDAR data using statistical similarity,’’
ISPRS J. Photogram. Remote Sens., vol. 88, pp. 28–40, Feb. 2014.

[7] E. Haber and J. Modersitzki, ‘‘Intensity gradient based registration and
fusion of multi-modal images,’’ in Proc. Int. Conf. Med. Image Comput.
Comput.-Assist. Intervent, 2006, pp. 726–733.

[8] B. Zitová and J. Flusser, ‘‘Image registration methods: A survey,’’ Image
Vis. Comput., vol. 21, pp. 977–1000, Oct. 2003.

[9] L. Xiao, B. Dai, D. Liu, T. Hu, and T. Wu, ‘‘CRF based road detection
with multi-sensor fusion,’’ in Proc. IEEE Intell. Veh. Symp. (IV), Jun. 2015,
pp. 192–198.

[10] T. Chen, B. Dai, D. Liu, J. Song, and Z. Liu, ‘‘Velodyne-based curb
detection up to 50 meters away,’’ in Proc. IEEE Intell. Veh. Symp. (IV),
Jun. 2015, pp. 241–248.

[11] C. Creusot and A. Munawar, ‘‘Real-time small obstacle detection on
highways using compressive RBM road reconstruction,’’ in Proc. IEEE
Intell. Veh. Symp. (IV), Jun. 2015, pp. 162–167.

VOLUME 5, 2017 8259



I. Ashraf et al.: Investigation of Interpolation Techniques to Generate 2D Intensity Image From LIDAR Data

[12] X. Mei, N. Nagasaka, B. Okumura, and D. Prokhorov, ‘‘Detection and
motion planning for roadside parked vehicles at long distance,’’ in Proc.
IEEE Intell. Veh. Symp. (IV), Jun. 2015, pp. 412–418.

[13] D. Kim, T. Chung, and K. Yi, ‘‘Lane map building and localization for
automated driving using 2D laser rangefinder,’’ in Proc. IEEE Intell. Veh.
Symp. (IV), Jun. 2015, pp. 680–685.

[14] J. M. Scanlon, K. D. Kusano, R. Sherony, and H. C. Gabler, ‘‘Potential
of intersection driver assistance systems to mitigate straight crossing path
crashes using U.S. nationally representative crash data,’’ in Proc. IEEE
Intell. Veh. Symp. (IV), Jun. 2015, pp. 1207–1212.

[15] P. Steinemann, J. Klappstein, J. Dickmann, H.-J. Wünsche, and
F. V. Hundelshausen, ‘‘3D outline contours of vehicles in 3D-LiDAR-
measurements for tracking extended targets,’’ in Proc. IEEE Intell. Veh.
Symp. (IV), Jun. 2012, pp. 432–437.

[16] D. A. Thornton, K. Redmill, and B. Coifman, ‘‘Automated parking surveys
from a LiDAR equipped vehicle,’’ Transp. Res. C, Emerg. Technol., vol. 39,
pp. 23–35, Feb. 2014.

[17] H. Guan, J. Li, Y. Yu, Z. Ji, and C. Wang, ‘‘Using mobile LiDAR data for
rapidly updating road markings,’’ IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 5, pp. 2457–2466, Oct. 2015.

[18] L. Smadja, J. Ninot, and T. Gavrilovic, ‘‘Road extraction and environ-
ment interpretation from LiDAR sensors,’’ in Proc. IAPRS, vol. 38. 2010,
pp. 281–286.

[19] A. A. Matkan, M. Hajeb, and S. Sadeghian, ‘‘Road extraction from LiDAR
data using support vector machine classification,’’ Photogramm. Eng.
Remote Sens., vol. 80, no. 5, pp. 409–422, 2014.

[20] D. González-Aguilera, P. Rodríguez-Gonzálvez, and J. Gómez-Lahoz,
‘‘An automatic procedure for co-registration of terrestrial laser scanners
and digital cameras,’’ ISPRS J. Photogram. Remote Sens., vol. 64, no. 3,
pp. 308–316, 2009.

[21] C. Axel, ‘‘Fusion of terrestrial LiDAR point clouds with color imagery,’’
Rochester Inst. Technol., Rochester, NY, USA, Tech. Rep., May 2013.

[22] J. Li, ‘‘Fusion of LiDAR 3D points cloud with 2D digital camera image,’’
OaklandUniv. Library, Rochester,MI, USA, Tech. Rep. TA 1560.L5, 2015.

[23] B. Yang, P. Sharma, and R. Nevatia, ‘‘Vehicle detection from low quality
aerial LiDAR data,’’ in Proc. IEEE Workshop Appl. Comput. Vis. (WACV),
Jan. 2011, pp. 541–548.

[24] C. Reinholtz et al., ‘‘Odin: Team VictorTango’s entry in the DARPA urban
challenge,’’ in The DARPA Urban Challenge. Berlin, Germany: Springer-
Verlag, 2009, pp. 125–162.

[25] R. Rao, A. Konda, D. Opitz, and S. Blundell, ‘‘Ground surface extraction
from side-scan (vehicular) LiDAR,’’ in Proc. MAPPS/ASPRS Fall Conf.,
San Antonio, TX, USA, 2006, pp. 1–8.

[26] W. R. Tobler, ‘‘A computer movie simulating urban growth in the Detroit
region,’’ Econ. Geograph., vol. 46, pp. 234–240, Jun. 1970.

[27] X. Li and M. T. Orchard, ‘‘New edge-directed interpolation,’’ IEEE Trans.
Image Process., vol. 10, no. 10, pp. 1521–1527, Oct. 2001.

[28] W.-S. Tam, C.-W. Kok, and W.-C. Siu, ‘‘Modified edge-directed interpo-
lation for images,’’ J. Electron. Imag., vol. 19, no. 1, p. 013011, 2010.

[29] A. Giachetti and N. Asuni, ‘‘Real-time artifact-free image upscaling,’’
IEEE Trans. Image Process., vol. 20, no. 10, pp. 2760–2768, Oct. 2011.

[30] R. Sibson, ‘‘A brief description of natural neighbour interpolation,’’ in
Interpreting Multivariate Data, vol. 21. NewYork, NY, USA:Wiley, 1981,
pp. 21–36.

[31] D. Nister, ‘‘An efficient solution to the five-point relative pose problem,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 756–770,
Jun. 2004.

[32] D. L. Wilson, A. J. Baddeley, and R. A. Owens, ‘‘A new metric for grey-
scale image comparison,’’ Int. J. Comput. Vis., vol. 24, no. 1, pp. 5–17,
1997.

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[34] Y. Wang and B. Lohmann, ‘‘Multisensor image fusion: Concept, method
and applications,’’ Univ. Bremen, Bremen, Germany, Tech. Rep., 2000.

IMRAN ASHRAF received the B.S. degree
(Hons.) in computer science from Allama Iqbal
Open University, Islamabad, Pakistan, in 2004,
and the M.S. degree in computer science from
the Blekinge Institute of Technology, Karlskrona,
Sweden, in 2010. He is currently pursuing the
Ph.D. degree at the Information and Communica-
tion Engineering Department, Yeungnam Univer-
sity, Gyeongsan, South Korea. He did his research
project with Ericsson AB, Sweden, and received a

Sparbanksstiftelsen Kronan Scholarship for his outstanding research project.
His research areas include object detection using data fusion in altered
weather conditions for autonomous vehicles and accident analysis and pre-
vention. He was the recipient of the Gold Medal for the B.S. degree.

SOOJUNG HUR received the B.S. degree from
Daegu University, Gyeongbuk, South Korea, in
2001, the M.S. degree in electrical engineering
from San Diego State University, San Diego, CA,
USA, in 2004, and the M.S. and Ph.D. degrees in
information and communication engineering from
Yeungnam University, Gyeongsan, South Korea,
in 2007 and 2012, respectively. She is currently
a Research Professor with the Mobile Commu-
nication Laboratory, Yeungnam University. Her

current research interests include performance of mobile communication,
indoor/outdoor location, and unnamed vehicles.

YONGWAN PARK received the B.E. and M.E.
degrees in electrical engineering from Kyungpook
University, Daegu, South Korea, in 1982 and 1984,
respectively, and the M.S. and Ph.D. degrees in
electrical engineering from the State University of
New York at Buffalo, Buffalo, NY, USA, in 1989
and 1992, respectively. He was a Research Fellow
with the California Institute of Technology, from
1992 to 1993. From 1994 to 1996, he served as
a Chief Researcher for developing the IMT-2000

system with SK Telecom, South Korea. In 2000, he was an Invited Professor
with the NTT DoCoMo Wireless Lab., Japan. He was a Visiting Professor
with the University of California at Irvine, Irvine, CA, USA, in 2003. From
2008 to 2009, he served as a Director of the Technology Innovation Center
for Wireless Multimedia by the Korean Government. From 2009 to 2017, he
also served as the President of the Gyeongbuk Institute of IT Convergence
Industry Technology, South Korea. Since 1996, he has been a Professor
of information and communication engineering with Yeungnam University,
Gyeongsan, South Korea. His current research areas of interest includes 5G
systems in communication, OFDM, PAPR reduction, indoor location-based
services in wireless communication, and smart sensors (LIDAR) for smart
car. He is serving as the Chairman of the 5G Forum Convergence Service
Committee in South Korea.

8260 VOLUME 5, 2017


