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ABSTRACT This paper presents an enhanced efficiency 3-D convolution operator based on optimal field
programmable gate array (FPGA) accelerator platform. The proposed system takes advantages of the
intermediate data delay lines, implemented in an FPGA, to avoid loading repetition of the input feature
maps. This 3-D convolution accelerator performs 268.07 giga operations per second at 100-MHz operation
frequency, with 330-mW power consumption. We experimentally demonstrate the enhanced efficiency of
the proposed convolution accelerator, in comparison with the conventional technologies. The proposed
3-D convolution accelerator may find interesting applications in neural networks and video processing.

INDEX TERMS Accelerator architectures, neural networks, convolution, field programmable gate arrays.

I. INTRODUCTION
Over the past few decades, the Convolutional Neural Net-
works (CNN), as an advanced machine learning algorithm,
have found numerous applications, including computer
vision and speech recognition [1]–[3]. Despite growing use
of the two-dimensional convolutional neural networks, they
still suffer from inefficiency of CPUs, showing up during the
implementation procedure [4]. To overcome this issue, var-
ious accelerator technologies have been recently proposed,
including Graphics Processing Unit (GPU), Application
Specific Integrated Circuit (ASIC) and Field Programmable
Gate Array (FPGA).

GPU is one of the best platforms for accelerating the
convolutional neural networks, especially while the training
process is involved [3], [5], [6]. A single GPU presents an
outstanding performance, but its high power consumption
obstructs its application in embedded systems. Moreover,
GPUs are restricted by the inflexible parallel calculation
units, and require reforming adaptable calculation models.
Another technology, ASIC chip, is well-known for its supe-
rior performance and high energy efficiency [7]–[9], while it
suffers from less flexibility and high developing cost.

FPGA is a promising CNN acceleration platform which
shows superior performance over the aforementioned tech-
nologies. Recently, FPGA-based accelerators have spurred
huge attention since they provide high performance, good
energy efficiency, short development cycle as well as
the reconfigurable characteristics. Previous works on the

FPGA-based 2D CNN accelerators have shown increasing
throughputs [4], [10]–[12]. Peeman et al. focused on max-
imization of the reuse of on-chip data [10]. Concentrating
on the optimization of both resources and communication
bandwidth, Zhang et al. presented an implementation that
achieved a peak performance of 61.62 Giga Floating-point
Operations Per Second (GFLOPS) under 100MHz operation
frequency on a Virtex-7 FPGA [4]. In [11], the authors
leveraged all sources of parallelism in CNNs and their work
ran 84.2 GFLOPS on a Virtex-7 FPGA. Ovtcharov et al.
reported a specialized hardware based on the Xeon and FPGA
co-processing for data centers to reach the speed of
233 images per second with Catapult Server and
Arria 10 GX1150 FPGA [12]. As for 2D convolution accel-
erators, in [13] the authors presented a MultiWindow Partial
Buffering (MWPB) scheme for 2D convolution operators
and achieved a speed of one pixel per clock. Carlo et al.
dramatically decreased the area required by MWPB scheme
for a better integration with embedded systems [14]. Work
in [15] reduced the look up table resource usage in systolic
array architecture. References [16] and [17] separated the
2D convolution to reduce the computational complexity.
Besides, a speed of one pixel per clock is achieved in [16],
and a speed of 194 frames per second (f/s) is achieved in [17].
However, FPGAs accelerate pre-trained 2D CNNmodels and
the convolution operations may occupy over ninety percent
of the computation time due to the convolution calculation
burden [18].
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Exploiting the aforementioned acceleration approaches,
the 2D CNNs have been widely developed. Meanwhile, the
3D CNN calculation module has been emerged and found
various fascinating applications, including targets tracking
and human action recognition [19]. The 3D convolution takes
advantage of one-time capturing, where more information
of multiple contiguous frames are obtained in one shot.
However, this represents a greater computational burden,
especially for the embedded real-time video processing. As a
result, the main challenge of such a system is to reach
an acceptable performance and power consumption. The
3D convolution based on FPGA accelerator may stand as an
alternative technique to overcome these issues, however, few
studies have been reported in this area.

In this paper, a 3D convolution operator based on optimal
FPGA accelerator is presented. The optimal operation is
achieved by taking advantages of the Intermediate Data Delay
Lines (IDDL) to avoid pixels loading repetition. Moreover,
the proposed system exhibits high calculation performance
and low power consumption due to the tailored hardware
of the 3D convolution. Specifically, we make the follow-
ing contributions. We propose a 3D convolution accelerator
design with IDDLs and tailored hardware. As a case study,
we implement a 3D convolution accelerator that achieves a
performance of 268.07 GOPS and 2.65× that of the fastest
commercially available GPU.

The paper is organized as follows. Section II describes
the operation principle and properties of the proposed
3D convolution. Section III presents the optimization and
implementation of the FPGA accelerator. The experimen-
tal demonstration of the proposed system will be given in
Section IV. Finally, Section V concludes the paper.

II. OPERATION PRINCIPLE
Figures 1(a) and (b) illustrate the generic representation of
the 2D and 3D convolutions, respectively. To perform a con-
volution, the convolution kernel slides over the domains of
the input feature maps and generates the output feature maps.
The 2D convolution extracts the independent features from
a sequence of images with several 2D convolution kernels
sliding along theM and N axis as shown in Fig. 1(a). In con-
trast, the 3D convolution captures both spatial and temporal
information using a 3D convolution kernel sliding along the
M , N and S axis as shown in Fig. 1(b). In 3D convolution,
for given S input feature maps with the size of M × N , the
pixel cubes are extracted from the input feature maps and
then convolvewith the 3D convolution kernel. The pixel value
at the position (m, n, s), on the output feature map, is given
by [19]

omns =
P−1∑
p=0

Q−1∑
q=0

R−1∑
r=0

wpqr i(m+p)(n+q)(s+r) (1)

where P, Q and R represent the height, width and length of
the kernel, respectively. Besides, wpqr shows the value of the
kernel at the position (p, q, r), and for p, q and r equal to

FIGURE 1. Generic representation for (a) 2D and (b) 3D convolutions. The
small square in the input feature maps indicates the area extracted from
the input feature maps and weighted by the kernel. To perform a
convolution, this area is sliding pixel by pixel. Each slide generates one
pixel in the output feature map indicated by the small squares in the
output feature maps. It is necessary to slide the 3D convolution kernel
along the time axis, S, to achieve the output feature map for each slide.

FIGURE 2. Pseudo code of the valid 3D convolution.

zero, imns is the pixel value of sth input feature map at the
position (m,n).

Three convolution styles, valid, same and full, operate
based on different boundary processing methods [20]. Here,
we use a valid 3D convolution operation, whose convolution
kernel is only allowed to visit the domains where the kernel
is contained entirely within the input feature maps. For this
3D convolution style, the number of the output feature maps
is (S-R+1), with the size of (M−P+1)×(N−Q+1). Figure 2
presents the pseudo code of the valid 3D convolution.

Next, we evaluate the computational complexity of the
3D convolution represented by the number of multiplication
and additional operations. To form a single output pixel using
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TABLE 1. Computational complexity of the 3D convolution.

a P × Q × R kernel, we have P × Q × R multiplications,
(P × Q × R − 1) addition operations and P × Q × R input
pixels loading. For valid convolution, we may calculate the
total number of the operations. Table 1 presents the com-
putational complexity of the three elemental operations in
a 3D convolution. As a result, to convolve simple feature
maps with a small kernel, over one million operations are
required. Therefore, to achieve real-time performance, i.e.
thirty feature maps per second, a computational power of
several GOPS is required. In fact, the presence of an extra,
temporal, dimension in 3D convolution introduces massive
operations.

FIGURE 3. Operation principle of the basic 3D convolution with R = 3.
Some feature maps are required to be loaded several times.

III. OPTIMIZATION AND IMPLEMENTATION
The 3D convolution operation in Fig. 1(b) may be repre-
sented as the summation of R× 2D convolution operations.
In an FPGA accelerator, the 3D convolution operation may
be achieved by R× 2D convolvers, same as 2D convolution
operators, plus an adder tree. Figure 3 shows the operation
principle of the basic 3D convolution. Due to the limited
resources of the FPGA-based 2D convolvers, the pixels will
not be permanently stored in the FPGA storage resources.
As a consequence, in a 3D convolution operation formed

FIGURE 4. Schematic of the proposed 3D convolution with R = 3. The
IDDLs in FPGA are used to avoid reloading of the input feature maps.

by R× 2D convolvers, the input feature maps are required
to be repeatedly loaded. The loading repetition takes much
time which highly affects the acceleration performance, and
consequently, enforces reducing the loading times of the data
transmission.

A. OPTIMIZATION OF 3D CONVOLUTION OPERATION
Figure 4 depicts the general schematic of the 3D convolution
using Intermediate Data Delay Lines (IDDL). The IDDLs in
an FPGA are utilized to temporally store the intermediate
data, to avoid the feature map loading repetition. As a partic-
ular case, a kernel with the length, R, of 3 is shown in Fig. 4,
where wpq1, wpq2 and wpq3 are denoted as A, B and C . Three
input channels, CH1, CH2 and CH3 are interconnected with
three 2D kernels A, B and C . Besides, nine 2D convolvers are
required, each of which labelled by Xi, where X ∈ {A,B,C},
denoting the kernel convolved with the input feature maps.
The subscript i = 1, 2, 3 represents the channel in which the
input feature map is loaded. Once the three input feature maps
are loaded, each 2D convolver provides an output, and then,
nine 2D convolution outputs are generated. We define x ji as
the 2D convolution output of the jth feature map convolving
with Xi, where j = i + 3n, S − 3 < 3n < S, ∀n ∈ N and
x ∈ {a, b, c}.

Loading the first three feature maps, by adding a11, b
2
2

and c33, provides the first 3D operation result. IDDL1 stores
the sum of a22 and b

3
3, while IDDL2 stores a33. Besides, since

b11, c
1
1 and c22 are not used, the three 2D convolvers B1,

C1 and C2 are disabled by the tailored hardware, which will
be explained in the next subsection. Then, loading the fourth,
fifth and sixth input feature maps, adding c41 and a22 + b33
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TABLE 2. Comparison between the loading times of the basic and
optimized 3D convolution operation.

which has been stored in the IDDL1, provides the second
3D convolution operation result. Then, the third result may
be achieved by adding b41, c

5
2 and the delay-line a

3
3. The sum-

mation of a41, b
5
2 and c

6
3 represents the fourth 3D convolution

operation result. IDDL1 stores the sum of a52 and b63, while
IDDL2 stores the a63. Follow-up work is a similar repetition.
The IDDLs provide the required data for the adders and also
store aj3 and the sum of aj2 and bj3. The sum of aj2 and bj3 is
stored in the IDDL1, and then, adding with cj1 provides an
output feature map. Similarly, the delay-line aj3 waits for the
sum of bj1 and c

j
2 to make an addition.

The proposed 3D convolution operation, shown in Fig. 4,
significantly reduces the data loading times. All input pixels
are only required to be loaded once. Table 2 presents the
comparison between the loading times in basic and optimized
3D convolution operations. If R reads three, the basic loading
times are almost three times the optimization ones. The output
feature map corresponds to the time loading, while the opti-
mized operationmay provide all corresponding output feature
maps.

FIGURE 5. Pseudo code of the proposed optimized 3D convolution
operation.

Figure 5 presents the pseudo code of the proposed opti-
mized 3D convolution operation. It may be seen that the
Loop-length is divided into small loops, where the number of
the loops is determined by the length of the 3D convolution
kernel.

FIGURE 6. The implementation architecture for the optimized 3D
convolution accelerator, presenting 3 or 4 channel feature maps
at one time depending on the length of the 3D convolution kernel.

B. OPTIMIZED 3D CONVOLUTION ACCELERATOR IN FPGA
Figure 6 illustrates the data flowchart of the optimized 3D
convolution accelerator based on the FPGA. We imple-
mented the proposed accelerator in a ZYNQ chip, which is a
programmable SOC from Xilinx. The number of the trans-
mission channels in the Processing System (PS) and Pro-
gramming Logic (PL) is equal to the length of the convolution
kernel, which is considered to be either 3 or 4. Prior to the data
processing, all input feature maps are stored in an external
memory by PS. To calculate the 3D convolution, three or
four, input feature maps are loaded to the PL for one time,
and the pixels of the input feature maps are loaded in the
raster scan. The 3D convolution operation is performed in
the PL, which is consists of three parts, including Direct
Memory Access (DMA), input-output buffer and 3D convo-
lution architecture. As soon as the DMA module receives
the data streams of the input feature maps, input buffers
temporarily store the data streams. Then, the input buffers
transmit the data streams to the 3D convolution architecture.
Next, the architecture provides the output feature maps by
convolving the input data streams. Then, the output feature
maps are transmitted to the PS through the DMA modules,
while they are temporarily stored in the output buffers.

Figure 7 presents the optimized 3D convolution architec-
ture. The proposed 3D convolution is composed of various
segments including the kernel caches, an array of 2D con-
volvers, IDDLs, adders, a data output controller and data
interconnect bus. The kernel caches permanently store the
3D convolution kernels, to be accessible for the 3D convo-
lution architecture. Each 2D convolver is directly connected
to an input channel.

Figure 8 shows the details of the 2D convolvers, used in
the 3D convolution in Fig. 7, where a full buffer scheme is
adopted [13]. In this scheme, (P-1) FIFOs with the length
of (N-Q) are employed to temporally hold the data before
they reach to the 2D convolvers. We use P sets of right
shifters, each of which consists ofQ registers to assemble the
P×Q convolutionwindows. Thewindow operation is the sum
of inner pixels multiplied by the corresponding weights of the
kernel. Once a new pixel is loaded, the convolution window

6912 VOLUME 5, 2017



H. Wang et al.: Enhanced Efficiency 3-D Convolution Based on Optimal FPGA Accelerator

FIGURE 7. 3D convolution architecture composed of the kernel caches, an array of 2D convolvers, IDDLs, data interconnect bus, adders and a data output
controller.

FIGURE 8. 2D convolver architecture, composed of the FIFOs, right
shifters and fully pipelined calculators.

automatically moves to the next position. To accomplish the
parallel operations, the loop kernel height andweight are fully
unrolled and pipelined, which may significantly enhance the
throughput.

Moreover, in Fig. 7, the IDDLs are used to avoid loading
repetition of the input feature maps, where the length of the
IDDLs reads (M−P+1)× (N −Q+1). The IDDLs are shift
registers and may be implemented with flip-flops or block-
RAMs depending on the specific FPGA device. The current
outputs of the 2D convolvers are stored in the IDDLs until
the loading of the next feature map. To reduce the power con-
sumption, the 2D convolvers are kept off except those whose
corresponding IDDLs are full. The data interconnection bus
is the data transfer path between the various parts of the struc-
ture. The adders sum the relevant outputs and are switched off

unless they read valid inputs. This design provides (S−R+1)
output feature maps, while simultaneously, reduces the power
consumption. The adders have different priorities determined
by the data output controllers. In this architecture, the adder
which is connected to IDDL1 has the highest priority. The
arrangement of the priority levels provides a basis for PS,
judging the order of the output feature maps.

IV. EXPERIMENTAL DEMONSTRATION
This section experimentally demonstrates the performance
of the implemented accelerator. First, we show the resource
usage of the accelerator under different pixel precisions.
Then, we present the performance of the designed structure,
and compare it with other proposed technologies.

Figure 9 shows the photograph of the realized accelera-
tor using the Xilinx ZC706 developing board. This board
is composed of the Xilinx ZYNQ, itself consists of a
Kintex-7 FPGA and a dual ARM Cortex-A9 Processor,
and 1GB DDR3 memory with the frequency bandwidth
up to 4.2GB/s. The results are achieved using the Xilinx
Vivado-2016.1 developing software. The design specifica-
tions are as follows. The input signal is a 30f/s low resolu-
tion video, where the resolution of each frame is 256×256.
Various pixel precisions are chosen, i.e. 8, 10, 12, 16, 32-bit
signed and 32-bit float. The kernel lengths are chosen as 3
and 4, where the kernel height×weight are considered as
3×3, 5×5, 7×7, 9×9 and 11×11. Table 3 lists the resource
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TABLE 3. FPGA resource usage for the designed 3D convolution processor prototype.

FIGURE 9. Photograph of the implemented prototype using Xilinx ZC706.

utilization of different pixel precisions with various ker-
nel sizes. Flip-flops and look-up-tables represent the most
basic resources in an FPGA. Moreover, the BRAM-18K and
DSP48E are the storage and computation resources, respec-
tively. The bigger the kernels, the higher the pixel precision,
the more resources are utilized. For the pixel precision of
less than 16 bits, one pixel multiplication is performed with
one DSP48E. Considering the 16-bit signed pixel precision,

a pixel multiplication is performed with two DSP48Es, while
for the pixel precision of 32-bit signed and 32-bit float, a pixel
multiplication is performed with four and eight DSP48Es.
Due to the resource constraints, here, we only present the
situations, which are implementable with the 32-bit signed
and 32-bit float pixel precisions.

Let us now compare the proposed FPGA-based 3D acceler-
ator with the CPU and GPU. The CPU platform is Intel Dual
Core i7-6700K CPU, at 4GHz with a 32GB RAM. The GPU
platform is characterized as NVIDIA GTX1080, possessing
2560 CUDA cores with an 8GB GDDR5 256-bit memory.
The operating system for CPU and GPU is Ubuntu 16.04
with Keras deep learning software framework library. With
the Keras framework, we may easily select the CPU or GPU
to run the 3D convolution. The precision of the pixels and
kernels in software is 32-bit float. A 100MHz system clock
is considered for the FPGA-based 3D accelerator.

The latencies of various pixel precision have several clocks
difference, which may be hided with the pipelined design
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TABLE 4. Performance comparison of the FPGA, CPU and GPU.

FIGURE 10. The GOPS ratio of the proposed accelerator over the CPU
and GPU, with the length, L, of 3 and 4.

instead of totting-up when calculating the 3D convolution.
Therefore, the computation time difference of the same kernel
size with different precision can be less than one percent.
Since the calculation of the same kernel size under different
precisions consumes a same computation time, Table 4 only
lists the experimental results with various kernel sizes. As we
see in this table, The FPGA-based 3D accelerator deals with
the thirty gray feature maps only in 5.9 ms, with the size of
256×256 convolving with a 11×11×4 kernel and reaches
the speed of 268.07GOPS. The FPGA-based 3D accelerator
presents a computational performance 14 times faster than
that of the CPU and slightly faster than that of the GPU in
average. Figure 10 provides the details of the acceleration
specifications. The GOPS ratios of the proposed accelerator
over the CPU and GPU increase with the kernel size. The
maximum GOPS of the proposed convolution accelerator
is 25.19× and 2.65× that of the CPU and GPU with the
11×11×4 kernel. The performance of the GOPS per watt for
FPGA significantly outperforms that of the CPU and GPU.

Our work achieves the speed of one pixel per clock and
182f/s. For the computational complexity of 3D convolution

is R, namely the length of the kernel, times that of 2D con-
volution, the calculation performance of our work is maxi-
mum four times that of the 2D convolution accelerators in
work [13]–[16] and 3.75 times that of the work [17].

V. CONCLUSION
We presented an efficient 3D convolution operator based on
the FPGA accelerator. The proposed structure significantly
improves the convolution performance. The accelerator is
characterized by an array of parallel 2D convolvers inter-
connected with IDDLs or adders, and other special-purpose
hardware. The key attribute of the proposed processor is the
implementation of the IDDLs to avoid the loading repetition
of the processing feature maps. The FPGA-based accelerator
presents the speed of 268.07GOPS and slightly faster than
that of the fastest commercially available GPU. In future,
we plan to apply the proposed FPGA-Based 3D accelerator
to accelerate the 3D CNN models. The proposed accelerator
may provide a higher throughput in a larger model.
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