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ABSTRACT A data-driven modeling approach is proposed for using system integration scaling factors and
positioning performance of an exposure machine system to build models for predicting positioning errors
and for analyzing parameter sensitivity. The proposed approach uses a uniform experimental design (UED),
multiple regression (MR), back-propagation neural network (BPNN), adaptive neuro-fuzzy inference sys-
tem (ANFIS), and analysis of variance (ANOVA). The UED reduces the number of experimental runs needed
to collect data for modeling. The MR, BPNN, and ANFIS are used to construct positioning models of an
exposure machine system. The significant system integration scaling factors are determined by ANOVA.
The inputs to the data-driven model are system integration scaling factors fx , fy, and fq, and the output is
the positioning error. The UED was used to collect 41 experimental data, which comprised 0.0595% of
the full-factorial experimental data. Performance tests demonstrated the excellent performance of the UED
in collecting data used to build the MR, BPNN, and ANFIS data-driven models. The data-driven models
can accurately predict positioning errors during validation. In addition, a sensitivity analyses of parameters
showed that design parameters fx and fy have the greatest influence on positioning performance.

INDEX TERMS Data-driven modeling, system integration scaling factors, exposure machine, uniform
experimental design, multiple regression, back-propagation neural network, adaptive neuro-fuzzy inference
system.

I. INTRODUCTION
Exposure machine systems used for photolithographic
processing achieve precision positioning by integrating com-
puter vision, a control strategy, and a servo system. Pho-
tolithography is a process used in microfabrication to pattern
parts of a thin film of a substrate. It uses light to trans-
fer a geometric pattern from a photomask to a light-
sensitive chemical photoresist on the substrate. A series
of chemical treatments then either engraves the exposure
pattern into, or enables deposition of a new material in the
desired pattern upon, the material underneath the photoresist.
They also require an automated method of mask alignment
for accurate and efficient production. In complex cyber-
physical systems, the exposure machine usually performs
mask alignment repeatedly until the misalignment meets a

predetermined criterion. A large positioning error results in a
long processing time. Therefore, an important research issue
is how to increase alignment performance by reducing the
positioning error. Various methods of increasing alignment
performance have been proposed in the literature [1]–[3].
Most researchers have focused on developing automatic
alignment algorithms and template matching methods rather
than on developingmethods for improving system integration
parameters. In an auto-alignment system, the purpose of the
system integration parameters is to enable applications to be
customized so that they can provide different functions in the
same machine without a change in the system design. Our
previous work integrated an artificial neural network model,
a full-factorial experimental design, and a Taguchi-based-
genetic algorithm to optimize positional compensation
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parameters, i.e., system integration parameters, of an expo-
sure machine [2]. Although experiments showed that the
optimized positional compensation parameters decreased the
iteration count and alignment time, a full-factorial design
requires numerous experiments to collect sufficient data for
modeling. The input-output variables for the process have
highly complex nonlinear relationships, and estimates of
positioning errors require progressively increasing numbers
of experiments. Therefore, an effective and efficient method
is still needed to build a model of system integration param-
eters that affect auto-alignment performance in exposure
machine systems for predicting positioning errors.

Conventional methods of searching for system integration
scaling factors and measuring positioning errors of an expo-
sure machine system include one-factor-at-a-time method
and trial-and-error method. However, these methods are not
systematic, and they need substantial operator experience and
expert knowledge. Another drawback of these methods is that
they only obtain feasible system integration scaling factors
for an auto-alignment machine. That is, the obtained factors
may not optimal. Therefore, this study applied soft computing
technology in a systematic data-driven approach to using sys-
tem integration scaling factors of an auto-alignment system to
build models that engineers can use for predicting positioning
errors and for analyzing parameter sensitivity.

The proposed approach is performed in three stages. First,
a uniform experimental design (UED) [4] is used to gather
data for system integration scaling factors and measurement
errors. Next, multiple regression (MR) [5], back-propagation
neural network (BPNN) [6]–[8], and adaptive neuro-fuzzy
inference system (ANFIS) [9]–[11] models are used to con-
struct positioning models of the exposure machine system.
Finally, analysis of variance (ANOVA) [12]–[14] is per-
formed to analyze sensitivity and to identify the system
integration scaling factors that have the largest effects on
positioning precision. In order to build models, for the prac-
tical real-world industrial exposure machine system, that
engineers can use for predicting positioning errors and for
analyzing parameter sensitivity, the novelty of the study is
the use of the UED, which has the characteristic of uniform
dispersion in a solution space and can reduce the number of
experimental runs compared to the full factorial experimental
design. Additionally, the well-known approaches, including
MR, BPNN, and ANFIS, were used for modeling and mutu-
ally verifying the performances of models.

This paper is organized as follows. Section II defines the
problem considered in this study. Section III presents the
data-drivenmodeling approach using system integration scal-
ing factors and positioning errors. Section IV presents and
discusses the results of an actual engineering design example.
Finally, Section V concludes the study.

II. PROBLEM STATEMENT
Figure 1 shows that a vision-based exposure machine is
a complex cyber-physical system comprising a vision sys-
tem, system integration scaling factors, and a servo control

FIGURE 1. Block diagram of vision-based auto-alignment system of an
exposure machine system.

system [15], [16]. The vision system includes the cameras,
lenses, lighting, and frame grabbers. The servo control sys-
tem includes the motors, motor drivers, controllers, sen-
sors, and motion control cards. Since the geometric errors
(1X̃ /1Ỹ /1θ̃ ) obtained by the vision system are not equal to
the positional error commands (1X/1Y/1θ ) for the servo
control system, an exposure machine requires system inte-
gration scaling factors, which are a set of parameters fx , fy,
and fq between a vision system and a servo feedback control
system, to compensate for deviations between 1X̃ /1Ỹ /1θ̃
and 1X/1Y/1θ [15], [16]. The system integration scaling
factors enable customized applications because they can be
adapted to new functionalities without changing the overall
system design. The objective of this study was to develop
an effective and efficient method of using system integration
scaling factors and positioning performance of an exposure
machine system to build models that can be used not only for
auto-alignment, but also for predicting positioning errors and
analyzing parameter sensitivity.

The auto-alignment system of an exposure machine system
performs the following steps to align wafer features with
photomask features and to expose the wafer [17].

Step 1: Load a wafer and mask into an exposure machine.
Some machines have auto-loading and pre-
alignment features while others are very manual in
their loading procedures.

Step 2: Align the microscope objectives to the mask align-
ment marks. Rotate platform mechanism until the
microscope objectives are parallel with the align-
ment marks on the mask, and adjust the X -Y posi-
tions on the microscope objectives until they are
directly above the alignment marks.

Step 3: Move the wafer alignment mark to the mask align-
ment mark (Figure 2). For aligners that keep the
wafer still and move the photomask over it for align-
ment, this means that themicroscope’s position have
to be locked in reference to the photomask. When
the wafer has finally been aligned completely with
the photomask, the wafer should now be moved up
into contact with the mask.

Step 4: When the mask and the wafer are correctly aligned,
set the exposure time, and expose the wafer.
The wafer is exposed for the time set by the
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FIGURE 2. Moving a wafer alignment mark to a mask alignment mark.

exposure time. After exposure, the alignersmove the
wafer away from the mask preparing it for removal
from the machine.

FIGURE 3. The positions between mask alignment marks ((Xm1, Ym1) and
(Xm2, Ym2)) and wafer alignment marks ((Xw1, Yw1) and (Xw2, Yw2)).

Figure 3 shows the positions between mask alignment
marks ((Xm1, Ym1) and (Xm2, Ym2)) and wafer alignment
marks ((Xw1, Yw1) and (Xw2, Yw2)). The 1X̃ , 1Ỹ , and 1θ̃
are computed as the displacements of mask alignment marks
relative to those of wafer alignment marks. For precise align-
ment, a set of system integration scaling factors fx , fy, and
fq between a vision system and a servo control system is
needed to compensate for deviations in 1X , 1Y , and 1θ . In
practice, system integration scaling factors are often affected
by precision in the assembly of the equipment and platform,
precision in machining, and distortion in the lens. The hard-
ware and software in an exposure machine system must be
qualified by the engineers, and the proposed data-drivenmod-
eling approach can be effective to find the system integration
scaling factors. For example, if image resulting from this
system contains noisy data either outliers, the measurement

errors increase and the performances decline. Additionally,
data for system integration scaling factors and positioning
performance must be collected for use in building models for
predicting positioning errors.

III. DATA-DRIVEN MODELING APPROACH TO BUILDING
MODELS FOR PREDICTING POSITIONING ERROR AND
ANALYZING PARAMETER SENSITIVITY
The proposed data-driven modeling approach uses system
integration scaling factors and positioning performance of
an exposure machine system to build models for predicting
positioning errors and for analyzing parameter sensitivity.
The proposed approach is performed in three stages. First,
system integration scaling factors and measurement errors
are identified, and UED is used for data collection. Next,
MR, BPNN, and ANFIS are used to build positioning mod-
els. Finally, ANOVA is applied to analyze the sensitivity of
system integration scaling factors. The block diagram and the
detailed steps of the proposed data-driven modeling approach
are shown in Figure 4 and as follows, respectively.

A. IDENTIFY SYSTEM INTEGRATION SCALING
FACTORS AND MEASUREMENT ERRORS,
AND USE UED TO COLLECT DATA
A good experimental design should minimize the number of
experiments to acquire as much information as possible. The
UED developed by Wang and Fang [4] uses space filling
designs to construct a set of experimental points uniformly
scattered in a continuous design parameter space. The cen-
tered L2-discrepancy (CL2) is considered by an appealing
property that it becomes invariant under reordering the runs,
relabeling factors and reflections of the points about any plane
passing through the center of the unit cube and parallel to
its faces. The latter is equivalent to the invariance of replac-
ing the ith coordinate xi by 1-xi for some i = 1, . . . ., s.
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FIGURE 4. The block diagram of the proposed data-driven modeling
approach.

For the CL2, Hickernell [18] has given a mathematically
analytical expression as (3.1), as shown at the bottom of this
page.

The measure of uniformity of UED has been confirmed by
CL2, and the design points of UED are uniformly scattered
in the experimental domain. Therefore, the UED is very
suitable for solving problems involving multiple factors with
multiple levels and this study used the UED to plan a set of
experimental points.

The system integration scaling factors and measurement
errors are identified, and the experimental steps are shown
below.
Step 1: Identify the main system integration scaling factors.
Step 2: Identify the measurement errors based on the expe-

rience of engineers.
Step 3: Achieve an adequate number of uniform design

experiments to reflect nonlinear effects, and gather
the data.

B. USE MR, BPNN, AND ANFIS TO
CREATE SYSTEM MODELS
The statistical MR used for system building in this study
included constant, linear, interacting, square, cubic, quartic,
and higher terms. The MR uses forward and backward step-
wise regression to determine a final model. In each step, the

function searches for terms to add to or remove from the
model based on the value of the criterion argument. To create
a small model, the MR starts with a constant model. To create
a large model, the MR starts with a model containing many
terms. Compared to a small model, a large model usually has
a lower error in terms of fit to the original data. However, a
large model may not provide better predictions that are based
on new data [5].

This study used a BPNN network that has an input layer, a
hidden layer, and an output layer. A BPNN is usually trained
in forward and backward phases [6]–[8]. In each run of a
BPNN network, training and testing data are used in network
training. The number of neurons in the hidden layer is iter-
atively selected by developing several neural networks and
inspecting themean squared errors of the output. The network
training process continues until testing errors increase or until
training and testing errors no longer decrease [19], [20]. The
BPNN is then designated according to the numbers of inputs,
hidden neurons, and outputs. For example, a BPNN 3-8-1
with 3 inputs, 8 hidden neurons, and 1 output is designated
BPNN 3-8-1.

This study applied the ANFIS proposed by Jang [9], in
which a Sugeno fuzzy model is used for systematically cre-
ating fuzzy rules from a given set of input-output data. The
structure of this ANFIS design includes a five-layer feed-
forward neural network. An ANFIS is trained with a hybrid
learning algorithm that integrates least squares and gradient
descent algorithm. A hybrid procedure comprising a forward
pass and a backward pass is performed in each epoch of the
ANFIS training algorithm. In the forward pass, a training set
is used as input to the ANFIS, and neuron outputs are com-
puted layer by layer. The consequent parameters are deter-
mined by the least squares algorithm. During the learning
process, the parameters change according to the membership
functions. The parameter computation and adjustment are
updated by a gradient vector.

The detailed steps are shown below for building a precision
positioning model.

Step 1: Use three inputs and one output for building a pre-
cision positioning model.

Step 2: Implement uniform design experiments, and create
training and testing datasets.

Step 3: Train theMR, BPNN, andANFISmodels andmutu-
ally verify the performances of models.

Step 4: Test the performance of theMR, BPNN, and ANFIS
models in predicting positioning errors of the expo-
sure machine.

CL2(X ) =
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TABLE 1. U41 (413) for allocation of design parameters.

C. USE ANOVA TO ANALYZE SENSITIVITY OF SYSTEM
INTEGRATION SCALING FACTORS
The main objective of the ANOVA [12]–[14] is to determine
the variance in results caused by each factor and to determine
the total variance caused by all factors. The sum of squares is
defined as follows.

ST =
n∑
i=1

η2i − CF, (3.2)

where n is the total number of results and CF = 1
n (

n∑
i=1
ηi)2.

For factor A, for example, the effect of an individual factor
on the variance is calculated as shown below.

SA =
A21

No.ofA1
+

A22
No.of A2

+ ....+
A2k

No.of Ak
− CF,

(3.3)

where Ak is the sum of results and k is the level number.

The variance VA, F-ratio FA, and the percentage contribu-
tion of factor A are calculated as follows:

VA =
SA
fA
, (3.4)

FA =
VA
VeT

, (3.5)

where fA is the degrees of freedom for factor A and where
VeT is the variance in error.

IV. PRACTICAL INDUSTRIAL EXAMPLE AND
IMPLEMENTATION
An actual engineering design example (Figure 2) was used
to investigate system integration scaling factors for precision
positioning. Based on the training and validation data, system
integration scaling factors and positioning performance for
an exposure machine system were used to build data-driven
models for predicting positioning errors and for analyzing
parameter sensitivity.
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TABLE 2. Practical experimental data obtained by the U41 experiments for training models.

A. STAGE 1: IDENTIFY SYSTEM INTEGRATION SCALING
FACTORS AND MEASUREMENT ERRORS, AND
USE UED FOR DATA COLLECTION
The three system integration scaling factors of an exposure
machine system are fx , fy, and fq. According to practical
engineering experience of the Metal industries Research and
Development Centre (MIRDC, http://www.mirdc.org.tw),
four measurement errors occur: first position error (e1)
and angle error (θ1) between the initial and first posi-
tion points, second position error (e2) and angle error (θ2)
between the first and second position points. The positioning
error index (PEI) is used to integrate (|e1| − |e2|)/|e1| and
(|θ1| − |θ2|)/|θ1|. The fx and fy range from 0.06 to 0.10,
and fq ranges from 0.14 to 0.18. The solution accuracy of
each design parameter is 0.001. The number of solutions, i.e.,
the number of full-factorial combinations of the three design
parameters is 68921 (= 413). To reflect non-linear effects
and to collect sufficient data to represent the positioning
model, the range of each design parameter is divided into
41 levels. Table 1 shows that this study used U41 (413) to

allocate design parameters. The U41 has 41 levels that fit
the solution accuracy for fx , fy, and fq. Table 2 shows the
practical experimental data obtained by using U41 exper-
iments to train system models. To validate the effective-
ness of system models, validation data are also generated
by uniformly allocating them in a design space of param-
eters. Table 3 shows a U21 (213) used to allocate design
parameters. Table 4 shows the practical experimental data
obtained by using the U21 experiments to validate system
models.

B. STAGE 2: USE MR, BPNN, AND ANFIS
TO CREATE SYSTEM MODELS
The three inputs were fx , fy, and fq. The output was the
PEI, which integrates (|e1| − |e2|)/|e1| and (|θ1| − |θ2|)/|θ1|.
According to the experimental data and the engineering expe-
rience of the authors, the system performance improvement
obtained by the system integration scaling factors increases
as both e2 and θ2 approach 0. Therefore, a higher PEI value
obtains better performance.
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TABLE 3. U21 (213) for Allocation of Design Parameters.

Tables 2 and 4 show the datasets used for training and
validating the MR model, respectively. The MR model con-
tains constant, linear, interaction, square, cubic, quartic,
and higher terms. Model quality is measured by comput-
ing the correlation coefficient (R-value) of a linear regres-
sion between the target and the model output. An R-value
of 1 indicates a perfect correlation. The MR uses stepwise
regression to obtain the quartic-order MR model shown
below. The quartic-order MR model obtained R-values of
0.99305 and 0.99697 for the training and validation sets,
respectively.

PEI = 17.574− 1103.6 fx + 30.637 fy + 9.2119 fq
+ 198.88 fx × fy − 106.36 fx × fq
+ 23315 f 2x − 209.68f 2q − 2.0867× 105 f 3x
+ 6.7413× 105f 4x (4.1)

The datasets in Tables 2 and 4were used for BPNN training
and validation, respectively. The momentum was 0.9, and the
learning rate was 0.05. The stopping criterion was a training
epoch larger than 5000 or a performance goal less than 10−6.
The input and output transfer functions were tan-sigmoid
and linear functions, respectively. The number of neurons
in the hidden layer was iteratively decided by creating sev-
eral neural networks and inspecting the R-value of a linear
regression. Figure 5 shows the three inputs and one output
used to train the BPNN architecture. Comparisons of the
experimental neural networks showed that the BPNN 3-5-1
network obtained the most accurate positioning results and
obtained R-values of 0.99908 and 0.99526 for the training
and validation sets, respectively.

The system model was established by the ANFIS using
the dataset in Table 2. The initial step size was 0.01, the
rate of decrease in step size was 0.9, and rate of increase

FIGURE 5. Back-propagation neural network with three inputs and one
output.

in step size was 1.1. The stopping criterion was a training
epoch larger than 100 or a training error less than 10−6. Both
input membership functions were bell-shaped. The output
membership function was a linear function. Figure 6 shows
the three inputs and one output used to train the ANFIS
architecture. The ANFIS model obtained R-values of 1 and
0.98202 for the training and validation sets, respectively.
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FIGURE 6. Adaptive neuro-fuzzy inference system architecture with three inputs and one output.

The comparisons showed that the quartic-order MR,
BPNN 3-5-1, and ANFIS models obtained very similar
R-values for the training and validation data. TheU41 experi-
ments, which were 0.0595% of five-level full-factorial exper-
iments, demonstrated the excellent performance of the model
needed to build effective MR, BPNN, and ANFIS models.
The prediction results for the U21 validation dataset were
also very accurate. Figure 7 shows the predication results
obtained for the U21 validation dataset when the U41 dataset
was used to build the quartic-order MR, BPNN 3-5-1, and
ANFIS data-drivenmodels. Comparisons of positioning error
for the U21 validation dataset showed that the quartic-order
MR, BPNN 3-5-1, and ANFIS models obtained very similar
values. Figure 8 further shows that, for the U21 validation
dataset, the prediction results obtained by the quartic-order
MR, BPNN 3-5-1, and ANFIS models were closest to the
actual positioning error values. Figure 9 shows that the residu-
als in the quartic-order MR, BPNN 3-5-1, and ANFIS models
were symmetrically distributed near zero with no systematic
tendency to appear on the positive or negative sides of the
graph between 0.07 to -0.04. The narrower spreads of residual
values obtained by the quartic-order MR, BPNN 3-5-1, and
ANFIS models were further indications of their superior
prediction performance.

C. STAGE 3: USE ANOVA TO ANALYZE SENSITIVITY OF
SYSTEM INTEGRATION SCALING FACTORS
Table 5 shows the ANOVA with 95% confidence level in the
F-test of three 5-level design parameters obtained using the
quartic-order MR model. System integration scaling factors

fx and fy are statistically significant at the 95% confidence
level, which indicates that they are the main cause of variation
in positioning performance.

To demonstrate the excellent capability of UED in collect-
ing data for modeling, a five-level full-factorial experimental
design was used in performance comparisons. For fx and fy,
the five levels are 0.06, 0.07, 0.08, 0.09, and 0.10; for fq,
the five levels are 0.14, 0.15, 0.16, 0.17, and 0.18. Table 6
shows the actual experimental data for 125 datasets (F125)
obtained by the five-level full-factorial experimental design.
The datasets in Tables 6 and 4 were used for model training
and validation, respectively.

The MR used stepwise regression to obtain the quartic-
order MR model shown below. The quartic-order MR model
obtained R-values of 0.99687 and 0.99477 for the training
and validation sets, respectively.

PEI = 37.265− 2120 fx + 37.666 fy + 7.0823 fq
+ 168.35 fx × fy − 65.64 fx × fq − 15.124 fy × fq
+ 42671 f 2x − 224.95 f 2y − 3.7136× 105 f 3x
+ 1.1817× 106 f 4x (4.2)

The parameter settings were the same as those shown
above for the BPNN and ANFIS. Comparisons of the
experimental neural networks showed that the BPNN 3-8-1
network obtained the best performance of the precision posi-
tioning system. The BPNN 3-8-1 model obtained R-values
of 0.99955 and 0.99814 for the training and validation sets,
respectively. TheANFISmodel obtained R-values of 0.99921
and 0.99797 for the training and validation sets, respectively.
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FIGURE 7. Comparison of the actual and predicted values, where the predicted values are obtained by the
quartic-order MR, BPNN 3-5-1, and ANFIS data-driven models built using the U41 dataset.

FIGURE 8. Actual values for positioning error compared with the values predicted by the quartic-order MR,
BPNN 3-5-1, and ANFIS data-driven models built using the U41 dataset.

In Table 7, the RMSEs and R-values for the training
(U41 and F125) and validation (U21) sets are compared in the
MR, BPNN, and ANFIS data-driven models. For each design
parameter, the five-level full-factorial experiments covered a
solution space accurate to within 0.01. The 125 sets of exper-
imental points in the F125 experimental dataset were used to
build MR, BPNN, and ANFIS models with high R-values.
The models accurately predicted the results of design com-
binations that appeared in a solution space accurate to
within 0.001.

Since the solution accuracy of each design parameter in this
study was 0.001, the number of full-factorial combinations
for fx , fy, and fq was 68921. In U41 (413), 41 levels that
fit the solution accuracy of fx , fy, and fq were used to con-
struct 41 sets of experimental points, which were uniformly
distributed in a solution space accurate to within 0.001. The
MR, BPNN, and ANFIS data-driven models that were built
using the U41 dataset had high R-values and could accurately
predict the results for design combinations that appeared
in a solution space accurate to within 0.001. The major
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FIGURE 9. Comparison of residual values of positioning errors obtained by the quartic-order MR, BPNN 3-5-1, and ANFIS
data-driven models built using the U41 dataset.

TABLE 4. Practical experimental data obtained by the U21 experiments for validating models.

TABLE 5. Results of ANOVA.

contribution of this study is the use of the UED that reduced
the number of experimental runs compared to the full fac-
torial experimental design method used in Tsai et al. [2].

The well-known approaches, including MR, BPNN, and
ANFIS, were used for modeling and mutually verifying
the performances of models. In this study, although the
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TABLE 6. Practical experimental data (F125) obtained by five-level full-factorial experiments.

TABLE 7. The RMSEs and R-values for training and validation sets: comparison of MR, BPNN, and ANFIS data-driven models.

MR, BPNN, and ANFIS data-driven models built using
F125 dataset had slightly superior prediction performance,
the number of F125 data required for training was triple of
the number of U41 data required for training. Therefore, the
U41 dataset has excellent capability in collecting data needed
to build effective data-drivenmodels. In industries, due to cost
and time limits, they do not allow a lot of experiments, and
therefore the UED, which has the characteristic of uniform
dispersion in a solution space, can collect a small amount of
experiment for modeling. Furthermore, the models built by
the MR, BPNN, and ANFIS with the data by the UED have
excellent capabilities for predicting.

The main differences between Tsai et al. [2] and this
study are the use of data collection method. The full factorial
experimental design and the UED were used in Tsai et al. [2]
and the study, respectively. The same modeling approaches

in Tsai et al. [2] (MLP) and this study (BPNN) were used
for modeling. Additionally, the TBGA was used to opti-
mize the positional compensation parameters for the exposure
machine in Tsai et al. [2], while the ANOVA was applied to
analyze parameter sensitivity in the study. This study mainly
emphasizes the use of an effective and efficient method for
data collection in order to reduce cost and time for the real-
world industrial applications. The time complexity of this
study compared to Tsai et al. [2] is that the number of
F125 data required for training was triple of the number of
U41 data required for training.
Remark: The practical results in this study confirmed

that the proposed integration approaches can effectively
build models for predicting positioning errors and for ana-
lyzing parameter sensitivity of an exposure machine sys-
tem. The obtained data-driven models can accurately predict
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positioning errors during validation. Here it should be noticed
that the proposed integration approaches have been adopted
in the MIRDC (http://www.mirdc.org.tw) and some expo-
sure machine system companies. In addition, the proposed
integration methods have immediate real-world applications.
This paper is an applications-oriented and interdisciplinary
study, and this practical article discusses a new application
technique and provides interesting solutions to the exposure
machine systems.

V. CONCLUSIONS
The data-driven modeling approach proposed in this study
accurately predicts positioning errors by using three system
integration scaling factors, fx , fy, and fq. The U41 experi-
ments, which are 0.0595% of five-level full-factorial experi-
ments, demonstrate the highly effective in collecting data to
build MR, BPNN, and ANFIS models. The MR, BPNN, and
ANFIS data-driven models built using the U41 experimental
dataset, which are uniformly scattered in a solution space
accurate to within 0.001, can accurately predict positioning
errors for the U21 dataset. Sensitivity analyses of the three
design parameters showed that system integration scaling
factors fx and fy had the largest effects on positioning per-
formance. The experimental comparisons in this study also
showed that the U41 dataset is almost as effective as the
five-level full-factorial F125 dataset in terms of collecting
data for modeling and predicting positioning errors using
the U21 dataset. The MIRDC (http://www.mirdc.org.tw) has
already adopted the proposed integrative and systematic
approaches to accurately predict positioning errors of an
exposure machine system. That is, the MIRDC has benefited
from use of the developed integration methods.
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