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ABSTRACT Online hyper-heuristic selection is a novel and powerful approach to solving complex problems.
This approach dynamically selects, based on the state of a given solution, themost promising operator (from a
pool of operators) to continue the search process. The dynamic selection is usually based on the analysis of the
latest applications of a given operator during actual execution, estimating the potential success of the operator
at the current solution state. The estimation can be made by evolvability metrics. Calculating an evolvability
metric is computationally expensive since it requires the generation and evaluation of a neighborhood of
solutions. This paper aims to estimate the potential success of an operator for a given solution state by
using a pre-trained neural network; known as a parallel perceptron. The proposal accelerates the online
selection process, allowing us to achieve better performance than hyper-heuristic models, which directly use
evolvability functions.

INDEX TERMS Adaptive algorithm, optimization, artificial intelligence, artificial neural networks, parallel
perceptron.

I. INTRODUCTION
Hyper-heuristics are high-level strategies that choose or gen-
erate a set of low-level heuristics to solve difficult search
and optimization problems [7], [24]. Hyper-heuristics aim to
replace bespoke approaches by using more general method-
ologies, thereby reducing the required expertise to construct
individual heuristics as their main goal. [6], [9].

Selection hyper-heuristics operate at a high-level to choose
the next operator, from a low-level heuristic pool, to guide
the search [6], [7], [25], [30]. The objective is to apply the
most effective low-level heuristic at each subsequent stage in
order to solve a given problem instance. The result is an auto-
mated methodology that generates a sequence of heuristics to
improve or construct a solution.

These methods need to identify the potential success of
each specific heuristic at any step of the search process;
this is not an easy task, because the potential of each
heuristic may vary dynamically during the search process.
Other approaches used when designing optimization heuris-
tics in an autonomous way are automatic parameter tuning
and algorithm configuration tools on a set of training
instances [4], [13]. Eiben and Smit [10] specifically propose
a framework for parameter tuning along with a survey of

tunning methods. However, that framework was specialized
for tunning parameters and not for operator selection.

This work considers adaptive operator selection (AOS),
which requires two cooperating mechanisms: operator
selection that defines how the next operator to be appliedmust
be chosen based on its estimated potential success; and credit
assignment that assigns a reward value based on the observed
performance on last iterations. An initial approach of this
assignment is to account for the fitness improvement brought
by the operators. That is, the fitness difference between the
offspring with respect to a reference value, usually the parent
fitness [19], [20], [32].

Our proposal is to use metrics that are based on char-
acteristics of the neighbourhood surrounding a current
solution to evaluate the impact of operators, and incorpo-
rate these metrics into the credit assignment mechanism.
Lourenço et al. [16] supports the idea to incorporate a train-
ing phase of a simple and less accurate metric than a mere
fitness evaluation to avoid the overfitting of the data problem
in a selection hyper-heuristic. In this work, we use evolv-
ability metrics as an option to construct credit assignment
methodologies that are based not only on the current fitness
improvement but also on the neighbourhood (local landscape)
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of a current solution. Evolvability is loosely defined as the
capacity to evolve [1], [27], i.e. the potential of an individual
to produce offspring with better fitness value. The idea is to
reward an individual for its potential rather than its fitness
value; two individuals with equal fitness could have different
potentials for evolution [27].

Evolvability can be seen as a metric of how much we may
expect from a given solution when using a specific operator,
so different operators could be given different evolvability
values when they are applied to the same solution. The key
idea is to use the operator that maximizes the evolvability
value from a given solution. We considered evolvability met-
rics as the credit assignment rule in AOS in a previous study
with encouraging results [28].

Calculating evolvability requires a sampling process that
consumes fitness evaluations on the fly; therefore, it may
be computationally expensive. In this paper, evolvability is
estimated by the implementation of a parallel perceptron.
By using the parallel perceptron, we accelerate this process
because we are only processing an incoming solution with
its fitness value through a single layer of perceptrons, which
have been pre-trained to behave like an evolvability metric.

This parallel perceptron neural network uses the parallel
delta (p-delta) rule [2]. In contrast to the back-propagation
learning rule for multi-layer perceptrons [26], the p-delta
rule only has to tune a single layer of weights, and it does
not require the computation and communication of analogue
values with high precision [2]. The main idea is to train a
parallel perceptron to use it as an evolvability metric without
expending unnecessary fitness evaluations during execution.

To test and compare our proposal, we select the algo-
rithmic framework (high-level search strategy and relevant
parameter settings) used in recent works on adaptive operator
selection [11], [28], [29]. Three benchmark problems with
binary representation are used. Namely, OneMax prob-
lem (also used in [11]), Royal Staircase family functions
and the Multiple Knapsack problem (also used in [28]). The
next section describes important concepts like evolvability,
the parallel perceptron and its p − delta learning rule. Our
proposal is described in Section 3. Section 4 details the
empirical setup, while Section 5 reports and analyses our
results. Finally, Section 6 summarizes our findings and sug-
gests directions for future work.

II. RELEVANT CONCEPTS
A. EVOLVABILITY
The first formalisation of the Evolvability concept is
attributed to Altenberg [1]. In this work, evolvability is
defined as ‘‘the ability of the genetic operator/representation
scheme to produce offspring that are fitter than their parents.’’
This is desirable feature for adaptation in natural and artificial
systems relevant to adaptive operator selection.

We are interested in measuring the potential of this opera-
tor/solution pair. The key idea is to evaluate the evolvability
value of an incumbent solution along with an operator taken

from a pool. The operator that gives us the best evolvability
value using an incoming solution will have greater chances to
be selected to guide the search at further iterations.

Several evolvability metrics have been proposed in the
literature [18]. In this paper we focus on a simple and
well-know evolvability metric named Ea, proposed in [27].
Ea is defined as the probability of the offspring’s fitness being
higher or equal to the parent’s fitness (Equation 1). The use
of this Ea evolvability metric as a credit assignment rule
in adaptive operator selection has been studied previously
in Soria-Alcaraz et al. 2014 with encouraging results [28].
Following notation and definitions by Smith et al. [27] we
define the Ea metric as: let (V ,E) be the fitness landscape
with vertices V (solutions) connected by edges E . There is
an edge between two solutions if one is generated from the
other through a single application of a given operator/low
level heuristic. Let the pair < h, k > represents a solution
with genotype h and fitness k . The set, G, of offspring <
h, k > is determined by the vertices connected to the parent
solution/vertex: G(< h, k >) = {g ∈ V : E(< h, k >) = g}.
The fitness function, F , maps every solution to a single R

value. Then, we can define a set of offspring with fitness F(g)
greater than a given value:

G+c (< h, k >) = {g ∈ V : E(< h, k >) = g,F(g) ≥ c}

Ea can then be described as the probability of a descendant
to have a higher (or at least the same) fitness value than that
of its parents. More formally, the ratio between the number
of offspring with fitness higher or equal to that of the parent.
Equation 1 details this ratio.

Ea =
|G+k (< h, k >)|

|G(< h, k >)|
(1)

A sampling methodology is required to give an approxi-
mation of this Ea value since it could be impractical to eval-
uate each possible offspring from a given Operator/Solution
pair. This sampling method needs to follows a uniform dis-
tribution to guarantee a proper exploration of the neigh-
bourhood space around a solution. However, several of the
solutions or points contained in the neighboring space may
not be useful [31]. Therefore, a desirable characteristic for
our sampling process is the ability to give priority to solu-
tions with higher fitness. As suggested in [31], we use
the Metropolis-Hastings sampling algorithm to meet these
requirements. The Metropolis-Hastings extends the standard
Metropolis sampling to non-symmetric stationary probability
distributions.

The Metropolis-Hasting sampling method is used for esti-
mating the Ea metric collecting information about the off-
spring produced from the incumbent solution and a given
operator. A sampling size of 15 (offspring) is used in our
experiments. This empirically found value demonstrated
good performance in terms of both: computation expenses
and metric approximation quality.
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B. THE PARALLEL PERCEPTRON
A perceptron neuron with a given z input of size d can be
conceived as a function f from Rd into {−1, 1} as seen in
Equation 2.

f (z) =

{
1 if α· z ≥ 0
−1 otherwise

(2)

where α ∈ Rd is the weight vector of the perceptron, and
α · z denotes the usual vector product (with one of the inputs
as a constant bias input).

Auer et al. [2] defines a parallel perceptron as a single
layer consisting of a finite number of n perceptrons (without
lateral connections). Let f1, . . . , fn be the functions from Rd

into {−1, 1} that are represented by these perceptrons. For an
input, z, the output of the parallel perceptron are the values
seen in Equation 3,

x =
n∑
i=1

fi(z) ∈ {−n, . . . , n} (3)

this value needs to be escalated using s(
∑n

i=1 fi(z)), where
s : Z → R is a squashing function that scales the output
into the desired range. [2].

In this paper the squashing function used to scale the raw
input from equation 3 is a simple linear transformation, this
function can be seen in equation 4

s(x) =
x + n
2n

(4)

where x is the output value from equation 3 and n is the
number of perceptrons used in our parallel array.

C. PARALLEL DELTA RULE
The parallel array of perceptrons described in section II-B
uses a simple but powerful learning rule defined by
Auer et al. [2] as the parallel delta (p-delta) rule.
The p-delta rule has two components, a classical delta rule

which is applied to a subset of perceptrons and a component
which decides whether the classical delta rule should be
applied to a specific perceptron.

For completeness, we replicate the p-delta rule in Figure 1,
we invite interested readers to analyze Auer et al. [2] to fully
understand the power of this rule.

The p-delta rule has a set of parameters (Figure 1) we
now detail the values used in our implementation; ô refers
to the actual output of the parallel perceptron calculated by
Equation 4, o refers to the desired output for that specific
input z.αimeans the i−th perceptron in our array, η represents
the learning rate ( we select this value as 0.0001 through
preliminary experimentation), ε is the desired error (we fix
this error as 0.01), µmeans a margin used by the p-delta rule
to reinforce the learning phase, following Auer et al. [2] we
fix this value to 1, γ stabilizes the output of the perceptron
array keeping α · z away from 0, in our implementation γ has
the value of 0.01. We use this parallel delta rule to train our
parallel perceptron.

FIGURE 1. p-delta rule taken from Auer et al. [2].

III. METHODOLOGY
We investigate the use of the parallel perceptron as evolvabil-
ity metric estimator in a selection hyper-heuristic. An adap-
tive operator selection scheme consists of two components:
(i) a credit assignment mechanism, which associates a reward
with each operator and (ii) a selection rule, which makes
the effective selection of the operator to be used on latter
iterations. It is within the credit assignment mechanism that
the parallel perceptron as evolvability metric is introduced as
described in subsection III-A. Subsection III-B.2 describes
the selection rules implemented, while in subsection III-B the
high-level search strategy used.

A. THE PARALLEL PERCEPTRON AS
EVOLVABILITY METRIC
As seen in section II-A, Equation 1, the Ea evolvability metric
gives a value in the range [0, 1] that represents the probability
for a potential offspring to achieve a better fitness than its
parent using a specific heuristic. This value could be used as
a credit assignment operator where an incoming solution is
paired with each operator in order to assign a potential value
of success for each pair. The idea is to select the operator that
maximizes this evolvability value for an incoming solution.
An important disadvantage of the usage of evolvability met-
rics in credit assignment is the necessity of investing func-
tion evaluations to reach a representative evolvability value.
A properly pre-trained parallel perceptron could behave like
a classical evolvability metric, making it possible to achieve
similar evolvability values for each solution-operator pair at
a lower computational cost.

The execution of a pre-trained parallel perceptron
(subsection II-B) is straightforward, since it only requires:
d inputs, αi weights and a squashing function. In this paper
we use as inputs the actual solution state along with its fitness
evaluation. An example of this configuration can be seen
in Figure 2, considering the OneMax Problem with a bit-
string length of 5 (we use an extra input with the value of 1
as a bias). Our squashing function is the linear expression
shown in equation 4. Finally, the set of αi weights is obtained
through a training process detailed in section III-A.1.
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FIGURE 2. Training data example for 1-Flip Operator in the OneMax
problem.

1) TRAINING PHASE
In order to achieve a set of appropriate αi weights for
our parallel perceptron we use the p-delta rule detailed in
section II-C. This learning rule allows us to train our parallel
perceptron to behave as the Ea evolvability metric. In order
to execute the p-delta rule for each operator we build a
training dataset. These datasets were obtained by means of
the implementation of a standard (1+ λ) Evolutionary Algo-
rithm (EA) without recombination, where λ = 50 offspring
are created through the application of a given operator from
a single parent (allowing us to calculate the Ea value of the
last pair operator/parent) and the best individual among the
current offspring and parent becomes the parent in the next
generation, when a new state has a better fitness value than
its parent we store it in a data structure as seen in Figure 2.
Algorithm 1 details our data set construction.

Once we obtain a datasetop for each heuristic/operator,
we train a parallel perceptron for each desired operator.
We use the p-delta values detailed in section II-C during
5000 epochs. Finally, our parallel perceptron implementation
contains 100 perceptrons.

B. SELECTION HYPER-HEURISTIC
A selection hyper-heuristic algorithm has three main compo-
nents: the high-level search strategy, the pool of operators and
the adaptive or control mechanism to dynamically select the
operator to apply at each search step. This section describes
the high-level strategy and adaptive operator selection mech-
anism used by the proposed approach. The pool of operators
is normally problem-specific.

1) HIGH-LEVEL STRATEGY
In order to make a fair comparative between this and pre-
vious works, we implemented an Iterated Local Search
algorithm(ILS) as high-level strategy [29]. Iterated Local
Search is a simple and effective algorithm by Lourenço
et al. [15]. This algorithms works iteratively alternating
between an exploration move (pertubation) and a exploitation
move (local search) from the perturbed solution. Variants
of this algorithm when used along with selection hyper-
heuristics has been reported previously with encouraging
results [23], [29].

Our implementation is outlined in Algorithm 2. The adap-
tive control mechanism is applied to the improvement stage,
in which a local search heuristic is selected (Selection rule,

Algorithm 1 (1+ λ)−EA for Training Dataset Construction
Require: F : fitness function, sample : number of samples,

size of parent pool (1), λ : size of the offspring pool, op :
Heuristic or operator to sample.

1: ParentPool0 = generatePopulation(1)
2: currentSamples = 0, t = 0
3: initialize datasetop
4: while datasetop.size() < samples do
5: t ++
6: initialize OffspringPoolt =

apply(op) λ times to ParentPoolt−1
7: calculate Ea value for ParentPoolt−1 using

OffspringPooli
8: OffspringPoolt .add(ParentPoolt−1)
9: ParentPoolt = Best(OffspringPoolt )
10: if F(ParentPoolt ) best than F(ParentPoolt−1) then
11: Store ParentPoolt−1, F(ParentPoolt−1) and Ea value
12: end if
13: end while
14: return datasetop

credit assignment) from the available pool and then applied
to the incumbent solution (line 5). The perturbation stage
uses a fixed randomized operator, and the acceptance condi-
tion simply accepts all improvements. This implementation
differs from our previous ILS hyper-heuristic [29] in the
operator control mechanism for selecting heuristics, as shown
in Algorithm 2.

Algorithm 2 High-Level Strategy: Iterated Local Search
1: s0 = GenerateInitialSolution
2: s∗ = ImprovementStage(s0)
3: while !StopCriteria() do
4: s′ = SimpleRandomPerturbation(s∗)
5: s∗

′

= ImprovementStage(s′)
6: if F(s∗

′

) better than F(s∗) then
7: s∗ = s∗

′

8: end if
9: end while
10: return s∗

2) OPERATOR SELECTION
Two components are required in this phase: A selection rule,
which defines the operator to be used in latter iterations
according to its estimated quality; and a credit assignment
mechanism, which defines how to estimate the operator qual-
ity based on the performance of its most recent application.
These mechanisms are described in detail below.

a: SELECTION RULE
We use dynamicmulti-armed bandit (DMAB) [8] as selection
rule, where each operator is viewed as an arm. Let li,t denote
the number of times the ith arm has been played, and r̂i,t the
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average empirical reward it has received up to time t . At each
time step t , from K alternative arms, the algorithm selects the
arm maximising the quantity computed by expression 5.

r̂j,t + C

√
2log(

∑K
i=1 li,t )

lj,t
(5)

A scaling factor C is needed in order to achieve a balance
between exploration and exploitation phases. Also, since the
multi-armed bandit framework is combined with a Page-
Hinkley statistical test, two additional parameters associated
with the Page-Hinkley are introduced; they are: γph, which
controls the trade-off between false alarms and unnoticed
changes; and δ, which enforces the robustness when dealing
with slowly varying environments. Parameters C and γph
need to be tuned for every problem. We found in preliminary
experiments that the values C = 10, γph = 100 obtain
encouraging results consistently. For the parameter δ, we used
the value suggested in [11] (δ = 0.15) for all our experiments.

b: CREDIT ASSIGNMENT
We use an extreme value criteria for determining the oper-
ator’s credit [11], [12]. Rewards are updated as follows,
when an operator op is selected, it is applied to the current
solution. Afterwards we use our trained Parallel Perceptron
(section III-A) to estimate its Ea value. This Ea value is added
to a FIFO list of size W . A separate list is kept for each
operator. Thereafter, the operator reward is updated to the
maximal Ea in the list. More formally, let t be the current step
and Ea(t) the Ea evolvability value estimated by our parallel
perceptron at time t for a specific heuristic op, the expected
reward r̂t for heuristic op is computed using equation 6.

r̂t = argmax{Ea(ti), i = 1 . . .W } (6)

IV. EXPERIMENTS
Our experimental setup is detailed in this section along to the
parameters, algorithms and statistical tests used.

A. TEST PROBLEMS
For this work we select three binary string based domains,
we have selected these domains in order to analyze in this
first work the potential of use of a parallel perceptron as
metric estimation for on-line selection hyper-heuristics. The
domains are:

Onemax or counting one’s problem used in many theoret-
ical and proof of concept papers [11].

1) ROYAL STAIRCASE FUNCTIONS
This binary string based domain belongs to the Royal Road
functions [21]. These binary string based functions are char-
acterized by long periods of invariability of the fitness fol-
lowed by occasional and abrupt changes [22]. Genotypes of
this domain are binary strings divided in Nr blocks where
each block holds Kr bits per block. The fitness value of a
given string is the number of blocks corresponding to 1 plus
the number of consecutive fully-set blocks starting from the

left i.e. blocks that only hold values of 1. Nr and Kr values
determine a particular instance of this domain.

2) MULTIPLE KNAPSACK PROBLEM
This domain comes from the single Knapsack problem where
themain objective is to fill a knapsack of capacityC with a set
of elements, each one with a profit pi and a weigh wi, looking
for the assignation that produces the maximum profit.

The multiple version consists of m knapsacks of capacities
c1, c2, . . . , cm and n objects with profits p1, p2, . . . , pn. Each
object has m possible weights: object i weighs wij when
considered for inclusion in knapsack j (1 ≤ j ≤ m). Again,
the objective is to find a packing that guarantees that no
knapsack is overfilled:

∑n
i=1 wijxi ≤ cj for j = 1, 2, . . . ,m;

and that achieves the maximum profit P(x) =
∑n

i=1 pixi [14].

B. ALGORITHMS AND PARAMETER SETTINGS
As discussed in section III-B we use the Iterated Local Search
method (Algorithm 2) as a high level search. Also, we select
a pool of operators to use with our domains. The family of
operators selected was the standard n-flip. These operators
choose uniformly at random n bits in the current solution
and flip their values (0 is changed to 1 and vice-versa). Our
implementation used n values of 1, 3 and 5 [11].

As for algorithms variants, three Adaptive Operator Selec-
tor (AOS) variants were considered by combining three
alternative credit assignment mechanisms: fitness improve-
ment (Fit), estimated evolvability metric thought sampling
taken from a previous study [28] (Ea-S) and estimated evolv-
ability metric through parallel perceptron (Ea-Pp). For the
selection rule we use DMAB (section III-B.2). Notice that
Fit variant corresponds to the algorithm proposed in [11].
Finally, One last algorithm is selected as a control method;
this algorithm identified as Random simply selects operators
uniformly at random at each iteration.

Parameter settings used in the experiments are detailed
in Table 1. Common values for all experiments (the credit
assignment window size W , the Metropolis-Hastings sam-
pling size for calculating evolvability metrics, and the control
parameter δ associated to the dmab rule) can be seen in
the first three entries of Table 1. Entries in Table 1 show
the parameter values specific to each test problem. Specific
parameters are: the maximum number of generations for
the evolution strategy MaxGener , the chromosome length
L, and the selection rule control parameters (C , γph for
dmab). OneMax values follow the suggestions in [11]. For
the remaining problems, parameter values were obtained
empirically.

V. RESULTS AND ANALYSIS
For each algorithm variant and test instance 35 independent
runs were conducted. The stopping criteria consist in the
number of iterations of our ILS. All domains are maximiza-
tion problems. We record the fitness function value after the
execution each run. For each instance, we train a parallel per-
ceptron to behave like theEametric, as shown in section III-A
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TABLE 1. Parameter settings.

TABLE 2. Parallel perceptron training time in seconds for selected
instances. (5000 epochs).

TABLE 3. Descriptive statistics of main AOS variants across all test
problems.

we execute 5000 epochs per instance. Table 2 shows the time
in seconds used to train the parallel perceptron.

Table 3 summarizes basic descriptive statistics calculated
from the final fitness values achieved by our algorithm vari-
ants, the compared algorithms are: Our proposal Ea-Pp, Ea-S
from [28], Fit from [11] and the control algorithm named as
Random across all domains. These domains are maximiza-
tion problems so, bigger values means best results. Results
indicate that our proposal is superior to other algorithms.
Importantly, the calculation of evolvability through sampling
(Ea-s) incurs additional computational costs, this situation
is not present in our proposed Ea-Pp. Table 4 presents the
approximate execution time observed in our experiments.
However, this evidence is not enough to ensure that our pro-
posal has the better performance with statistical significance.

Analyzing our results per instance and algorithm we found
that data follows approximately a normal distribution and that
they have stable variances, this was checked by Shapiro-Wilk
tests. Therefore, we use parametric statistical tests to analyze
adequately the performance of all algorithms.

In the case of Onemax domain we use one-way ANOVA
F Test since there is a single factor (Algorithm Variant)

TABLE 4. Empirical running times in seconds on selected test instances.

FIGURE 3. Fitness distributions for Onemax 10000.

that can explain performance differences in the results.
For the royal staircase and multiple knapsack domains
two-way Anova F tests are used because algorithm vari-
ant is not the only factor to analyze but also the spe-
cific instance can explain observed differences in the
results.

A pairwise t test is applied post-hoc to identify specific dif-
ferences in the performance (if exists) of a given pair of Algo-
rithms. Furthermore, the p-value for each test is computed
including a Bonferroni correction to ensure that the effect
of the so-called family-wise error is controlled. Also Tukey
HSD tests are applied to uphold t tests. The significance level
used across all tests is 0.05. Finally, the null hypothesis (H0)
of all these tests are that there are not significant differences
between the means of the results provided for the tested
algorithms.

A detailed analysis of our results across all domains is
presented in following sections.

A. OneMax
The magnitude and distribution of 35 independent executions
for each algorithm with the Onemax domain of size 10000 is
illustrated in Figure 3, the Ea-Pp algorithm outperforms other
approaches. The one-way Anova f test reported in Table 4
supports the existence of differences between the means of
the algorithms with statistical significance. Pairwise t tests
were also conducted using Bonferroni correction to identify
if there exist a difference between the results of a given pair
of algorithms with statistical significance.We are specifically
interested in differences between our approach (Ea-Pp) and
other methods.

The Anova F Test in Table 5 shows evidence about the exis-
tence of differences between themeans of the results obtained
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TABLE 5. Onemax. One-way ANOVA F test, and pairwise t test.

FIGURE 4. Fitness distributions for N80K5 instance.

by the execution of the algorithms. The pairwise t tests
with Bonferroni correction enforces this evidence because
each time our proposal is compared against other methods it
reports a p− value less than our significance level 0.05; this
rejects the null hypothesis i.e. the Ea-Pp algorithm produces
results that are significantly different when compared against
the other algorithms. Therefore, we can ensure that the per-
formance of our proposal shown by Figure 3 is consistently
since we now have evidence with statistical significance that
supports this.

B. ROYAL STAIRCASE
Royal Staircase functions are characterized by a high rugged-
ness level given by the numbers of blocks (Nr ) and their
size (Kr ). Four combinations of < Nr ,Kr > : < 20, 5 >,
< 40, 5 >,< 80, 5 >,< 10, 7 > are used in this
section as instances of Royal Staircase functions. The two-
way Anova f test is applied to the data obtained by the exe-
cution of the 4 algorithms variants over the 4 royal staircase
instances, results of this test are reported in Table 6. The
subsequent application of both: pairwise test with Bonferroni
correction and the Tukey HSD test with confidence level
of 95% supports the evidence that the Ea-Pp algorithm,
proposed in this paper, produces results that differs with
statistical significance against the other methods. Similar to
the Onemax domain, Figure 4 reports boxplots obtained by
our experimentation. Again, each boxplot represents 35 inde-
pendent executions of each algorithm over the < 80, 5 >

instance (named N80K5) similar behavior was observed
across all the royal staircase instances. Results from table 6
supports the evidence represented by Figure 4, which shows
the algorithm Ea-Pp as the best algorithm for Royal Staircase
instances.

TABLE 6. Royal staircase. Two-way ANOVA F test, pairwise t test and
Tukey HSD test.

FIGURE 5. Fitness distributions for Weish30 instance.

TABLE 7. Multiple knapsack. Two-way ANOVA F test, pairwise t test and
Tukey HSD test.

C. MULTIPLE KNAPSACK
For the Multiple Knapsack problem, we select six instances,
these instances are available online in the OR-library by
Beasley.1 Selected Instances varies from 50 to 105 objects
and from 2 to 50 knapsacks. All instances are considered as
multi-modal constrained problems.

1The OR Library is available at http://people.brunel.ac.uk/~mastjjb/jeb/
info.html.
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Following our previous experimentation, we apply a two-
way Anova test to the data obtained by 35 independent exe-
cutions of each algorithm over our selected instances. Also,
we apply several pairwise t tests with Bonferroni correction
and a Tukey HSD test with confidence level of 95% as post-
hoc procedures. Table 7 reports our results for this domain.
Figure 5 presents box-plots with the performance of all algo-
rithm variants.

Again, our approach achieves better results when com-
pared against other similar approaches, this evidence sug-
gests that the use of a Parallel perceptron as estimator of an
evolvability metric improves the performance of an on-line
selection hyper-heuristic that utilize it as credit assignment
mechanism, at least in the case of Onemax, Royal Staircase
and Multiple Knapsack instances.

VI. CONCLUSIONS
We investigated the benefits of using a parallel perceptron
as a estimator for an evolvability metric when used as a
credit assignment mechanism in adaptive operator selection,
which is a component of online selection hyper-heuristics.
Traditionally, evolvability metrics are estimated through a
sampling process, which increases the computational effort
required by its calculation. Our approach, in contrast, offers
a less computational-stressing method to estimate the Ea
evolvability metric using a single layer of perceptrons. This
layer was trained by a p− delta rule which only has to tune a
single layer of weights. Results on the selected binary-based
problems reveal firstly, that the use of evolvability metrics
as credit assigment mechanisms produces statistically signif-
icant positive results when compared against the use of fitness
based metrics, second, the use of evolvability metrics could
be improved to estimate these metrics with less exhaustive
calculations, such as the application of a parallel perceptron.
Our research contributes to the goal of using features of the
local fitness landscape to inform dynamic self-configuring
algorithms.

As for future work, real-world optimization problems
such as timetabling and Vehicle routing problem will be
tested using this approach. An idea to apply our approach
to non-binary domains could be to normalize the values
âĂŃâĂŃof each non-binary variable, by doing this it is
possible to process each value without extra changes by
our methodology. Our study uses an Iterated Local search
strategy with a pool of mutation operators as the high-
level search strategy. Other meta-heuristic algorithms can
be used as high level strategy. In this paper only muta-
tion operators are used, it is worth to test recombination
and crossover operators or even construction-destruction
operators. This research is therefore relevant to selec-
tive hyper-heuristics with adaptive large neighbourhood
search.
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