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ABSTRACT We propose a dynamical way to set the process error covariance matrix (Q) for a constant
velocity (CV) model Kalman filter. We are able to achieve the best possible solution for the estimated
state, in the sense of forecast error, while significantly reducing the convergence time at no significant
computational cost. No assumptions regarding the statistical nature of the observed process are made and
no prior knowledge of the system is required. To achieve this, we adopt a recently proposed performance
index for the Kalman filter, we map the best Q for an ample range of model deviations (accelerations) and
dynamically set the best possibleQ for the CV filter by identifying the average acceleration of the measured
signal online. We demonstrate our scheme ability by filtering simulated trajectories with low, medium, and
high signal-to-noise ratios. We also track a real erratic target and compare our filter prediction with the best
possible a posteriori CV filter.

INDEX TERMS Target motion prediction, Kalman filter (KF), target tracking, optimal filter.

I. INTRODUCTION
The Kalman Filter (KF) is arguably one of the most impor-
tant state estimation techniques today, with a wide range of
applications, such as target tracking [1]–[4], weather predic-
tion [5], [6] and Neural Network training [7], [8]. Usually,
the simple KF with second order state model alone, known
as Constant Velocity (CV) model, is not accurate enough
to effectively predict a target position, and many proposed
tracker techniques rely on maneuvering detection and filter
switching [9], [10], which effectively multiplies the com-
plexity of the tracker by the number of filters, while also
employing more complex models.

Possible methods to improve the Constant Velocity
Kalman filter (CVKF) include optimally setting the filter
parameter a priori or dynamically changing the parameters in
an adaptive fashion. For the CVKF, the two free parameters
are the measurement noise covariance (R) and the process
error covariance (Q). The measurement noise is only depen-
dent on the measuring apparatus and is usually known before-
hand, whereas the process error covariance matrix represents
a trade-off between estimated state noise/stability and model
flexibility. An all zero Q will lead to minimal noise in the
estimated state, but in the case of an ill suited choice of
model, it will lead to a poor fit of observed vs. estimated state.

In practice, the setting of Q values is done a priori, based on
expectations.

Many techniques were proposed to overcome this limi-
tation regarding the adaptive parameter setting of the KF,
but these techniques rely on previous knowledge about the
system, usually assumptions on the statistical nature of the
process and/or measurement noise [11]–[14]. Some propose
the inclusion of additional estimation blocks to the KF [15],
while others are only valid for very specific application [16].
Also, many are computationally complex [17], which can
be limiting when dealing with low computational capabil-
ity, such as for low-power embedded systems. Nonetheless,
a common point for almost all adaptive techniques is the
computation of the optimal parameter inside the filter loop,
which is usually the source of complexity. Another signif-
icant problem is the loose definition of optimality for the
KF [18].

Another way to improve the CVKF is to optimally select
the parameters a priori, but it has only casually been dis-
cussed [19], [20]. One interesting take on parameter selection,
with a thoughtful discussion on optimal setting, is presented
by [21], in which a performance index dependent on the
process error matrix was defined with no assumptions about
the process itself. Therefore, one could select an appropriate
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parameter based on anticipations regarding the system and
the desirable performance.

We propose a dynamical way to set an optimal Q for a
Constant Velocity model with regard to the prediction root-
mean-squared error (RMSE), without relying on prior knowl-
edge of the system. We show that it is possible to achieve
the best possible final estimated state and reduce the con-
vergence time, while adding only a marginal computational
cost. In comparison with the usual adaptive parameter setting
techniques, we identify only a simple control quantity inside
the filter loop and update the parameter Q from a previously
mapped file. To our knowledge, no one has mapped the
optimal Kalman parameters to an identifiable quantity and
applied this to dynamically select the appropriate parame-
ters based on measured quantities. Objectively, we show the
following.
• Our proposed algorithm is more effective in predicting
a target state than the best possible CVKF using an
Discrete-time Near Constant Velocity process error.

• The technique here suggested employs a process error
matrixQ derived without any assumptions regarding the
statistical nature of the process noise, therefore being
suitable to a wide range of problems.

• Our method is simple to understand, implement and
run, adding an average increment of only 7% in com-
putational time compared to a standard CVKF. This is
possible because we map Q beforehand, and thus only
need to read the correct values inside the filter loop.

• Our algorithm has only one parameter that must be set
a priori, the measurement noise covariance. Hence, its
performance depends only on an usually already known
parameter, and no further guesses are needed.

• Our approach is able to track maneuvering targets,
as well as erratic ones. That is, we are able to satis-
factorily track targets with both abrupt and incremental
changes in its dynamics.

This paper is structured as follows. In Section II, we dis-
cuss the KF Tracker; in the subsequent section, we present
our proposed algorithm; section IV presents the simulation
results and a real object tracking experiment. Finally, our
work conclusions are shown in Section V.

II. Kalman FILTER TRACKER
This section introduces the Kalman Filter for target tracking,
defines the model used in this paper and discusses the influ-
ence of the error parameters on the tracking performance.

A. Kalman FILTER ALGORITHM
The KF is used to estimate a state vector of the target’s
parameters, based on a dynamic or measured model, in the
presence of noise. The typical model is:

xk = 8xk−1 + wk , (1)

where xk denotes the true target state vector at observation k ,
8 is the state transition matrix from observation k to obser-
vation (k + 1), and wk is the process noise with covariance

matrix Q. The measurement of the target is modeled as:

zk = Hxk + vk , (2)

where zk represents the measurement vector, H is the mea-
surement matrix, and vk is the measurement noise with
covariance matrix R.

The KF tracker for the above model sequentially estimates
the state vectors by forecasting the future measurement, com-
paring the the predicted value with the current one and then
correcting the model and the estimated state by minimizing
the prediction error. This is accomplished by the following
equations, known as the Kalman Filter Equations:

x̃k = 8x̂k−1 (3)

P̃k = 8P̂k−18†
+Q (4)

Kk = P̃kH† (HP̃kH†
+ R)−1 (5)

P̂k = P̃k −KkHP̃k (6)

x̂k = x̃k +Kk (zk −Hx̃k ) (7)

Here P is the covariance matrix of errors, and K is the gain
that minimizes the errors in the estimated state vector. The
superscripts ∼ and ∧ denote the forecasts and the estimates,
respectively.

B. CONSTANT VELOCITY MODEL
In this work we use the most common second-order model,
the Constant VelocityModel Kalman Filter (CVKF), with has
the following estate vector and the transition matrices:

x = (x v)† (8)

8 =

(
1 δt
0 1

)
(9)

where δt is the sampling interval, x denotes the position, and
v the velocity of the target being tracked. This is the represen-
tation for a one-dimensional (1D) tracker, but applications to
two or higher-dimensional problems are easily achieved by
implementing one filter for each dimension.

C. ERROR PARAMETERS
The KF equations depend on the selection of the measure-
ment and process covariance error matrices, which have to
be defined a priori to best suit the modeled system.

This task is usually trivial for the measurement error, since
normally one knows beforehand what is the measuring appa-
ratus and how it behaves.

However, the same is not true of the process error. The
process error covariance matrix (Q) accounts for deviations
in the observed system in relation to the selected model.
A zero process error choice implies complete confidence in
the match between observed and predefined model, so any
deviation of the target behavior from the model selected will
lead to catastrophic tracking error.

On the other hand, the choice of a comparatively large pro-
cess error will lead the filter to accept bigmeasured deviations
as intrinsic to the process, thus reducing the effectiveness of
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measurement noise reduction. It is important to notice that the
process noise can accommodate both random perturbation in
measurement and biased perturbations in transition, soQ rep-
resents a trade off between estimated state noise and tracking
accuracy. Therefore, a good selection of Q is a sine qua non
condition for effective noise filtering and efficient tracking.

D. USUAL Q MATRIX FOR CVKF
The most commonly used process noise is random acceler-
ation, which in discrete time has the following covariance
matrix

QDNCV =

(
δT 4/4 δT 3/2

δT 3/2 δT 2

)
σ 2
ga. (10)

Here, σ 2
ga is the variance of a white Gaussian acceleration.

We refer to this model as a discrete-time nearly constant
velocity (DNCV) and we adopt it in comparison with our
technique due to the fact that not only it is widely used,
but also because it produces the best performance over the
alternatives when σ 2

ga is correctly specified [21].

E. OPTIMAL Q MATRIX FOR CVKF
Recently, the problem of appropriately selecting the matrixQ
was studied in detail [21], and the following Analytic Steady-
State Performance Index was proposed to guide the choice
of Q:

µ =

√
σ 2
p + e

2
fin

σx
(11)

where σx is the standard deviation of measurement errors; σp
represents the prediction root-mean-squared error (RMSE)
for the CVKF of a zero acceleration target, also known as
Smoothing Performance Index; and efin represents the bias
error for the CVKF of a target with a constant accelera-
tion (ac), also known as Tracking Performance Index.
In [21], it is shown that there is a direct link between

Q and µ, and therefore one can select the elements of Q that
minimize µ. Specifically, let Q be

Q =
(
q1 q2
q2 q3

)
, (12)

then, we can write µ as

µ =

√
2α2 + 2β + αβ
α(4− 2α − β)

+
a2c(δt)4

σ 2
x β

2 , (13)

where

α = 1− D2/16C (14)

β = D/4 (15)

D = C + D1 −

√
2(D3

1 + D2) (16)

D1 =
√
C(16+ 4A− 4B+ C) (17)

D2 = C(2A− 2B+ C) (18)

A = q1/σ 2
x (19)

B = q2δt/σ 2
x (20)

C = q3δt2/σ 2
x . (21)

Setting the values in Q - (q1, q2, q3) - that minimize µ,
in the case of constant acceleration ac, will lead to the
best possible tracking with the CVKF in this case, which
corresponds to the minimal prediction error. Although not
evident in the above equations, one important property of
the Q matrix selected this way is that this Q does not rely
on any assumptions regarding process noise [21], and there-
fore is suitable for random (Gaussian or otherwise), pseudo-
random or biased process perturbations.

III. OUR TRACKING METHOD
Notice that an important limitation from this proposed matrix
is that an appropriate ac must still be set a priori, or a sub-
optimal solution will be generated. Our proposed method
addresses this problem by dynamically identifying the target
acceleration and imbuing the CVKF with the optimal Q for
that particular instant. We call our technique the Dynamical
Process Noise Covariance Kalman Filter - DQKF.

However, minimizing µ with respect to (q1, q2, q3, ac) is
not computationally trivial and takes a few seconds - usu-
ally less than 10s - for each value of ac (using an Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz), which prevents an
online minimization for most applications.

To solve this problem, we mapped the optimal Q for 100
different ac, ranging from 0.01 m/s2 to 100 m/s2 in a loga-
rithm scale, so each time the identified target ac changed sig-
nificantly, we just readQopt (ac) frommemory and introduced
it to the CVKF. Details can be found on section III-A.

In order to avoid excessive intervention in the CVKF via
constant update of Q, which would decrease the overall per-
formance, we used a fading memory average of the acceler-
ation, measured by the innovations of the estimated velocity,
in the form of

a(k)c = γ a
(k−1)
c + (1− γ )(x̂k (2)− x̂k−1(2))/δt (22)

where γ is a decaying factor. This way, the estimated accel-
eration smooths out some of the identified state noise.

In our experiments, we observed that γ = 0.75 produced
a good balance between sensitivity to acceleration variation
and noise smoothing and no significant loss in performance
was identified by varying γ between 0.5 and 0.9, whereas val-
ues smaller than 0.5 produced sporadic excess noise due to the
frequent switching ofQ, and values bigger than 0.9 generated
a large tracking error. Fine-tunning γ is not fundamental for
the proposed technique, therefore we fixed its value at 0.75.
Although the initial value of ac can be anywhere within the
available interval, we found that the biggest available value
ensured a somehow faster initial convergence.

The processing time of our technique implementation,
summarized in Algorithm 1, was only 7% longer, on average,
than that of a standard CVKF with a fixed and predefined Q,
with no further code optimization.
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Algorithm 1 Algorithm for the Kalman Filter with
dynamically switched Q - DQKF.
Initialization
Given the measurement covariance error R;
Load the mapped Qopt ;
Adjust the values of Qopt with the selected R and δt;
Initial state: x0 = (0 0)†;
Initial estimated acceleration: ac = 100;
Initial process covariance matrix: Qopt (ac);
Initial covariance matrix P0 = I · R;
for k = 1, 2, ... do

measure: zk
apply filter: [x̂k , P̂k ] = CVKF[zk , x̂k−1, P̂k−1,Qopt ]
find trailing acceleration:
ac = 0.75 ac + 0.25(x̂k (2)− x̂k−1(2))/δt
update Qopt to the closest mapped ac available.

end

A. MAPPING THE OPTIMAL Q
Minimizing µ with respect to (q1, q2, q3, ac) can be done by
many optimization algorithms, with the first choice usually
being gradient descent. We opted for a modified Particle
Swarm Optimization algorithm, as proposed in [22], for its
variable step size, which can reach arbitrarily small steps, and
consequently lock in the actual minimum.1

FIGURE 1. Mapped values of (q1,q2,q3) for ac = [0.01 ...100 m/s2],
in the case of δt = 1s and σx = 1 m. Note the log×log scale.

Specifically, we minimized Eq. 13 with respect to the
parameters (A,B,C), which is equivalent to minimiz-
ing (q1, q2, q3) when δt = 1 and σx = 1m. For each ac,
we started the algorithmwith 100 particles and ran 1000 itera-
tions for 100 different initialization conditions.We performed

1Within the numerical error.

the calculations for the optimalQ for 100 different ac, ranging
from 0.01m/s2 to 100m/s2 in a logarithm scale and saved the
best values of (A,B,C) in a csv file. Saving it in double
precision, we have only 2400 Bytes of data, which can be
easily loaded to memory for fast access, and adjusted to the
desired δt and σx .

FIGURE 2. Expected values of prediction error of a target with constant
acceleration, within the range ac = [0.01 ...100 m/s2], in the case of
δt = 1s and σx = 1 m.

Fig. 1 shows the optimal values found for (q1, q2, q3), and
Fig. 2 shows the expected prediction error of a target with
constant acceleration, both in the case of δt = 1s and σx =
1m and for ac = [0.01 ... 100 m/s2].

IV. RESULTS
In order to evaluate the performance of the proposed
technique, we performed a series of simulations and one
experiment. First, we performed the tracking of a target
with variable acceleration under different signal-to-noise
ratios (SNR). Then, we investigated the DQKF response to
sharp turns by tracking the trajectory of a real erratic object
based on a log previously acquired with sudden velocity
inversion and also under different SNR.

TABLE 1. Comparative results from CVKF and DQKF - Prediction RMSE.

TABLE 2. Comparative results from CVKF and DQKF - tracking bias.
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FIGURE 3. Comparative results of the DQKF and the standard CVKF, for the low noise, medium noise and high noise cases. Figs. 3a, 3c and 3e
are samples from the Monte-Carlo simulation, showing the predicted trajectory for both the DQKF and the CVKF, with the observed trajectory.
Horizontal axes are time (s) for all figure. Vertical axes are measured position (m) for Figs. 3a, 3c and 3e, and average prediction RSME (m) for
Figs. 3b, 3d and 3f. (a) Sample signal - 40 dB. (b) Trajectory prediction RMSE - 40 dB. (c) Sample signal - 20 dB. (d) Trajectory prediction RMSE -
20 dB. (e) Sample signal - 0 dB. (f) Trajectory prediction RMSE - 0 dB.

A. TRACKING MANEUVERING TARGETS
For the maneuvering target case, the proposed trajectory was
defined by

x0 = 0m (23)

v0 = 1.7 · 103m/s (24)

a0 = −10m/s2 (25)
∂a
∂t
= 0.02m/s3, (26)

from t = 1 s to t = 1000s, sampled with δt = 1 s.
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Noise was added with standard deviations σx = 103 m,
for the low-noise case; σx = 104 m for the medium-noise
case; and σx = 105 m for the high-noise case. This is
equivalent to a SNR of approximately 40dB, 20dB and 0dB,
respectively. We performed 105 Monte-Carlo simulations
for each case and measured both the prediction root mean
squared error (RMSE) and the tracking bias. The prediction
RMSE was calculated based on the real, noise-free signal,
and the tracking bias was calculated as the average difference
between the predicted position and the real (noise-free) posi-
tion in the last predicted point, at t = 1000s.

We compared the performance of the DQKF with a stan-
dard CVKF, in the discrete time near-continuous velocity
model, with the process error matrix defined in section II-D
and σ 2

ga = 33.3 m, in line with the standard recommenda-
tion [19].

Table 1 shows the RMSE of predicting the next position,
and Table 2 shows the tracking bias.

It is interesting to notice that the prediction RMSEwas sig-
nificantly smaller for theDQKF, being a fifth of the CVKF for
the low and medium-noise cases. Most impressive, though,
is that the tracking bias performance of the DQKF is much
less sensitive to noise than the CVKF, being more than 100×
better for the high-noise case.

Figs. 3a, 3c and 3e are samples from the Monte Carlo
simulation, for the low-noise, medium-noise and high-noise
cases, respectively. The blue line is the measured signal,
the black line is the predicted signal from the CVKF, and
the red line is the predicted signal from the DQKF. Both
predictions are for times t = 2 to t = 1000.

Figs. 3b, 3d and 3f are the prediction RMSE, calculated for
each point in the trajectory, from t = 2 to t = 1000, for the
low-noise, medium-noise and high-noise cases, respectively.
The blue line is the average noise intensity, the green line is
the prediction RMSE for the CVKF, and the red line is the
prediction RMSE for the DQKF.

B. REAL ERRATIC TRAJECTORY
An interesting case is the sharp-turn, in which the target being
tracked completely inverts its direction. Even though it is an
extreme case, a good performance of a tracking filter under
these conditions is indicative of how well it will perform in
less extreme cases. As such, we performed an experiment
using a red ball tracked by a RGB-D camera (Fig. 4a) with
a frame rate of 30 frames-per-second (fps).

The camera and tracking algorithms used to acquire the log
from the ball’s movement had a short latency due to environ-
ment conditions and computational power (Fig. 4). Neverthe-
less, there was some noise from the distance between the ball
and the camera (the range of the camera is up to 5m only),
from the variation on the rate of frame capture and from the
spacial segmentation. This noise caused the target’s position
to jump from one point to another with different velocity and
direction.

The tracking algorithm was robust to partial occlusion and
light variations, so the log could be acquired without external

FIGURE 4. (a) RGB-D Camera. (b) A sample frame from the tracking
experiment.

influence. The objective of this experiment was to see the
response in tracking a real object with an erratic trajectory
subject to aleatory change in direction. The tracked object
moved in highly dynamic fashion with a stochastic, adiabatic
and chaotic trajectory. Fig. 5 presents the tracking results
from the comparison between the CVKF approach, the CVKF
approach with best possible σga and our DQKF proposed
approach. We found the best possible σga for the CVKF by
trial and error, using a PSO algorithm in the fashion of [22],
and minimizing the prediction error a posteriori. As such,
it represents the actual minimum prediction RMSE that could
be achieved with a CVKF.

We used Algorithm 1 with ac = 100. It was observed
that changing the values of γ and of the initial ac had a
small impact in the RMSE, including possible small gains
that would reduce the difference from the best possible
solution. However, we decided to keep the previously used
values in order to remain faithful to our proposal of no
prior knowledge or ’smart guesses’. With this decision, our
technique (Fig. 5e) approaches the CVKF with the best pos-
sible value of σga (Fig. 5c), being just 2.5% worse than
the best possible solution. This difference is probably due
to the considerable initial error, which is a consequence of
the large initial ac, but, in contrast, we do not know the
trajectory a priori! Our approach also had a mean predic-
tion error 5 times better than the classic CVKF, as shown
in Table 3.
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FIGURE 5. Comparative results of the CVKF and DQKF, for the real object trajectory tracking. (a) CVKF Predicted trajectory. (b) CVKF Predicted
trajectory error. (c) CVKF Predicted trajectory, using the best possible σga. (d) CVKF Predicted trajectory error, using the best possible σga.
(e) DQKF Predicted trajectory. (f) DQKF Predicted trajectory error.

TABLE 3. Comparative results from CVKF, CVKF with best possible σga
and DQKF.

V. CONCLUSIONS
It was shown that an optimal Kalman Filter can be imple-
mented, in a naive way, with adaptive parameter setting. Our

proposed algorithm has shown impressive results, by closely
matching the best possible CVKF in real, erratic trajec-
tory prediction (Fig. 5) and consistently over-performing the
CVKF with the standard DNCV model (Figs. 3 and 5). The
mathematical reason for the improved performance is the
choice of the RMS prediction error as the KF performance
benchmark. This choice allowed the mapping of an optimal
Q matrix to a measurable model deviation parameter, in this
case the fading acceleration. Therefore, the DQKF is optimal
in the sense that it will always have the best Q for the

VOLUME 5, 2017 8391



G. F. Basso et al.: Kalman Filter With Dynamical Setting of Optimal Process Noise Covariance

measured model divergence, meaning it is always tunned to
provide the minimum prediction error.

We mapped the best possible Q with respect to the
CV model deviations (ac), from ac = 10−2m/s2 to
ac = 102 m/s2, but a wider or smaller range could also
be done, depending on the intended use. Differently from
previously proposed dynamical parameter setting techniques
[15], [17], [18], our proposed method is unique, for it does
not recalculate the parameterQ on every iteration of the filter,
but actually calculates a trailing average of the velocity inno-
vation and uses it to retrieve the previously mapped optimal
value of Q.

With this simple setup, we achieved a near optimal pre-
diction, with an average computational complexity increase
of only approximately 7%. The hard computational problem
was done beforehand, in themapping of the optimalQ, so that
the load of the Kalman Filter could be minimally changed.

A possible improvement to the technique could be the use
of dynamical identification of measurement noise, as has
been already suggested elsewhere [13], for the situation
where the measurement apparatus is not well known.

As future work, we also believe the same methodol-
ogy could be implemented for the Kalman Filter with near
constant acceleration (CA) model, where a new Analytic
Steady-State Performance Index would be developed, and the
mapping variable would be the jerk (∂a/∂t).
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