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ABSTRACT
Far-edge analytics refers to the enablement of data mining algorithms in far-edge mobile devices that
are part of mobile edge cloud computing (MECC) systems. Far-edge analytics enables data reduction in
mobile environments, hence reducing the data transfer rate and bandwidth utilization cost for mobile-edge
communication. In addition, far-edge analytics facilitates local knowledge availability to enable personalized
mobile data stream mining applications. Existing literature mainly addresses classification and clustering
problems in far-edge mobile devices, but the problem of frequent pattern mining (FPM) remains unexplored.
This paper presents the results of an experimental study on the performance profiling of frequent pattern
mining algorithms.We developed a real mobile application for performance analysis and profiling of 21 FPM
algorithms with various real data sets in terms of execution time, storage complexity, sparsity, density,
and data set size. According to the experimental results, large-sized data sets with high sparsity increase
computational and storage cost in far-edge mobile devices. To address these issues, we propose a framework
and discuss the relevant research challenges for seamless execution of FPM algorithms in MECC systems.

INDEX TERMS Association rules, data mining, far-edge analytics, frequent item sets, mobile cloud
computing.

I. INTRODUCTION
Mobile edge cloud computing is an emerging research area
in mobile cloud computing [1]. MECC systems facilitate the
provision of conventional cloud computing services through
edge servers that include cloudlets, micro data centers, and
smart routers, amongst many others [2]–[7]. Edge servers
provide networking, computing, and storage services at one-
hop wireless distances from mobile devices, such as smart-
phones, wearable devices, mobile Internet of Things (IoTs),
and body sensor networks [8], [9]. In the present study,
these mobile devices are referred to as far-edge mobile
devices. Edge servers facilitate minimizing the latency and
prolonging the battery lifetime of far-edge mobile devices.
However, continuous data transfers in edge servers increase
bandwidth utilization cost and dependency on Internet con-
nections. Alternately, the increasing computational power in
far-edge mobile devices and close proximity of on-board data
sources and computational resources like memory and CPU
reduce latency. In addition, utilizing on-board computational
resources in mobile devices allows the reduction of raw

data transmission, hence minimizing bandwidth utilization
costs. Far-edge analytics refers to the provision of knowl-
edge discovery and data mining functionalities in mobile
applications through far-edge mobile devices [10]. A far-
edge analytics system, as depicted in Figure 1, is based on
a mobile device such as a smartphone to collect and aggre-
gate heterogeneous data from multiple on-board and off-
board data sources [11], [12]. On-board data sources include
sensing elements, e.g. cameras, accelerometers, compasses,
microphones, touch screens, etc. Similarly, edge analytics
systems gather data from device-resident files maintained
for resource status information, application logs, Wi-Fi and
Bluetooth scans, to name a few. Conversely, off-board sensing
elements include a variety of wearable sensors that gather
data to recognize ambulatory activities, monitor physiolog-
ical bio-markers, and sense external environments. In this
study, a smartphone-based far-edge analytic system is envi-
sioned that provides maximum execution support for knowl-
edge discovery and data mining operations using on-board
computational resources.
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FIGURE 1. FPM in far-edge device.

This article contributes in multiple ways as follows.
A detailed literature review is presented of selected FPM
algorithms proposed for mining different types of frequent
itemsets, including association rules, rare itemsets, closed
itemsets, high utility itemsets, erasable itemsets, relevant and
useful itemsets, minimal non-redundant association rules,
top-k association rules, and top-k non-redundant associa-
tion rules. Subsequently, an android mobile application is
developed for performance profiling of the selected algo-
rithms. Experiments were conducted with real datasets from
the UCI repository and three mobile devices, including two
smartphones and one tablet PC. In addition, the experimen-
tal results are analyzed in terms of dataset memory space
consumption, execution time, sparsity, density, and size.
We selected the highly compute intensive frequent pattern
mining algorithms in order to put maximum computational
load on mobile devices. Considering the results of batch data
mining algorithms, we proposed a theoretical framework in
section 5, which will not only support the stream mining data
but also ensure the context-aware and adaptive execution of
frequent pattern mining algorithms in mobile environments.

The key concerns relevant to FPM in far-edge mobile
devices are articulated and a generic framework is pro-
posed for future study in this important research area.
A few highly related works are presented in Section 2.
A detailed discussion of selected algorithms comprises
Section 3 along with the data collection and experimental
setup details. Section 4 entails results and discussion while
Section 5 presents a generic framework for handling the
revealed issues. The article concludes with Section 6.

II. RELATED WORK
Far-edge analytics systems are required to consider various
resource constraints, such as battery power, on-board storage,
memory, and the CPU for successful execution of knowledge
discovery and data mining algorithms [12], [13]. These con-
straints hindered the exploitation of conventional data mining
algorithms in earlier systems. Numerous studies focusing on

far-edge analytic systems are presented in recent literature.
For example, researchers have proposed StreamAR, which
mines sensor data streams using a cluster-based classification
approach [14]. In addition, Mobile WEKA, an android-based
general data mining platform provides numerous clustering,
classification, and association-rule mining algorithms [15].
Similarly, Open Mobile Miner (OMM) was developed as an
adaptive data mining system that provides a library of light-
weight data mining algorithms [16]. Moreover, CARDAP is
an extension of OMM for deploying the context-aware real-
time data analytics platform by integrating far-edge analytics
with Fog cloud computing services [17].

To cope with the problem of limited resources, the Pocket
Data Mining (PDM) framework was developed as an agent-
based data mining framework [18]. PDM utilizes local
devices to form a peer-to-peer network and execute data min-
ing tasks collaboratively. Hence, the successful development
of these far-edge analytics systems is evidence of the adoption
of far-edge mobile devices as data mining platforms. Current
far-edge analytics systems function either in adaptive mode,
which enforces the compromise over knowledge pattern qual-
ity, or by enabling light-weight and domain-specific algo-
rithms. Therefore, a need has emerged for generic far-edge
analytics systems that handle conventional heavy-weight data
mining algorithms.

Frequent pattern mining is a key research area in knowl-
edge discovery and data mining. Formally, FPM is basi-
cally applied over I(set of items):{i1, . . . , in} and T(set of
transactions): {t1, .., tn} where T ⊆ I [19], [20]. Trans-
action ID (TID) is used to uniquely identify a transaction
in database. T contains A(a set of items) iff A ⊆ T . The
association rule (AR): A ⇒ B over two itemsets A and B
exists iff A ⊂ I and B ⊂ I and A ∩ B = ∅. The rule
A ⇒ B contains the transactions with minimum support
minsup for A ⇒ B and confidence minconf for A ∪ B.
Moreover, for a given set of transactions D, the rule for min-
imum confidence (minconf) and minimum support (minsup)
are specified by users and all rules that support minconf and
minsup are generated for D resultantly. The itemsets and
their ARs vary in simple, closed, maximal, rare, sporadic and
utility based itemsets. Maximal frequent itemset as M =

{I ∈ L| 6 ∃I ′ ∈ L, I ⊂ I ′}, frequent closed itemset as
FC = {C ⊆ I |C = h(C) ∧ support (C) ≥ minsup}, and
maximal closed frequent itemsets are defined as following:
MC = {C ∈ FC| 6∃C ′∃FC,C ⊂ C ′}. Here, h(C) represents
closure of ‘C‘ base on Galois (concept) connection [21].Most
of the FPM algorithms generate quality knowledge patterns
when maximum amount of data is kept in memory. Keeping
in view this constraint of FPM algorithms, we performed the
performance profiling presented in this article.

III. METHODS
A. ALGORITHMS
A variety of FPM algorithms are proposed in literature for
closed, maximal, rare, sporadic, and utility based items.
Moreover, AR mining algorithms are also available to find
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TABLE 1. Selected algorithms.

the direct and indirect association between underlying item-
sets. Keeping in view, the large variety of FPM algo-
rithms, we carefully selected 21 classical algorithms, enlisted
in Table- 1, for performance profiling in strictly mobile envi-
ronments. The basic reason for selecting batch data mining
approach is the lack of privision of dedicated memory in
mobile deviceswhich is the major requirement of stream
mining algorithms. This bottleneck hinders the applicability
of mobile devices as data stream mining platforms. Another
major reason for selecting batch data mining is to assess
the worst case performance of mobile devices with maxi-
mum computing load which, if somehow deployed, are not
promised by data stream mining algorithms as they work in
forgetting mechanism and only operate using current data
in hand. We selected Apriori and AprioriTid algorithms that
are used for itemset mining at basic level and establish ARs
later [19]. The mining process is: [∀ large itemset A, {find
non-empty subsets of A}] ∧ [∀ non-empty subset B, {out-
put (rule): B→ (A-B)} if the ratio [support (A)/support (B)]
≥ minconf].
Apriori and AprioriTid are multi-pass algorithms where

candidate items satisfying minsup are found and processed
iteratively to generate candidate itemsets. This iterative pro-
cedure continues until there is no large itemset found. Con-
sidering, the subset of any large itemset is also large, helps
in joining large itemsets with k − 1 items and deleting those
subsets with no large itemsets and forming large itemsets with
k-items.

Apriori algorithm works by counting items to determine
large 1 − itemsets. Subsequently, it works in two phases.
For example for pass k , Apriori − gen function is used to
generate candidate itemsets Ck , which works on input from
(k − 1)th pass using large itemset of k − 1 i.e. Lk−1. Next
the support of Ck is counted after a database scan; here Ck
from a transaction are needed to be determined efficiently for
fast counting. A subset function based on hash-tree is used

to store Ck where leaf nodes of the tree contains itemsets
list and internal nodes stores hash tables. The cost of keep-
ing whole tree in memory is reduced by counting C ′k+1 at
kth pass. This strategy works when cost of scanning database
is more than cost of keeping in memory and counting addi-
tional C ′k+1 - Ck+1 candidates.
Alternately, AprioriTid is different than Apriori in access-

ing database for one time in counting minimum support
after first pass. The candidate itemsets are encoded after first
pass to reduce the size of data and reading efforts at later
passes. AprioriTid generates Ck using Apriori-gen function
before the pass begins but the support is counted without
accessing database. The set Ck contains the items of the form
< Tid, {Ik} > where each Ik represents a large k − itemset
with transaction identifier (Tid). Another optimization of
Apriori was proposed by introducing Pascal which is based on
pattern counting inference [22]. The proposed scheme counts
some of the frequent and infrequent items and determines the
support of other items on the basis of obtained frequencies.
This strategy reduced repetitive database scans.

The increasing computational cost of candidate generation
in large itemsets especially with long patterns has led to
the development of FP-growth algorithms [23]. The algo-
rithm is based on frequent-pattern (FP) tree to store impor-
tant information about frequent patterns in compressed form.
FP-Growth algorithm performed efficiently due to three-step
strategy: a) database is compressed and stored in FP − tree
to avoid multiple database scans at later passes, b) a pattern-
frequent growth scheme is used to reduce the cost of candi-
date generation in long patterns, and c) a divide−n−conquer
approach is used to confine the search space and reduce the
cost of level-wise search as used in Apriori algorithms.

Recursive Elimination (Relim) algorithm was inspired
by FP-growth but works without prefix trees [24]. Here,
the items are counted and compared with minsup value given
by the user at first and then arranged in ascending order for

8238 VOLUME 5, 2017



K. A. Alam et al.: Enabling Far-Edge Analytics: Performance Profiling of FPM Algorithms

fast processing. It is to be noted that the core of Relim is
a recursive function that has less computational cost than
Apriori algorithms. The recursive function works by elimi-
nating infrequent items from the transactions then selecting
transactions containing least frequent items. Subsequently the
least frequent items are deleted from selected transactions and
the procedure starts again until there remains only frequent
large itemsets.

The issues of multiple iterations, data-skew and com-
plicated internal data structures led to poor data local-
ity and additional computational and storage requirements.
Eclat [25], resolved these issues using three strategies:
a) used vertical Tid − list format database for efficient
enumeration, b) used lattice/sub-lattice approach for search
space decomposition, and c) decoupled the pattern search
from decomposition problem. Furthermore, each sub-lattice
was enumerated using bottom-up search strategy. Eclat
was effective for long itemsets. The scalability of Eclat is
affected due to high memory requirements during interme-
diate results. A variant of Eclat, called dEclat, based on
diffsets, was proposed to handle these issues [26]. The diffsets
keep track of differences between class member‘s tidset
and prefix tidset hence optimize intersection operation. The
dEclat was not suitable for very long pattern mining due
to intensive memory and computation requirement to keep
diffsets.

We selected AClose for frequent closed itemset min-
ing [21]. AClose uses the approach of limiting search space
to closed itemset lattice, as an alternate of subset lattice.
This approach helped in limiting ARwithout information loss
and is very useful for densely correlated data. Although FC,
found earlier, determines the exact frequency but the issue
of traversing all itemsets efficiently was solved by Charm
algorithm [27]. Charm used IT-tree (Itemset-Tidset tree) to
explore both itemset and transaction space at the same time.
The traversals were made using hybrid search method that
identified FCs but skipped many levels as compared with
earlier search methods which traversed at each level and
all possible subsets. The algorithms also used a hash-based
strategy to remove non-closed itemsets. Yet, Charm used
diffsets to compute intermediate results but linear scalability
was still an issue. This challenge of optimizing intermediate
results was addressed by dCharm, which eliminated branches
and established relationships among several diffsets for item-
set growth [26]. Furthermore, we selected DefMe to mine
minimal patterns that are another form of condensed patterns.
DefME used critical-objects for fast minimality checking in
depth-first search but redundancy is an issue that needs to be
addressed.

Minimal non-redundant rules are lossless and informative.
These rules are best choice for the rules with same informa-
tion and same support. Zart, based on Pascal, was introduced
to mine non-redundant ARs [28]. The algorithms works in
three steps: a) finds frequent itemsets and marks frequent
generators, b) filters FCs, and c) associates generators to
their closures. The strength of Zart was its ability to track

generators, which are the closed itemsets with same support
but their subsets have different support.

Most of the literature covered frequent patternmining tech-
niques highlighting the need to investigate rare patternmining
algorithms that are very useful in some specific application
areas. For example, health-related application to mine rare
symptoms of a particular disease from Electronic Health
Records (EHRs). The AprioriRare algorithm is selected to
assess the performance of such algorithms in mobile envi-
ronments [29]. The algorithm works in two steps: a) to tra-
verse in frequent itemsets and b) enlist the rare itemsets. The
algorithms have potential limitation of storing all rare item-
sets which could be more challenging during establishment
of ARs. Hence, the need for compact storage scheme arises.

The notion of finding rare items and frequent patterns
simultaneously caused rare item problem which occurs due
to two facts a) usually one minsup value is set for all itemsets
by assuming that all frequent and rare itemsets comply with
settled threshold which is a rare case in real world appli-
cations and b) minsup has to be set very low which cause
large candidate sets and need exceptionally large memory.
Hence, we selected MISApriori [30], which handle rare item
problem by setting multiple minsup values to find frequent
and rare itemsets at the same time. Moreover, the literature
reports that CFPGrowth is efficient thanMISApriori [31]. Yet
it could be deployed in mobile environments but the issue is
the input requirements that all itemsets should be ordered and
minimum supports of each item should be explicitly defined
in a separate file. These two bottlenecks restricted us to select
this algorithm for automated analysis in our test application.

Another exceptional case is sporadic rules mining where
some rules have very low support but have high confidence.
The minsup needs to be set very low in Apriori algorithm to
mine the sporadic rules. We selected AprioriInverse to handle
such situation [32]. The algorithmworks by settingmaximum
support (maxsup) in the place of minsup and ignores all
itemsets above maxsup threshold. The algorithm is flexible
enough to mine two kinds of sporadic rules: a) perfect spo-
radic rules with items support strictly below maxsup and
b) imperfect sporadic rules with items having flexible sup-
port value that may be greater than maxsup. In some cases,
AprioriInverse is not able to find imperfect sporadic rules.

The process of frequent itemset mining is totally depen-
dent upon support values, which is not an issue in complete
datasets with prior information. The definition of support
values is challenging with uncertain datasets without prior
information. Hence, expected support value is given to handle
the probabilistic nature of the data. We selected U-Apriori
which was proposed to find frequent itemsets from uncertain
data [33]. The algorithm works differently by incrementing
support count by the product of existential capabilities of all
items a ∈ A instead of incrementing by one as in the case
of Apriori. Furthermore, the algorithm handles insignificant
candidate support using trimming technique which trims all
items with low existential probabilities hence the size of
dataset is reduced.
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High utility itemsets are another form of frequent
patterns discovered to find the association between high-
value (weightage) items. For example, in m-commerce set-
tings, the items in a store that generate most revenue are
considered to be high utility items. The two-phase algorithm
addresses the similar issues [34]. The algorithm works by
defining utilization weightage of each transaction in first
phase and maintains downward closure property to find can-
didate sets with only combination of high utilization weigh-
tage items. Some low utility itemsets are also estimated at
this phase but no itemsets is underestimated. In the second
phase, an extra database scan is performed and overestimated
itemsets are filtered out. The two-phase algorithm tends to
be more costly than other frequent itemset mining algorithms
because of multiple database scan and construction of high-
utilization weightage model for each transaction. Yet, an effi-
cient algorithm, FHM, is reported in algorithm but it is not in
the scope of this study [35].

Conversely, erasable itemsets contain frequent items with
low utility in specific scenarios. Mining and managing
erasable itemsets can increase the efficiency of overall sys-
tem. For example, mining of infrequent components and
maintaining their stock in manufacturing industry is helpful
inmanaging overall budget.We selectedVME, as an alternate
of META which is less efficient and scans database repeat-
edly [36], [37]. In addition, the inability to automatically
prune irrelevant data is another weakness of META. The
VME algorithm tracks the ’ids’ of products in an itemset
using PDI_list, which is a new data representation method.
VME algorithm uses union operators on product ’ids’ and
prunes irrelevant data automatically.

In addition with itemset mining algorithms, we have
selected six ARs mining algorithms that include FP-Growth,
IGB, AprioriInverse, MNR, TopKRules, and TNR.

FP-Growth algorithms, as discussed earlier, uses minsup
and minconf threshold to mine frequent itemsets and gener-
ate ARs. The usefulness and relevance of ARs become key
attributes when mining frequent patterns from large datasets.
We selected a two-step IGB (Informative and Generic Basis
of Association Rules) ARs algorithm [38]. In first step, IGB
finds closed itemsets and their associated generators using
Zart algorithm and in second step the algorithm generates
ARs. The IGB set of ARs is the set of associations of the
form A→ B-A, where A is a minimal generator of B, and
B is a closed itemset having a support higher or equal to
minsup, and the confidence of the rule is higher or equal to
minconf.
Similarly, to find perfectly sporadic ARs, we selected

AprioriInverse, discussed earlier [32]. AprioriInverse gen-
erates an AR with confidence ≥ minconf and support of
non-empty subset of A∪B is lower than maxsup value.
AprioriInverse works in two steps a) perfectly sporadic
itemsets are mined using minsup and maxsup values
and b) perfectly sporadic ARs are generated in accor-
dance with minconf applied over itemsets found in first
step.

The size of underlying dataset plays a critical role in
AR discovery. The problem of large ARs also exists in
large datasets like large candidate itemsets and long frequent
itemsets. The representative association rules (RR) were
introduced to address this issue [39]. The RR represents
a smallest set of rules that covers all ARs. Here, a cover
operator was introduced to generate those ARs which
are not RRs. The cover operator works without database
scans. The selected algorithm, Minimal Non-redundant
Rules (MNR), selects a compact and lossless set of minimal
non-redundant ARs. It first finds closed itemsets and their
associated generators using Zart algorithm. Then, it generates
minimal non-redundant ARs.

Finally, we selected two algorithms, TopKRules and TNR,
to mine Top-K ARs [40], [41]. The users set ‘k’ value
instead of minsup value and TopKRules algorithm generates
top-k ARs resultantly. The algorithm generates top-k rules by
setting minsup=0 and user-given minconf value. TopKRules
increments minsup with support value of the lowest AR from
top-k rules, found earlier, and prunes the search space. The
algorithm traverses the new search space and repeats the pro-
cess again. It sets the newminsup and prunes the search space.
The process keeps-on repeating until there is no candidate
rule remains for top-k ARs. Yet, the TopKRules algorithm
is very effective but it may generate redundant ARs. Hence,
we selected TNR that removes redundancy and returns non-
redundant top-k ARs. The reported performance analysis
show that TopKRules performed efficiently than TNR.

After carefully selecting the above algorithms, we selected
some relevant datasets. The details of these datasets are pre-
sented in next subsection.

B. DATA COLLECTION
The collection of relevant datasets for performance profil-
ing of studied algorithms is of prime importance. We have
selected nine datasets related to Market Basket Analysis.
The details of datasets and corresponding attributes (size,
number of transactions (Tx), sparsity, density, minimum
acceptable minsup, candidate counts, and itemset counts)
with minimum minsup threshold are presented in Table- 2.
The datasets are downloaded from sequential pattern mining
framework [42] library and UCI machine learning reposi-
tory [43]. The selected datasets are of two types: a) test
datasets and b) real datasets. The test datasets are small sized
datasets which are the reduced variants of some datasets
used in the studied algorithms. Conversely, two real datasets,
Mushroom and Retail are selected in this study. Mushroom is
a real world dataset with 8124 transactions and retail contains
88163 transactions. The notion for selecting these datasets is
to compare the performance of studied algorithm on medium
and large-sized datasets.

It should be noted that we used ContextPasquier99 to
test Apriori, AprioriTid, FP-Growth, Relim, Eclat, dEclat,
A-Close, and Charm. Similarly, ContextZart to test DefMe,
Pascal, Zart, AprioriRare, Closed ARs, and MNRs. While,
UApriori was tested with ContextUncertain, two−phase with
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TABLE 2. Selected datasets.

DB_Utility, and VME with ContextVME. Moreover, Con-
textInverse was used to test AprioriInverse. Further, Contex-
tIGB was used to test MISApriori, FP-Growth ARs, IGB,
TopKRules, and TNR. Finally, all algorithms were tested
using real datasets that are Mushroom and Retail as discussed
earlier.

C. AIMS AND OBJECTIVES
• To investigate how does the size of datasets affects the

performance of FPM algorithms in mobile devices?
• To find out how does the performance of FPM algorithms

in mobile devices is affected by density and sparsity of dif-
ferent datasets?
• To find out how do the space requirements of

FPM algorithms deviate in mobile devices?
• To determine how does the execution time of FPM algo-

rithms deviate when tested with different datasets in mobile
devices?

FIGURE 2. Screenshot of performance analyzer.

D. EXPERIMENTAL SETUP
The availability of devices in different configurations with
fine-grained computing power is the key requirement to test
the application in different environments. Hence, we selected
three mobile devices (two smartphones and one tablet)
including Samsung Galaxy S4, Lenovo A396, and Asus
fonepad. The detailed specification of these devices is pre-
sented in Table- 3. We developed mobile application (see
Figure 2) and tested it rigorously for the performance pro-
filing of FPM algorithms in different mobile environments.

TABLE 3. Selected devices.

We prepared 1323 test cases [21 (algorithms) × 21
(input minsup combinations with interval of 0.05 in range
of 0.00 and 1.00)× 3 (devices)] and each test case is repeated
for five times to get the average value because the perfor-
mance results of algorithms varied in each iteration. In addi-
tion, the minconf for all relevant AR mining algorithms was
set as 0.50.

IV. RESULTS AND DISCUSSION
In this section, a set of experiments is designed to evaluate
the impact of dataset size, sparsity and density on the per-
formance of FPM algorithms. Similarly A set of experiments
examines the deviation in the space requirements and execu-
tion time of FPM algorithms in mobile devices.

Firstly, the Impact of size of datasets on the performance of
FPM algorithms is evaluated. Dataset size plays a critical role
in far-edge analytic systems due to computational constraints.
In this investigation, FPM algorithms when tested with small
datasets executed seamlessly and provided maximum results.
The effect of dataset size is studied in terms of four attributes:
a) lowest minsup value supported by all FPM algorithms in
the study, b) size of tree generated for traversals, c) number
of candidate items counted during intermediate computa-
tions, and d) maximum itemsets counted on the least minsup
threshold value. To limit the experimentation, the results were
obtained from Apriori algorithm which is reported to be least
efficient in terms of candidate generation, item-set counting,
and tree size. The results of the experiment are depicted
in Figure 3.

The experiments showed that all algorithms worked fine
with small datasets when least minsup = 0.0 which itself
is a good sign for adopting mobile devices as data min-
ing platform for heavy-weight FPM algorithms. Another
effect of datasets is the size of intermediate tree gener-
ated to search candidate items and itemsets. The tree size
varied for different datasets. For example, the tree did not
expanded with DB_Utility because utility value of each item
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FIGURE 3. Effects of small scale datasets.

is already mentioned within each transaction hence reduced
the need for candidate items. Alternately, it increased to
6 levels in case of ContextPasquier99, ContextZart, Con-
textUncertain, and ContextIGB and 12 levels when pro-
cessing ContextVME. It could be concluded that nature of
data is also important for seamless execution of FPM algo-
rithms. In addition with this, maximum candidate items and
itemsets are counted on the basis of minsup value. In this
case, 31 candidate items were counted in ContextPasquier99,
ContextZart, ContextUncertain, and ContextIGB. The results
were different with DB_Utility and ContextVME as 127 and
247 items respectively. Finally the results for candidate
itemsets remained similar as candidate counts i.e. 31
(ContextPasquier99, ContextZart, ContextUncertain, and
ContextIGB), 127 (DB_Utility) and 247 (ContextVME).

Similarly, the experimental results, as presented
in Table- 4, with medium-sized dataset like Mushroom
exhibited good performance. Yet, maximum data is pro-
cessing seamlessly but the mobile devices were needed to
be compromised in some situations. For example, Samsung
S4 supported seamless execution with least minsup = 0.35,
Lenovno A396 worked best with least minsup = 0.30 and
Asus fonepad supported FPM algorithms with leastminsup=
0.25. Alternately, the number of candidate items and itemsets
is huge due to underlying nature of dataset. It was noted
that for all three devices the number of candidate items and
corresponding itemsets are 5971 and 5393 for Samsung S4,
2904 and 2587 for Lenovo, and 1382 and 1121 for Asus
fonepad.

Finally, for Retail dataset, most of the algorithms under-
performed due to extensive memory and processor require-
ments to mine large datasets. In this case, eight algorithms
managed to process the whole data successfully even with
lesser minsup value i.e. 0.05 as compared to Mushroom with
at least 0.25. These algorithms include Apriori, FPGrowth,
Relim, Zart, AprioriRare, MNR,MISApriori, IGB. Similarly,
candidate item (24) and itemsets (16) were lesser in this
experiment.

Here, the question arises about the nature of dataset that
even the algorithms completely processing the dataset with
exceptionally large number of transactions is producing such

TABLE 4. Effects of medium and large size datasets.

TABLE 5. Density and sparsity of datasets.

small amount of candidate items and itemsets. Hence, it is
perceived that there could be some other underlying charac-
teristics of dataset that can directly affect the overall results.

Second experiment analyzes the Impact of density and
sparsity on the performance of FPM algorithms in mobile
devices. The investigations were made to find the effect
of density and sparsity on overall results of different
datasets. Three datasets ContextPasquier99, Mushroom and
Retail were selected in this case. ContextPasquier99 has
5 attributes and 5 transactions, Mushroom has 22 attributes
and 8124 transactions, and Retail contains 88163 transactions
with 6 attributes.

Generally, density represents the percentage of populated
cells and sparsity represents the percentage of non-populated
cells in the dataset. We measured the density and sparsity
using Equation- 1 and Equation- 2 where d and s represents
density and sparsity receptively. In addition, the dataset con-
tains totalN possible items and n populated items. The results
of these calculations are presented in Table- 5.

d = (n/N )× 100 (1)

s = 100− d (2)

The effects of density and sparsity were measured in terms
of a) tree size, b) number of candidate items and c) number
of itemsets.

Firstly, the tree size in ContextPasquier99 as depicted
in Figure- 4 remained small as the tree growth went to
6 levels with least minsup (i.e. 0.0) and 3 levels with most
minsup (i.e. 0.80). The growth trend reveals that tree-size
initially remained higher but start decreasing when min-
sup values were increased. Similarly, the number of can-
didate items and resultant itemsets shown the same trend.
Maximum number of items and itemsets discovered using
ContextPasquier99 remained 31 with least minsup (0.0).
Alternately, minimum number of items and itemsets
remained 6 and 4 respectively with most minsup (0.80). The
overall effect on tree-size, items and itemsets with different
minsup values can be witnessed in Figure- 4.
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FIGURE 4. Effect of density and sparsity - CP99.

FIGURE 5. Effect of density and sparsity - mushroom.

Secondly, the experiment withMushroom revealed that the
algorithms started discovering items and itemsets when least
minsupwas 0.25. Initially, the tree size, plotted on secondary-
axis in Figure- 5, grown up to 12 levels because of sparse
nature (i.e. 81 %) and a large range of attributes (i.e. 22). The
tree size gradually started decreasing with average growth
up to 6 levels when minsup values increased and it came to
4 levels when most minsup was 0.95. Similarly, the discov-
ered items and itemsets were 5971 and 5393 when least
minsup was settled as 0.25 but on average 791 items and
689 itemsets were discovered using Mushroom. Moreover,
the discovered items and itemsets with most minsup i.e.
0.95 were reported as 7. Further, the growth trend of all three
parameters could be witnessed in Figure- 5.

Finally, experiment with retail dataset revealed that tree
size grown up to 4 levels with least minsup = 0.05 but
decreased up to 2 levels when most minsup was settled as
0.55. The apparent effect of high density (i.e. 79.27%) and
minimum number of attributes (i.e. 6) could be witnessed
when average growth remained between 2 to 3 levels. Sim-
ilarly, candidate items and itemsets remained on average 6.8,
and 4.36 respectively. Alternately, the results reported with
most minsup (i.e. 0.55) showed that tree size grown up to
2 levels while only 2 candidate items and itemsets discovered.
The overall parametric trend of experiment with retail dataset
is shown in Figure- 6.

FIGURE 6. Effect of density and sparsity - retail.

FIGURE 7. Space complexity - small dataset.

After carefully studying the outcomes of all three experi-
ments, we can infer that sparsity and density of the dataset sig-
nificantly impact the performance of FPM algorithms when
deployed in mobile environments.

Third experiment examines the deviation in space require-
ments of FPM algorithms in mobile devices. The importance
of space complexity increased due to limited storage and
memory resources in mobile devices. The intermediate result
generation and internal data structure of algorithms may lead
to erroneous execution of data mining algorithms. The exper-
iments were performed to uncover the space consumption
trends of FPM algorithms in mobile environments. Again,
the tests were performed over small, medium and large-sized
datasets. The acquired space consumption trends are depicted
in Figures- 7, - 8 and - 9.

The results of small-sized datasets witnessed that most of
the algorithms consumed 13±3 MB of average disk space
with maximum offset of 726KB during complete execution
of algorithms. Hence, this small variation in each iteration
limited us to consider the average space consumption. Alter-
nately, seven multi-scan algorithms behaved little different
and stopped consuming the space when there was no candi-
date items. These include Apriori, Pascal, Zart, AprioriRare,
MNR, UApriori, and AprioriInverse. Rest of the algorithms
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FIGURE 8. Space complexity - medium dataset.

FIGURE 9. Space complexity - large dataset.

consumed space for all minsup values because of one-time
candidate generation to get rid of repetitive database scans.

Space complexity of medium-sized dataset (i.e. Mush-
room) is different than small-sized datasets. The relatively
larger amount of data and candidate generation requirements
of the algorithms restricted most of the algorithms to find
candidate items and itemsets at small minsup values. The
performance analysis reveals that all algorithms worked best
with least threshold representing 40% minsup. Yet, the aver-
age space consumption of all algorithms with 40% and above
minsup range remained between 15±3 MB of average disk
space but FPGrowth and Eclat varied in performance. Here,
FPGrowth consumed less space on average 12±2MB and
Eclat consumed 29±4 MB of average disk space. It should
be noted that the overall offset in individual experiments
remained less than 1MB hence the average values were
rounded off to nearest integer for easy representation and
interpretation.

Alternately, due to overall effect of sparsity, the results
with less than 40% minsup values were varied. Here, Charm
is the only algorithm that discovered itemsets even when
least minsup was 0% but in this case it consumed relatively
large disk space i.e. 46.21MB. Similarly DefME consumed
14.15MB at 5%, Eclat consumed 15.5MB at 15%, ClosedAR
consumed 15.27MB at 20%, and FPGrowthAR consumed

13.35MB of disk space with 30% minsup threshold. In addi-
tion five algorithms Apriori, FPGrowth, Eclat, AprioriRare,
and AprioriInverse consumed 13.6MB, 13.8MB, 34.2MB,
16.7MB, and 13.5MB respectively with 25% least minsup
threshold. It was observed that four algorithms including
AprioriTid, Relim, Zart, and MNR did not run with least
minsup below 40% threshold.

Further analysis of large-sized datasets as depicted
in Figure- 9 gives a different view. The dataset was more
dense hence the algorithms consumed resources with least
minsup threshold of 5%. In addition, the data distribution of
underlying dataset enabled to discover itemsets within the
range of 5% (leastminsup) and 55% (mostminsup). The aver-
age space consumption of all algorithms varied a little. The
detailed analysis are summarized in Table- 6 which gives the
detailed information about the range of space consumption
and maximum offset during each experiment set. In addition,
working minsup range where algorithms consumed memory
also highlighted in Table- 6.

TABLE 6. Space consumption of FPM algorithms using retail dataset.

The overall analysis of large-sized dataset showed that
space consumption for five algorithms remained 24±3MB
with an average maximum offset of 436KB. These five algo-
rithms include Apriori, Relim, Zart, MNR, and IGB. The
minimum average space was consumed by FPGrowth which
was 12±2MBwith an offset of 783KB. Alternately, two algo-
rithms MISApriori and AprioriRare consumed 32±1.5MB
and 43±2MB respectively. In addition it was noted that
FPGrowth was still consuming resources even there were
no-candidate itemsets. Hence, it is perceived that multiple
database scans lead towards memory efficiency which is an
essential requirement in mobile devices. Yet, the multiple
database scans could lead towards the optimal performance
but the effect on overall time complexity is a prime issue.
Hence further investigations were made to find this effect.

Finally, the last experiment examines the Deviation in
execution time of FPM algorithms in mobile devices. Limited
memory and storage space are prime considerations for the
deployment of data mining algorithms in mobile environ-
ments. Considering these issues, formal analysis of average
execution time of all algorithms were made. Again the results
were reported for small, medium, and large-sized datasets.
It should be noted that results shown in Figures- 10, - 11
and - 12 are presented with different time-scale. Here the
execution time for small datasets is presented in millisec-
onds (ms). Alternately the execution time of medium and
large-sized datasets is measured in seconds(s).
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FIGURE 10. Execution Time- small dataset.

FIGURE 11. Execution Time - medium dataset.

FIGURE 12. Execution Time - large dataset.

The experimental results of small datasets denote that
all algorithms executed seamlessly without any extra time
requirements. The trend shows that maximum average execu-
tion time was 33ms which is also negligible. Overall average
execution time of all algorithms remained 5.7ms. Most of
the algorithm took average 6±3ms which does not effect the
overall performance of algorithms. The details of average
execution time of all algorithms are presented in Table- 7
below. In addition, maximum offset from average execution
time is also presented to asses the time consumption trade-off.

Alternately, data size and extensive memory requirements
for intermediate computations prolongs the overall execution
time in medium and large-sized datasets. In case of Mush-
room dataset, all executed algorithms except Eclat, Charm,

and Two-phase took 5±3 seconds with an average maximum
offset of 3 seconds. The average execution time of Eclat,
Charm, Two-Phase, and MISApriori algorithms remained
11.25, 6.91, 27.71, and 29.59 seconds respectively. The
results showed that Two-Phase performed worse in this case
with average execution time of 27.71 and offset 16.32 sec-
onds. It should be noted that VME and UApriori failed to
execute with Mushroom dataset because of different nature
of dataset.

In addition, when executed with large dataset most of the
algorithms failed to be executed. But the average execution
time of running algorithms remained 5±3 seconds with an
average maximum offset of 3 seconds. The results as shown
in Table- 7 depicts that although the average execution time
is seamless but the size of dataset affected the overall perfor-
mance of mobile devices.

A. RECOMMENDATIONS
The significance of mobile devices as data mining plat-
forms is attributed to intermediate data generation, input
dataset size, and search strategies in FPM algorithms. These
attributes affect the overall time and space complexity of
FPM algorithms. In view of the performance profiling results,
it can be concluded that far-edge mobile devices act as data
mining platforms for small and medium-sized datasets, but
they necessitate some basic parameter tuning for large-sized
datasets. Hence, three parameter tuning strategies are pro-
posed to meet the challenge of large-sized dataset mining:
a) chunked data analysis, b) context-based knowledge dis-
covery, and c) periodic data analysis. The optimal strategy
must ensure seamless maximum data processing with mini-
mal latency. Once divided into manageable data chunks, large
datasets may be very useful in this regard. The data mining
application needs to index all data chunks and integrate the
resultant pattern intelligently to aggregate the final results.
Formally, a large dataset D could be equally divided into
N number of partitions P and could be mathematically pre-
sented in Equation- 3 and- 4.

D =
n∑
i=1

Pi (3)

where each

Pi =
D
N

(4)

In this case, the data management overhead may prolong
the overall execution time, but it is perceived that very large
datasets can be harnessed easily using this approach. The
on-board sensors in mobile devices allow gathering different
contextual information relating to locations, activities, device
usage, and device (dis)charging patterns. The scheduling
of data mining tasks based on contextual information may
become very handy to accomplish the seamless execution of
FPM algorithms in mobile devices. For example, location-
related information can enable recognizing frequently visited
places like the home and office. Such location information
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TABLE 7. Average execution time of FPM algorithms.

coupled with device-usage patterns may be convenient for
scheduling data mining tasks when the device is not being
utilized. Hence, constructing a model that can predict suitable
times for scheduling data mining tasks can have a significant
role in this matter. For example, the model can predict when
a person is busy having a meal, sleeping, working in the
office, driving on a highway, or exercising in a local park.
In addition, information about when a phone is charging,
locked, or not in use can also be very helpful for devising
a data mining strategy for mobile devices. Finally, the data
mining tasks can be scheduled periodically by taking dataset
portions without considering contextual information.

V. A FRAMEWORK FOR FREQUENT PATTERN
MINING IN MECC SYSTEMS
Considering the mentioned recommendations, it is perceived
that maximum FPM algorithm execution can be easily per-
formed locally without the need for remote data processing
systems like servers and cloud services. However, we pro-
pose a framework for frequent pattern mining in MECC
environments (Figure 13). This framework facilitates six
types of operations, namely data stream acquisition, data pre-
processing, data fusion, data management, frequent pattern
mining and summarization, and context-aware computation
offloading.

A. DATA STREAM ACQUISITION
The profiling performance results revealed that dataset size
plays a vital role in the seamless execution of FPM algo-
rithms. Therefore, the input dataset volume needs to be han-
dled carefully. In case of live data streams, the velocity of
incoming data is another key consideration. To handle the
volume and velocity aspects, the datasets and data streams are
divided into equal-sized data chunks and traditional sliding
window-based methods are used to traverse the data files.
The sizes of the sliding windows vary according to the FPM
algorithms selected and the required minsup and minconf

threshold values. However, sliding window expansion yields
better results, as most algorithms prefer keeping maximum
data in memory to avoid frequent database scans and input
file reads.

B. DATA PREPROCESSING AND DATA FUSION
Dataset density and sparsity are also critical in the perfor-
mance maximization of FPM algorithms, as discussed in
section 4. In addition, live sensor data collection may intro-
duce noisy data streams due to false sensor calibrations (e.g.
radio signal interference from other devices or systems in
the surrounding) and improper sensor placement (e.g. sensor
position, number, and orientation). Therefore, each dataset
and/or data stream is preprocessed separately to obtain useful,
noise-free, and highly-dense data chunks.

C. DATA FUSION
Data fusion strategies enable integrating preprocessed data
chunks from multiple data sources. However, the strategies
vary according to the algorithms nature and mobile applica-
tion functionalities. A thorough analysis revealed that the data
structure and data processing behavior of FPM algorithms
significantly impact FPM algorithm performance. Multi-scan
algorithms like AprioriTid arememory efficient but compute-
intensive. Conversely, Apriori is a single-scan algorithm with
fewer computational requirements but more memory require-
ments. Therefore, data fusion strategies are designed keeping
in view the processing behavior and internal data structures
of FPM algorithms.

The second main consideration for data fusion is the
core functionalities provided by mobile applications, i.e.
type of data source, like static datasets for batch process-
ing or live data streams for stream processing, and data
they produce (structured, unstructured, or semi-structured).
Because FPM algorithms may need to be re-configured
to accommodate the required data types, the variability in
live data streams is another factor that needs attention.
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FIGURE 13. Proposed Framework for FPM in MECC System.

The variability factor emerges owing to the diverse sampling
rates of different sensors in mobile applications. An exam-
ple is a mobile application that finds the association among
frequent physical activities and locations visited by a mobile
user. The accelerometer for activity recognition is usually a
sample of over 25 readings per second. However, the users
location does not change so frequently, so data fusion from
these two data sources is a challenging task. The complexity
gradually increases as additional data sources are involved in
mobile applications.

D. DATA MANAGEMENT
MECC systems involve massive heterogeneity in terms of
mobile device processing power, bandwidth availability for
different communication interfaces, and Internet connection
availability for communications between far-edge mobile
devices and edge servers. Therefore, the optimal execution
of real-time mobile applications becomes an NP-hard prob-
lem. The data management of datasets and data streams
in transient data stores helps cope with this problem. The
data streams are stored in multiple data files and processed
whenever adequate resources are available either in far-edge
mobile devices or in edge-cloud environments.

E. FREQUENT PATTERN MINING AND SUMMARIZATION
The framework supports FPM algorithm execution in three
modes. Far-edge mobile devices serve as a primary plat-
form for data mining; however, due to the limited resource
availability and high computational requirements of some
FPM algorithms, the data files are processed in either edge
servers or back-end cloud infrastructures. The multi-stage
processing of FPM algorithms requires efficient summariza-
tion strategies for pattern aggregation and overall knowledge

management. Therefore, the pattern summarization opera-
tions are performed in a back-end cloud environment and
knowledge synchronization is performed between far-edge
mobile devices and edge-cloud infrastructures.

F. CONTEXT AWARE COMPUTATION OFFLOADING
The framework is designed to support context-aware com-
putation offloading for the seamless execution of FPM algo-
rithms in MECC systems. To achieve optimal load-balancing
and dynamic offloading, deep-context models must find the
fine-grained situations and determine the adequate execution
mode for FPM algorithms. The context model assists with
determining the correlation between far-edge mobile devices
and their resource availability, usage behavior, (dis)charging
patterns and movement patterns, the sequential patterns of
Internet connection availability, the maximum size of data
chunks, and the execution histories of FPM algorithms.
Although context management in MECC systems helps in
devising optimal execution strategies, the design of such con-
text model is challenging. So far, we carried out the perfor-
mance profiling of FPM algorithms, articulated the relevant
challenges and proposed a framework to address the chal-
lenges discovered in this significant research area. However,
the proposed framework still needs further evaluation.

VI. CONCLUSION
Research on far-edge analytics is still in its early stages.
Deploying data mining algorithms in far-edge devices, such
as smartphones, wearable devices, wireless body area net-
works and mobile IoTs can help reduce massive data streams
that are being transmitted to cloud data centers. This data
reduction in far-edge mobile devices lowers the data transfer
and bandwidth utilization costs in MECC systems. How-
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ever, the performance profiling of FPM algorithms revealed
that the size and sparsity of large datasets hamper the
performance of far-edge mobile devices. To address these
problems, we proposed three performance tuning strategies
and a framework for the execution of FPM algorithms in
MECC systems. In future, we will continue this research by
developing real-world case studies for the proposed frame-
work. The main focus of our research will be on perform-
ing real-time analytics on mobile streaming data in MECC
systems.
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