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ABSTRACT Human brain has a complex structure with the billions of neurons, so it is a difficult and
challenging task to predict the behavior of human brain. Different methods and classifiers are used tomeasure
and classify the brain activities with higher accuracy and reliability. In this paper, instead of using mostly
used classifier (support vector machine), prediction of the brain activity is done by estimating the match
score densities. This method is based on likelihood ratio test which helps in finding the optimal combination
of match scores. The distributions of match scores are modeled for different classes based on density score
fusion in which the densities of different classes are estimated from the training data set and match scores are
found by fusing the estimated densities with the testing data. The fusion is done with the data extracted from
distributed activation patterns using multivariate pattern analysis (MVPA) against a visual task. MVPA is an
intense strategy which helps in better understanding of the human brain. The match score-based technique
is used in different biometric systems but never been used for the prediction of brain activity. In order to
test the performance of proposed method, prediction accuracy is compared with the support vector machine
using two data sets of different modalities, one is electroencephalography (EEG) and the other is functional
magnetic resonance imaging (fMRI). The results show that the proposed method predicts the novel data
with improved accuracy of 66.1% and 69.3% compared with support vector machine which have 64.15%
and 65.7% for fMRI and EEG data sets, respectively.

INDEX TERMS fMRI, EEG, likelihood ratio test, SVM, features, classification.

I. INTRODUCTION
In recent years, machine learning and brain imaging provide a
platform to study the behavior of brain for different cognitive
tasks and diseases [1], [2]. It also helps in the develop-
ment of brain computer interface or brain machine interface
(BCI / BMI) applications [3]. Different modalities like
functional magnetic resonance imaging (fMRI), electroen-
cephalography (EEG), positron emission tomography (PET),
magnetoencephalography (MEG) and different machine
learning techniques like support vector machine (SVM),
Gaussian naive Bayes (GNB) and linear discriminant anal-
ysis (LDA) are used for the analysis of brain data. All the
machine learning techniques differentiate the brain activity
patterns against different tasks including cognitive, auditory
and visual task or against the particular disease.

The brain is the most complex biological structure on earth
which contains billions of neurons, therefore it is always

a challenging task to measure and analyze brain activities.
Moreover, the measured difference between brain activities
with existing modalities is very small and the signal which is
of interest is always weak. Prediction of brain is defined in a
broad sense by Bubic et al [4]. ‘‘Predictive processing refers
to any type of processing which incorporates or generates not
just information about the past or the present, but also future
states of the body’’. This prediction of brain activity helps
in different aspects such as cognitive control, perception and
other cognitive processes. Powerful statistical analysis and
advanced modality is required to predict the brain behavior in
a better way. Modalities are improving rapidly, like in fMRI 7
Tesla machine and in EEG 256 channels system are available
to measure brain activities. On the other side, researchers
are trying to apply statistical methods in a more significant
way for the better prediction of human brain activity. The
main steps during the prediction of brain activity include
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collection of data, artifact removal, and selection of features
for classification or prediction. Although, careful data col-
lection and pre-processing have an important contribution
in better prediction, but improvements are mostly dependent
on the statistical analysis of the data which includes fea-
ture extraction, feature selection and classification. Different
methods of feature extraction, selection and classification are
reported in the literature, however in this study the main focus
is on classification/prediction techniques. The classification
analysis includes pattern classification in which brain pat-
terns are examined to study the behavior of the brain by
classifying the brain states against different task conditions
[5]–[9]. The purpose of classifier is to predict the different
task conditions against which the individual brain data was
acquired; hence classification is a way to find the difference
between the conditions.

Different studies used different classifiers according to
their requirements and data sets and some studies also com-
pared these classifiers based on brain data. Most of the stud-
ies used fMRI data as it is the most popular and reliable
technique in brain studies [10], [ 11]. These studies stated
that linear multivariate methods such as linear kernel SVM
and LDA are better as compared to the most conventional
methods like K-nearest-neighbors and GNB [10]. In this
study, it is also shown that nonlinear kernel SVM is not
better than linear kernel SVM [10], however another study
proved that nonlinear kernel SVM can outperform linear
kernel SVM [11]. In short, different classifiers are used in
existing brain studies to predict the behavior of brain. The
purpose of each study is to predict the behavior of brain with
better accuracy. The results are mostly dependent on the data
because every study used different experiment, conditions
and subjects for data collection.

The primary objective of neuroscientists is to achieve
maximum prediction accuracy from human brain activ-
ity. For this purpose, different statistical techniques
are used along with latest machines for data collec-
tion. Recently different new techniques are developed to
predict the human brain activity due to its various appli-
cations including BCI and diagnosis of diseases espe-
cially for epileptic patients [12], [13]. Sparse Bayesian is
one of them in which the model parameters can be esti-
mated efficiently under the Bayesian framework [14]–[16].
In neuroscience, during prediction the common way is to test
the novel data on a trained classifier. For this purpose, differ-
ent classifiers are used with different techniques e.g., in SVM
the weights are defined which represent the hyperplane. This
hyperplane separates the classes as best as possible. Logistic
regression (LR) and Naive Bayes (NB) do the predictions
using probability. Linear discriminant analysis (LDA) is also
a probabilistic approach; however LDA and NB classifiers
assume Gaussian within class distributions.

According to literature the most common, widely used and
best classifier for brain studies is SVM as it is used in most
of fMRI and EEG studies. SVM classifiers are very famous
for their generalization ability; therefore it has been used in

most of the studies for the analysis of brain data [6], [7],
[17], [18].

In the current study, instead of using above discussed
classifiers, a different prediction technique is introduced to
predict the behavior of the brain. This technique is known as
likelihood ratio based score fusion (LRBSF) which is based
on density based score fusion and it can directly attain the
optimal performance. In this technique, densities of different
classes are found using kernel density estimation (KDE) from
the training data set only. The match scores (novel testing
data) are then fused with these densities of different classes.
Finally, the prediction about the class is done using likelihood
ratio test (LRT). There are studies which are based on LRT
especially in biometric systems [19], [20]. In brain studies,
LRT is used for a frequency recognition method to improve
the efficiency of SSVEP based BCI [21]. In a fMRI study,
generalized LRT is used to find the phase information in the
signal [22] and is also used for data analysis to explain the col-
ored noise [23]. This is also used to determine the activations
within the voxels [24] and in separation of covariances [25].
However, we have used the combination of KDE and LRT to
predict the behavior of brain which is a novel implementation
for EEG and fMRI data sets.

This study presents a prediction technique which has been
used in different biometric systems and has achieved high
recognition rates (accuracy), especially in face matching,
finger and speech matching. However, it has never been
used in prediction of brain activities. This study is the first
attempt to examine the behavior of brain by using KDE and
LRT. Moreover, this technique is tested on collected data of
two different modalities i.e. EEG and fMRI. To check the
performance of this technique, the results are compared with
the results found using best existing technique, i.e. SVM. The
proposed technique has produced good results compared to
SVM for both data sets i.e. EEG and fMRI.

II. LIKELIHOOD RATIO BASED SCORE FUSION
A. LIKELIHOOD RATIO TEST (LRT)
The match scores for K different given matchers are repre-
sented by X = [X1,X2,X3, · · · ,Xk ]. The match score of the
kth matcher is represented by the random variable Xk where
k = 1, 2, · · · ,K . Let the two classes are denoted by M0
and M1 where M1 is true positive (genuine) class and M0 is
true negative class. f0(x) and f1(x) are the conditional joint
densities of the k match scores given the first and second
classes respectively, where x = [x1, x2, x3, · · · , xk ]. Suppose
that the target is to assign the observed match score vector X
to one of two classes i.e.M0 orM1. H0 is the null hypothesis
which should be rejected and H1 is the alternative hypothe-
sis. According to Neyman-Pearson theorem, [26] for testing
a hypothesis H0 : f = f0 against H1 : f = f1, the likelihood
ratio test which rejects H0 in favor of H1 has the form

9 (x) =
f0 (x)
f1 (x)

≤ η (1)

P (9 (x) ≤ η) = γ (2)
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If the equations (1) and (2) are satisfied for threshold η, it is
the most powerful test among all level γ test where γ is false
accept rate or type II error. According to the Neyman-Pearson
theorem, the ideal test for deciding about the score vector
X (testing data set) is the likelihood ratio test (equation 1)
which tells that whether the given test vector is from M0 or
M1 class. For certain threshold η, genuine accept rate (GAR)
or accuracy can be maximized using LRT. According to the
Neyman-Pearson theorem [26], it is not possible that there
is any other decision rule which can maximize the GAR or
accuracy. This rule of the likelihood ratio test is dependent
upon the underlying densities and guaranteed only when they
are known. The optimal test for assigning a score vector
x to M1 and M0 class is the likelihood ratio test given by
f1(x)/f0(x), where f1(x) and f0(x) are the densities which are
estimated from the training data set of M1 and M0 match
scores. Although Gaussian Naive Bayes is used in brain stud-
ies [18] but sometimes the Gaussian density is not appropriate
for brain prediction of brain so here the normal distribution is
extended to density estimation and the likelihood ratio test is
dependent upon the accuracy of these density estimates.

B. KERNEL DENSITY ESTIMATION
Kernel Density Estimation is a non-parametric way to esti-
mate the probability density function (pdf) of a random vari-
able. Without any presumptive distributional properties, it is
used for the estimation of distribution on a given set of data
samples [27]. The advantage of non-parametric estimation
is that they don’t have fixed structure and depend upon all
the data points for the estimation. KDE is widely used in
many fields and applications; e.g. in computer vision it is used
to identify the target objects [28], [29]. It also has different
application in transportation [30], [31]. Tabibiazar and Basir
[30] collected the car data and extracted the congestion spot
in road network by using KDE. KDE is also used in the sea
traffic to detect anomalies by Laxhammar et al. [31]. It is also
used in particle smoothing [32] of fMRI data, but we have
used KDE with LRT to predict theM1 andM0 class by giving
the novel data set of brain. KDE is used to approximate the
pdfs of the training data for both classes in such a way that
the tested data can be estimated with maximum likelihood.
KDE is an appropriate tool because with any statistical model
the patterns are not consistent in any application. So it is
difficult to know in advance, that which model describes the
distribution in a more appropriate way.

Let the set of data samples is [x0, x1, · · · , xn]. To generate
a discrete probability mass function, a histogram can be used.
A pdf by the estimator can be explained in the following
way [33]

f̂KDE (x) =
1
n

n∑
i=1

Ka (x − xi) =
1
na

n∑
i=1

K
(
x − xi
a

)
(3)

Where xi represents a data sample and i has an integer value
maximum up to number of samples. K is the kernel function.
Ka(x) is a symmetric pdf such as Gaussian and n is the sample

size. The width of the kernel function is determined by the
smoothing parameter a. The shape of the distribution to be
estimated is approximated by the sum. In this paper we have
used normal kernel smoother and standard Gaussian kernel
function N (0, 1) for the implementation as follows.

K
(
x − xi
a

)
=

1
2π

e
−

1
2

(
x−xi
a

)2
(4)

C. FUSION OF MATCH SCORES BASED ON LIKELIHOOD
RATIO TEST
To find the prediction accuracy with test data, match scores
vector is fused with quality vector estimated from training
data set of both classes. The quality based likelihood ratio is
found using the equation 1 which should be greater than 1
forM1 and less than 1 forM0 class. In this technique, density
based scores are fused and it needs explicit estimation of M1
andM0 match score densities. The advantage of this approach
is that it can directly attain ideal performance for any desired
point and is based on the estimation accuracy of the scores.
The KDE is used to estimate the densities of the classes.

D. FUSION OF MATCH SCORES AND THEIR
PERFORMANCE
To define the fusion of match scores based on likelihood ratio,
a vector of match scores and estimated densities are required
to compute the likelihood ratio fusion. Let K is match scores
vector where x = [x1, x2, x3, · · · , xk ] and f̂1(x) and f̂0(x) are
estimated densities of true positive class and true negative
class respectively. The x should be assigned to theM1 class if
LR (x) ≥ η, where LR (x) = f̂1 (x) /f̂0(x)andη is the decision
threshold which is found based on the overall accuracy.

The quality and performance of the system depends upon
the accuracy of the matchers and it is difficult to classify
a poor quality sample as either a M1 or M0 sample. The
likelihood ratio of these types of samples are closer to 1 while
the good samples have greater than 1 for M1 class and less
than 1 forM0 class. The likelihood ratios are weighted by the
respective sample quality during the estimation of the joint
density of match score and the associated quality.

Let Y = [Y1,Y2,Y3, · · · Yk ] is a quality vector where
the quality of the match score for kth matcher is denoted
byYk . f̂1(x, y) and f̂0 (x, y) are the joint densities of match
score vector with K-dimension and quality vector of the same
dimension. These quality vectors are estimated from M1 and
M0 classes. The quality based likelihood ratio Q(x, y) can be
explained in the following way

Q (x, y) =
f̂1 (x, y)

f̂0 (x, y)
(5)

The decision of assigning Q(x, y) to M1 class is done
when Q (x, y) ≥ η which is same as we discussed earlier
for LR (x) ≥ η. The joint density estimation of (X ,Y ) has
2K variables which are not reliable with less training data.
Independence of K matchers are assumed to avoid the curse
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of dimensionality so the above equation is written as

f̂ (x, y) =
K∏
k=1

f̂k (xk , yk) =
K∏
k=1

f̂1,k
f̂0,k

(6)

III. MATERIAL AND METHODS
A. SUBJECTS
Data of eight subjects were used for the final analysis after
excluding criteria. One of the subjects had excessive head
movement in the scanner and two subjects identified the
categories with very low accuracy. All students had submitted
the written consent form before the start of the experiment.
All subjects were from 21 to 26 in age and data of 4 male
and 4 female was included in the final analysis. The study
protocol was approved by the local Hospital Universiti Sains
Malaysia (HUSM) ethics committee.

B. STIMULI AND TASK
A total of 260 grayscale photographs were presented in three
different sessions. All images were taken from internet, freely
available and had already been used in a previous study [34].
Every image was of size 500×500 pixels with at 4×4 pixels
fixation spot in the middle of every image.

Both EEG and fMRI data was collected in three short
separate sessions. Duration of each session was around
15 mins and approximately 100 images were presented twice
in each session. This data was collected simultaneously so
both EEG and fMRI have same parameters. After remov-
ing images due to scanner and jittering effect, a total of
260 imageswere left out for final analysis. These imageswere
further divided into five categories, human, animal, building,
natural scenes and fruits.

C. FUNCTIONAL MRI / MRI DATA ACQUISITION
The study was conducted at Hospital Universiti Sains
Malaysia (Department of Radiology). The EEG recordings
and fMRI data acquisition were taken place at HUSM. In
fMRI, a trigger code was sent from the scanner to start the
visual presentation.

The inter stimulus interval (ISI) for data collection was 4s;
with 1s image and 3s rest period for BOLD response. Stimu-
lus was presented for 1s with 200ms on and off. Data was
acquired on a Philips Acieva 3T scanner using a gradient
echo EPI pulse sequence TR = 2000ms,TE = 30ms and
with voxel size of 3 × 3 × 3 mm having 35 slices. The
anatomical data was recorded for 5 mins with voxel size of
1.1×1.1×1.2mm,TR = 7.5ms,TE = 3.5ms. To overcome
the jittering effect an additional delay was given after every
8th image and some blank images were presented at the
start of the experiment which was ignored in the analysis
to avoid the scanner effect. Jittering is to vary the time of
TR relative to the stimulus presentation and is done to get
a design with very high statistical power and efficiency. TR
represents repetition time, which is the amount of time that
passes between consecutive excitation pulses.

FIGURE 1. Block diagram of proposed method for brain prediction.

D. EEG DATA ACQUISITION
Continuous EEG data was recorded with a 128 channel Elec-
trical Geodesics Incorporated (EGI) systemwith frequency of
250 Hz. The electrodes were placed according to an extended
international 10–20 system with reference electrode posi-
tioned at FCz. Additional electrode was placed beneath the
participant’s left chest to monitor electrocardiograms (ECG).
The recorded EEG signal was filtered and transmitted to a
mac system. Net Station 5 software was used to record, save
and display the online recordings of EEG data.

E. PROPOSED METHOD
The proposed method follows the normal prediction steps;
preprocessing, feature extraction, feature selection and pre-
diction. The block diagram of proposed method is shown in
Figure 1 which explains the complete prediction process. The
same steps are followed for both data sets and the perfor-
mance of the proposed technique i.e. LRBSF is evaluated on
two collected data sets, one is fMRI data and the other is
EEG. The performance of this technique is compared with
the results found using SVM. The same features and cross
validation (Monte Carlo CV with 100 repetitions) is used for
the comparison. The only difference in comparison is at last
step where LRBSF is used as proposed technique instead
of SVM for final results. Moreover, for each classifier the
accuracy is found for different number of features in both data
sets.

F. PRE-PROCESSING AND FEATURE EXTRACTION
OF fMRI DATA
The complete processing i.e. preprocessing and statistical
analysis of the fMRI data was done using SPM 8 (Wellcome
Department of Imaging Neuroscience, University College
London, UK). The preprocessing steps done before statis-
tical analysis are as follows. Slice time correction, which
corrects the differences in image acquisition time between
slices. Realignment, which do motion correction using six
parameters. These parameters are later modeled as nuisance
regressors during statistical analysis [35]. Co-registration,
in which anatomical image is co-register with functional
image for better results. Normalization, in which every brain
is normalized using MNI template (Montreal Neurological
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FIGURE 2. Analysis and design matrix of one of the conditions.

Institute). Spatial smoothing, in which every image is
smoothed using a Gaussian kernel with full-width at half
maximum (FWHM) of 8mm. The same high pass filter
is applied to the design matrix during the trial-by-trial
estimation.

The BOLD signal change obtained from fMRI recording
is fitted with an optimized model of two gamma function
(Canonical HRF) which gives estimation value β for each
trial and each voxel. These beta values are used as fea-
tures which are further reduced using the two-sample t-test.
To predict fMRI signal, the time series of stimulus onsets
is convolved with this canonical HRF because gamma HRF
does not allow for a post peak undershoot. All beta values
are placed in a row vector and separate design matrix is
designed for every image as did by Mumford et al [36]. The
dimension of estimated value for each image is 63× 53× 46
which is arranged in a row vector for further analysis. The
design matrix is shown in a better way along with the brain
response against the task in Figure 2. This figure is only for
one condition and session for the first subject, however the
rest subjects and sessions have activation in the similar region
of brain. The final matrix has estimated values (features) in
the columns against each image in the row. The same pattern
is also followed for EEG data analysis where features (DWT
coefficients) are placed in the columns against each image in
the row.

G. PRE-PROCESSING AND FEATURE EXTRACTION
OF EEG DATA
The pre-processing was done in Brain Electrical Source
Analysis (BESA) software where it was filtered from
0.5 to 30 Hz frequencies as these were the most relevant fre-
quencies during a visual task [37]. Eye blinks artifacts were
corrected using adaptive artifact correction method present
in BESA. Further artifacts were corrected by selecting the
unwanted signal manually. In BESA, we can remove any
type of artifacts by selecting default block epoch and remove

TABLE 1. Number of decomposed features from a single image
using DWT.

the unwanted patterns. After removing artifacts, the file was
exported to MAT LAB for further analysis.

Normally, EEG signals can better be explained in the
frequency domain. The most common frequencies are delta
(1-4 Hz), theta (4−8Hz), alpha (8−13Hz), beta (13−30Hz)
and gamma (> 30Hz). The common approaches of feature
extraction in frequency domain are Fourier transforms (FT),
short time Fourier transforms (STFT) and wavelet trans-
forms (WT). WT can better handle the non-stationary signals
as it has the information of both time and frequency domain.
The EEG signal can better be explained using WT instead
of FT [38], [39]. In DWT, the signal is analyzed at different
frequency bands which decompose the signal into a detail and
an approximation component. In this study we have used 128
channel system with frequency 250Hz so we have 282 DWT
features for every image which is mention in Table 1.

H. REDUCTION OF DATA SETS / FEATURE SELECTION
After preprocessing and extraction of features, the main
step is the selection of significant features. Since both data
sets have high dimension, therefore the significant features
were found from both data sets. During feature selection,
the n most significant features between the categories were
extracted using t-test. The features with p value of p < 0.05
were considered as significant. We ranked the features with
lowest p values and different subsets were made from 50 to
2, 000 features. The features with p > 0.05 are excluded
from the analysis because they do not have much impact
during analysis. Ranking of features mean the most important
features [40] which are selected with t-test.

I. STATISTICAL TESTING
A common technique to check the significance of the study
is to use cross validation. During cross validation, part of
the available data is used to train the model and some part
of the data is used for the testing of the model. The aim of
cross validation is to make the classifier unbiased. If cross
validation is biased means to use the knowledge of training
set in the test or in other words the test set data is not
independent with respect to the training data, then the purpose
of cross validation do not achieve. In that case, the cross
validation error does not reflect the true generalization error
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FIGURE 3. Predictive accuracy with different number of features for
fMRI data.

of the model. In this study, Monte-Carlo cross validation
procedure was applied to check the performance of SVM and
the proposed method. The process was repeated 100 times
and every time the entire data was divided randomly into 90%
training set and 10% testing set. Since we have 260 images
(samples) and 5 classes, so for each one to one combina-
tion, we had approximately 104 images/samples. In all cases
10 images/samples were used for testing while rest were used
for the purpose of training.

Decoding accuracy can be achieved by classifying the
correct test vectors or using confusion matrix to assess the
performance of the classifiers such as SVM or LRBSF.
In confusion matrix, the frequencies of all classified exper-
imental conditions are presented including the details of
misclassification. Misclassification shows which conditions
are most distinct and which are more similar. In this study,
the data is shuffled 100 times before every classification
to get an overall accuracy (randomness) of the system
and average is taken for the final results. This shuffling
avoids the distribution of accuracy that would happen by
chance.

IV. RESULTS
The data was collected from both modalities for five different
categories. The prediction was done with SVM and LRBSF
on novel data set. Initially, the significant data (after the
selection of significant features) were given to the SVM with
linear kernel to predict the testing data set. All conditions
and subjects were evaluated individually. After that the same
data were given to the proposed method to find the predic-
tion accuracy. Different number of features were used for
the analysis as discussed above and the features with best
accuracywere taken for the final results. The best results were
with 400-600 features in both data sets which are shown in
Figure 3 and 4 for fMRI and EEG data respectively. For one
to one comparison we have used the formula m(m − 1)/2
where m is the number of categories; for m = 5, there were
10 different conditions for every subject. In each comparison;
there were two classes with 104 images approximately. Data
was divided into 90% training and 10% testing in all cases,
while the training-testing partitioning was repeated 100 times
randomly by using Monte Carlo cross validation. For each

FIGURE 4. Predictive accuracy with different number of features for EEG
data.

repetition, the densities were estimated from the training data
set only.

Figure 5 and 6 explain the average accuracy of eight sub-
jects across different conditions. Figure 5 shows the average
accuracy of both methods for fMRI data set, while Figure 6
shows the average accuracy of both methods for EEG data
set. The red and blue lines are showing the average accuracy
of all subjects for each condition separately with proposed
system i.e. likelihood ratio based score fusion (LRBSF) and
LIBSVM respectively. The filled and non-filled red marks
show the maximum and minimum accuracy of any individual
subject respectively against the given condition with LRBSF.
Similarly, the blue filled and non-filled marks shows the same
thing with SVM.

Distribution of M1 and M0 match score is shown in
Figure 7. These results are for one trial where class A and B
are representing the M1 and M0 match respectively. We have
explained the first condition of first subject with fMRI data.
Same distribution is seen in rest of the cases, i.e. other con-
ditions, subjects and for EEG data set. In Figure 7, it can be
seen that forM1 andM0 classes, the bandwidth and amplitude
of the curves are different. However, there is an overlapping
region between the curves which is the false positive and false
negative and can be decided based on some threshold value.

To find the statistical significance of the decoding accu-
racies between both approaches, paired t-test was used for
both data sets. P value of 0.05 was used to control the type
I error. Firstly, paired t-test was applied on fMRI accuracy
results between SVM and LRBSF for all ten conditions. For
one tail, the value of p(T ≤ t) was 0.000601 and for two
tail it was0.001203. Both were quite significant. Secondly,
paired t-test was applied on EEG accuracy results between
SVM and LRBSF for all ten conditions. This result was even
better compared to the previous one. For one tail, the value of
p(T ≤ t) was 0.0000246 and for two tail it was 0.00004913.

V. DISCUSSION
In this study, we have introduced a different prediction
technique for neuroimaging data which have shown better
prediction accuracy than SVM. In this method, prediction
of novel data is done based on the estimated densities.
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FIGURE 5. Performance of LRBSF and SVM among different conditions on fMRI data.

FIGURE 6. Performance of LRBSF and SVM among different conditions on EEG data.

FIGURE 7. Distribution of match scores on fMRI data. From left to right, density estimation cures of two classes for 70%, 80% and 100% (perfect
system) accuracy respectively.

Figure. 5 and Figure. 6 express the results of both meth-
ods (LRBSF and SVM) and modalities i.e. fMRI and EEG
respectively. The comparison shows that LRBSF has better
accuracy for both data sets, even for the individual subjects in
most of the cases. The five conditions of the experiment are
human, animal, building, natural scenes and fruit. The one to
one comparison of all conditions with both methods is shown

in Table 2. The conditions are in the following order, human
vs animal (C1), human vs building (C2), human vs natural
scenes (C3), human vs fruit (C4), animal vs building (C5),
animal vs natural scenes (C6), animal vs fruit (C7), building
vs natural scenes (C8), building vs fruit (C9) and natural
scenes vs fruit (C10). From Table 2, it can be observed that
the proposed system (LRBSF) have better mean and overall
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TABLE 2. The performance comparison among likelihood ratio based fusion and support vector machine on FMRI and EEG data sets.

FIGURE 8. Accuracy, true positive and true negative values for different
thresholds.

results of all subjects and conditions on both data sets.
Figure 7 shows the distribution of both match scores for

fMRI data of one session only. The left most is for 70%,
the middle one is for 80% and the right most is for 100%
accuracy. It can be observed that the behavior is changed
with increase in accuracy and the overlapping region between
both the curves is decreased. For perfect classification (100%
accuracy), there is no overlapping between the curves. These
curves are from single run and not the average of overall
accuracy.

Different numbers of features were used to find the accu-
racy using both techniques, i.e. SVM and LRBSF. We have
made different subsets of features and in each subset different
numbers of features were defined. Minimum 50 and maxi-

FIGURE 9. ROC curve of proposed method and SVM.

mum 2, 000 features were used in one subset with an increase
of 50 features for next subset compared to the previous one.
According to Neyman-Pearson theorem [26], a threshold is
needed to decide about the class of a score vector X . This
vector X is from the test data set and the threshold has an
important role in the decision of likelihood ratio test, because
the maximum accuracy about M1 class is dependent upon
this threshold. To find the best threshold of the likelihood
ratio test, different values of threshold are used and the best
one according to accuracy is chosen for the analysis. After
estimating the densities of each test vector from M1 and
M0 class of the training data set, the next step is to apply
likelihood ratio test to find the appropriate class. Accuracy,
specificity and sensitivity are found with different threshold
values and the best one is chosen with finite sensitivity and
specificity values. The changes in all these fields are observed
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with the change in threshold; accuracy is not much changed
but the true positive and true negative values are changed
significantly as shown in Figure 8.

The Receiver operating characteristic (ROC) curve is made
for different threshold values both for SVM and LRBSF
Figure 9, which illustrates the performance of both with
varied threshold. This ROC is made based on the average
of 100 runs for one condition of fMRI data, while the other
conditions and subjects have shown the same pattern with
different values of true positive rate and false positive rate.

VI. CONCLUSIONS AND FUTURE WORK
Likelihood ratio based score fusion is a popular and reliable
method for biometric systems; however to our knowledge,
it has not been used in neuroscience for the prediction of
brain activity. In this study, prediction is done based on the
features of EEG and fMRI data sets. In this method, the
densities are estimated using KDE from the training data of
different classes and fused with the testing data to select the
best appropriate class of the testing data. The performance of
the proposed method is evaluated by comparing the result of
proposed method with SVM. SVM is a mature and famous
method to classify the brain states; however our proposed
method showed better accuracy with both data sets. Addition-
ally, there is no need to carefully select the parameters like C
and gamma in SVM.

KDE is a flexible way to estimate the densities and accord-
ing to Neyman-Pearson theorem, LRT is an optimal test for
deciding whether a score vector X corresponds to class A or
class B as shown in Figure 7. The combination of both show
that it can predict the brain activity with better accuracy and
reliability. Finally, it is concluded that the proposed method
is a significant and better addition for the prediction of brain
activity patterns. Although in this study, LRT has outper-
formed the SVM but in the future, this study can be improved
in the following different ways. In this study, limited number
of images were taken (approx. 260) for five classes which
can be increased in the future along with the number of
classes. Moreover, the LRT can be applied with other density
estimation techniques like Gaussian mixture model. Finally,
more statistical techniques can be applied on neuroimaging
data (like LRBSF in this study) for better prediction.
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