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ABSTRACT The (n, k) combination property (CP) is defined as follows: k source packets are mapped
into n ≥ k packets and any k out of these n packets are able to recover the information of the original
k packets. This (n, k) CP is extensively needed by cloud storage service providers. Reed–Solomon (RS)
codes possess CP at the cost of high encoding and decoding complexity for two reasons: operation over a
large-size finite field and time-consuming matrix inversion operation. By operating within the binary field
and by allowing only zigzag decoding at the decoder, binary zigzag decoding that possesses CP lowers the
decoding complexity significantly. The drawback is that storage room overhead is needed. Corresponding
to this storage room overhead, in the data reconstruction process, intuitively fetching k whole stored packets
will consume overhead bandwidth. In this paper, a data reconstruction scheme that is optimal in terms of
bandwidth consumption is designed, where optimal means the bandwidth consumption is equal to the volume
of data to be reconstructed, namely, no overhead bandwidth is needed. To do that, a universal method of
fetching sub-packet is proposed, and its corresponding decoding method is also designed.

INDEX TERMS Distributed storage, network code, zigzag decoding, data reconstruction bandwidth.

I. INTRODUCTION
In distributed storage (DS) systems, network coding (NC) [1]
has been adopted to improve the reliability of data stor-
age [2]–[4]. Normally, the combination property (CP) [5] is
required, whereby k source packets are mapped into n ≥ k
packets and any k out of these n packets are able to recover
the information of the original k packets. Reed-Solomon (RS)
codes [6] possess CP and hence have been widely adopted
in the design of DS systems [7]. However, the encoding and
decoding are operated within a large size finite field and the
decoding is non-zigzag decodable, which has high decoding
complexity [8].

To lower decoding complexity, especially for mobile
applications [9], [10], the idea of binary zigzag decod-
ing (BZD) is proposed. In BZD, the operation is within the
binary field, and the decoding is zigzag decoding (ZD) [11]
whose decoding steps resembles a zigzag. Researchers
have proposed CP-BZD storage codes that possess CP and

BZD simultaneously, where some additional storage room is
introduced. A series of studies have tried to reduce the storage
room overhead [12]–[14].

In this work, instead of focusing on reducing storage room,
we now consider decreasing the consumption of communica-
tion bandwidth for data reconstruction based on the CP-BZD
storage code [14]. An intuitive method is to fetch arbitrary k
whole packets. Due to storage room overhead, the consumed
bandwidth is larger than the volume of information to be
reconstructed. To reduce bandwidth consumption, we pro-
pose a sub-packets fetching algorithm whose consumption of
bandwidth is equal to the volume of data information to be
reconstructed. Therefore, this method is optimal in terms of
bandwidth consumption. The corresponding decoding algo-
rithm is also designed.

The paper is organized as follows: In Sec. II, CP-BZD
designed in [14] is briefly reviewed. In Sec. III, attention is
transferred from storage room to communication bandwidth.
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In Sec. IV and Sec. V, we propose a data reconstruction
scheme that is optimal in terms of bandwidth consumption for
cases when k ≤ 4 and k > 4, respectively. Finally, in Sec. VI,
we draw conclusions.

II. PRELIMINARIES ON CP-BZD CODES
A. ENCODING
Let s1 through sk denote the original k source packets, each
with length L. The j-th bit of the i-th source packet is denoted
by si,j ∈ {0, 1}. Consider (n, k) systematic code, with the
n encoded packets denoted by c1, c2, . . . , cn, respectively.
The first k encoded packets are actually the source packets,
namely ci = si for all i ∈ K , {1, 2, . . . , k}. These k packets
are called systematic packets. The lastm , n−k > 0 packets
are encoded by linearly combining the source packets. For
i ∈ M , {1, 2, . . . ,m}, the packets ck+i’s are called parity
packets. They are generated by shifting the source packets by
different number of bits and then adding them over the binary
field in a bit-wise manner. Let T be the m × k matrix that
represents the numbers of bits shifted by the source packets in
order to form the parity packets. Its (i, j)-th element, denoted
by Tij, represents the number of bits shifted by source packet
sj when forming the parity packet ck+i, i ∈M, j ∈ K.

As assumed in [14], we consider only the cases where
n ≤ 2k , or equivalently, m ≤ k . Consider a (n = 2k, k) sys-
tematic code that is CP-BZD. It is clear that removing some
of the parity packets results in a (k + m, k) systematic code,
wherem < k , which is also CP-BZD. Therefore, it suffices to
consider the single case when m = k or equivalently n = 2k .
The T designed in [14] is divided into two cases, including

k ≤ 4 and k > 4. Detailed T are listed as follows:
When k ≤ 4,

T =
[
0 1
1 0

]
, k = 2, (1)

T =

0 1 1
1 0 1
1 1 0

, k = 3, (2)

T =


0 1 3 2
2 0 1 3
3 2 0 1
1 3 2 0

, k = 4. (3)

When k > 4,

T=



0 1 3 6 10 . . .
k(k−1)

2
k(k−1)

2
0 1 3 6 . . .

(k−1)(k−2)
2

(k−1)(k−2)
2

k(k−1)
2

0 1 3 . . .
(k−2)(k−3)

2
...

...
...
...

...
. . .

...

1 3 6 10 15 . . . 0


.

(4)

A graphical illustration of the packets is shown in Fig. 1,
where each column in a parity packet denotes that the corre-
sponding bits are summed up. For example, the first four bits

FIGURE 1. Illustration of (8, 4) CP-BZD code.

of c5 are s1,1, s1,2 + s2,1, s1,3 + s2,2 + s4,1, and s1,4 + s2,3 +
s3,1 + s4,2, respectively.

We repeat the following theorem from [14] for complete-
ness:
Theorem 1: Given any k out of the n encoded packets, the

k original packets can be recovered by the zigzag decoding
algorithm.

B. PROPERTIES
We first give one basic definition, then re-state the distinct
relative difference (DRD) property from [14], and finally
investigate the storage room overhead (SRO) and set up the
bit indexing framework within each packet.

For p, i, j ∈ K, i 6= j, define relative difference

1
p
i,j , Tpj − Tpi. (5)

1) DRD [14]
Given any i, j,m, n ∈ K, where i 6= j and m 6= n, we have

(a) 1i
m,n 6= 0;

(b) 1i
m,n 6= 1

j
m,n.

2) SRO
Systematic packets have no storage room overhead, namely,
SRO = 0. Parity packets have the following storage room

VOLUME 5, 2017 6825



M. Dai et al.: Bandwidth Overhead-Free Data Reconstruction Scheme

overhead:
if k = 2, 3, then SRO = 1,
if k = 4, then SRO = 3,

if k > 4, then SRO =
k(k − 1)

2
.

3) BIT INDEXING
Within each parity packet, by starting from the left towards
the right, we set the bit index increase from 0. For example,
for cases k ≥ 4, the bit indices within those parity packets are
from 0 to L − 1+ k(k−1)

2 .

C. PROPOSED EQUALITY-DECODING (ED) ALGORITHM
Dedicated for CP-BZD code, beside the zigzag decoding
method as described in [12] and [14], in this work we propose
the Equality-Decoding (ED) algorithm, which is later used
as a basic building block. We first describe the operations
needed before the decoding. Afterwards, we describe the
proposed decoding method.

1) PRE-PROCESSING
Suppose among the k coded packets provided for data recon-
struction, J ≤ k of them are parity packets. Since the
k − J systematic packets do not require any decoding,
the corresponding source packets can be directly recovered.
Furthermore, they can be subtracted from the J parity packets.
We call the resultant parity packets as degenerated parity
packets. Let c−i denote the degenerated packet of ci. Let the
source packets remaining unknown be indexed by J ⊂ K.
Subtract each index of the J parity packets by k and put all of
them into the set I. Note that |I| = |J | = J . The decoding
task is then reduced to the case of decoding J source packets
from J degenerated parity packets. Let T− denote the J × J
submatrix obtained from T by retaining the rows indexed by
I and the columns indexed by J .

2) DECODING
The decoding can initiate either from the left or from the right.
Without loss of generality, we consider initiating from the
left. Recall that each row of T− represents the numbers of
bits shifted by the corresponding components, respectively, to
compose the corresponding degenerated parity packet. There-
fore, in an intermediate decoding stage, in a degenerated
parity packet, the number of bits that can be recovered is equal
to the difference between the second smallest element and the
smallest element within the row of T− that is associated withl
this parity packet.We hence propose theEDAlgorithmwhose
pseudo-code is illustrated in Algorithm 1.

Each element of T− will be updated by adding a certain
number, and we define this updated element as accumulated
element.

During an intermediate stage, we need to find one row
in T− (suppose the i-th row) that contains a single smallest
accumulated element. Let sj denote the source packet that
is associated with this element. The number of bits that can

Algorithm 1 ED Algorithm

Require: k packets, J × J matrix T−;
1: do
2: for i = 1 to J //row loop
3: Let ri be the i-th row of T−;
4: Find the two smallest accumulated elements of ri;
5: Let Ti,j and Ti,j′ be the smallest and the second
6: smallest accumulated elements, respectively;
7: Let δ = Ti,j′ − Ti,j;
8: if δ 6= 0
9: then

10: for i′ = 1 to J do
11: Ti′,j = Ti′,j + δ;
12: recover δ bits in sj;
13: end for
14: else
15: continue;
16: end if
17: end for
18: while there exist bits to be recovered

be recovered within sj is the difference between the second
smallest accumulated element and the smallest accumulated
element in the i-th row of T−. Let δ denote such a difference.
Note that the recently recovered δ bits in sj can now be viewed
as known in other degenerated parity packets. Therefore, the
column in T− that is associated with sj is increased by δ, and
an updated T− is obtained.
We can repeat the above process for the newly updated T−,

until either lall information bits are successfully recovered or
the process cannot continue.

III. ATTENTION FROM STORAGE ROOM TO
COMMUNICATION BANDWIDTH
We now transfer focus from storage room to communication
bandwidth. We investigate the bandwidth consumption for
data reconstruction. An intuitive method is to collect arbitrary
k whole packets, which may be bandwidth-inefficient due to
the nature of storage room overhead of the CP-BZD storage
codes.

We claim that it is possible to collect arbitrary k packets
or sub-packets with each having a length of L. In other
words, the amount of bits fetched or delivered is equal to the
amount of information to be reconstructed, which indicates
optimal bandwidth consumption. As a systematic packet has
a length of L, we only need to consider how to fetch length-L
subpacket from each parity packet. Given arbitrary number
of degenerated parity packets and the corresponding T−,
we will propose a method that fetches L consecutive bits
from each of these degenerated parity packets. Due to a
slight difference in storage code construction as described in
subsec. II-A, the corresponding data reconstruction imple-
mentation is also divided into two cases: k ≤ 4 and
k > 4, which are dealt with in the following two sections,
respectively.
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IV. OPTIMAL BANDWIDTH RECONSTRUCTION SCHEME
FOR CASES WHEN k ≤ 4
As cases k = 2, 3 are straightforward, we describe the
proposed scheme for case k = 4 only. Although this case has
already been designed in [15], we repeat the proposed scheme
for the sake of being thorough.

Since those fetched bits within a degenerated parity packet
are consecutive, we only need to consider how to fetch
the leftmost bit (LMB). To find the LMB, we propose the
Minimum Sum Rule (MSR) as follows: ‘‘Within matrix T−,
define one combination of J elements that collectively form
a minus one slope (MOS) as follows: In the top row, arbi-
trarily choose one element, say the one with the column
index a ∈ {1, 2, . . . , J}. The other J − 1 elements in
the other J − 1 rows are formed in the following manner:
In row i ∈ {2, 3, . . . , J}, the element in the (a + (i −
1)) mod J -th position is chosen. Since in total there are J
options for choosing the first element, there are also J options
for choosing the MOS combination elements. Among these
J options, we exhaustively find the MOS combination with
minimum sum. We name the found MOS combination as
MSR-MOS combination.’’ Afterwards, within each degener-
ated parity packet that is associated with a row in T−, the
bit index of the LMB we fetched is exactly the intersection
of the row and the MSR-MOS combination. We call this
sub-packets fetching rule as MSR-MOS-F and denote it by
putting squares around those MSR-MOS combination ele-
ments in T−.
Example: Set L = 10. Without the loss of generality,

we assume packets c6, c7, c8, and c3 are utilized for data
reconstruction. Detailed sub-packets fetching is illustrated in
Fig. 2. In (a), how to obtain T− from T is shown. In (b), the
found MSR-MOS combination in T− is shown in squares.
In (c), those sub-packets (within the two dashed vertical lines)
are fetched by theMSR-MOS-Fmethod.More specifically, in
packets c6 through c8, we choose bits from 0 through 9, from
1 through 10, and from 1 through 10, respectively. Besides,
those numbers in (c) show one decoding order of information
bits based on degenerated packets c−6 , c

−

7 , c
−

8 .

V. OPTIMAL BANDWIDTH RECONSTRUCTION SCHEME
FOR CASES WHEN k > 4
We first describe the proposed scheme in subsec. V-A.
We then provide a proof to show that the proposed scheme
is able to recover all the original information in subsec. V-B.
Finally, in subsec. V-C, we illustrate with an example.

A. DATA RECONSTRUCTION SCHEME
We first illustrate the proposed sub-packets fetching scheme
and name it as optimal bandwidth reconstruction fetching
(OBR-F). Afterwards, with the resultant packets obtained by
OBR-F, we illustrate the proposed decoding method based on
ED algorithm and name it as OBR-ED.

1) OBR-F
The main idea is first about cyclically transforming T− into
a form that satisfies DRD property. Cyclic transformation

FIGURE 2. An example for MSR-MOS-F and the corresponding decoding
order.

is defined as: Cut a block into two blocks, denoted by
D1 and D2, respectively. If the cut is vertical, move the
left block, say D1, to the right of D2. Otherwise, if the cut
is horizontal, move the top block, say D1, to below D2.
Note that the components in corresponding degenerated par-
ity packets should accompany the cyclic transformation of
T− accordingly. Afterwards, within each degenerated parity
packet obtained by the above cyclic transformation, fetch a
length-L sub-packet.

Detailed implementation of OBR-F includes four steps.
In Step I, transform T− into a form, denoted by A, whose
elements in the top row increase monotonically. In Step II,
extend matrix A to a big matrix which will be defined below.
In Step III, within such a big matrix, find a J × J submatrix
that are formed by consecutive rows and columns, denoted
by C, that satisfies the following condition:

1i
m−1,m > 1

j
m−1,m for all i < j ≤ m, m ∈ {2, 3, . . . , J},

(6)

where definition of 1 simulates (5) and is applied on matrix
C as follows:

1
p
i,j , Cpj − Cpi, p, i, j ∈ J , i 6= j. (7)

In Step IV, let matrix C serve as the degenerated matrix T−.
Within each degenerated parity packet, fetch a sub-packet that
consists of L consecutive bits.
Step I: If those elements in the top row of T− increase

monotonically, simply let A = T−. Otherwise, let is denote
the column index of the smallest element in the top row
of T−. Cyclically move the block that consists of the first
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FIGURE 3. An example for a big matrix.

is − 1 columns of T− to the right of the J -th column and let
A be the resultant matrix.
Step II: Copy the block of the first J − 1 columns of A

after the J -th column. In the resultant matrix, copy the block
of the first J−1 rows after the J -th row.We call such a matrix
a big matrix. A big matrix example for setting k = 6, J = 4
is shown in Fig. 3. For the sake of easy understanding, the
big matrix that corresponds to A = T (surrounded by the
dashed square) is shown in (a), where those removed rows
and columns that correspond to intact systematic packets and
failed parity packets, respectively, are crossed out by dashed
lines. In (b), only the A that corresponds to T− is extended to
the big matrix.
Step III: Within the big matrix, start by testing whether

the submatrix in the top-left corner, namely C = A, satisfies
the condition in (6). In submatrix A, according to DRD (a),
there are two types of signs that denote the relationship
between two horizontally adjacent elements: ‘‘larger than’’
and ‘‘smaller than’’. We only show those ‘‘larger than’’ signs
in the figure and let a dotted curve connect all those adjacent
signs. If the dotted curve is below the diagonal line of A, then
submatrix C = A automatically satisfies the condition in (6).
Otherwise, with slope−1, draw the tangent line of the dotted
curve and let PA denote the point of tangency. Shift A along
its diagonal line to C with PA serving as the top-left vertex
of C. Submatrix C satisfies the condition in (6) and the proof
is deferred to a later subsection. An illustrative example of
finding C may refer to Fig. 4.
Step IV: Within submatrix C, we call the elements that

are in the diagonal line pivotal elements. Each pivotal ele-
ment denotes the bit index of the LMB in the associated
degenerated parity packet. Starting from such a bit, we fetch
L consecutive bits to compose one sub-packet. We denote
such a bits-chosen pattern by placing a square around each
pivotal element of matrix C. We draw a dashed diagonal line
closely below the squares as shown in Fig. 3 (b).
Remark: Note that C, that satisfies (6), may not be unique.

The above steps just provide one way of finding an option
of C.

2) OBR-ED
Dedicated for the resultant sub-packets obtained by
OBR-F, we propose a corresponding decoding method based
on ED algorithm, and we name it as OBR-ED. Note that

FIGURE 4. Illustration of finding a cyclic transformation submatrix in the
big matrix.

during the decoding process, elements in C are updated as
described in the ED algorithm. Therefore, to differentiate
with the originalC, we letCu denote the updatedC. OBR-ED
contains two steps:
Step I: Apply the ED algorithm to the top row of matrix C.
Step II: For each t that increases from 2 to J and subject to

initial constraint that the sign in the (t − 1, t − 1)-th position
of Cu is an equal sign, namely,

Cu
t−1,t−1 = Cu

t−1,t , (8)

we apply the ED algorithm to the t × t submatrix of Cu in
the top-left corner. During the above t-increasing step, the
condition for transition from t − 1 to t is (8).
The ED algorithm applied on a t × t submatrix of Cu is as

follows:
Initially, due to condition (8), the (t − 1, t − 1)-th sign is

an equal sign.
Substep I: Apply the ED algorithm to the t-th row.
Substep II: Apply the ED algorithm to the first row, fol-

lowed by the second row, the third row, . . ., until the t-th row.
Substep III: Repeat Substep II until condition

Cu
t,t = Cu

t,t+1 (9)

for transition from t to t + 1 is satisfied.

B. PROOF OF ABILITY TO RECOVER ALL
THE ORIGINAL INFORMATION
Wefirst give the properties possessed by the OBR-F resultant.
Afterwards, based on such properties, we prove that OBR-F
combined with OBR-ED is able to reconstruct all the original
information.

1) PROPERTIES
There are four properties for matrix C or Cu (we use C to
represent both):
(a) Distinct Relative Difference (DRD) Property: DRD as

described in Sec. II is preserved for matrix C.
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FIGURE 5. Location relationships between dotted curve and dashed
diagonal line.

(b) Monotonically Decreasing (MD) Property: Within C,
the slope at each point of the dotted curve is in region
[−π/2, 0).

(c) No Cut-off Bits (NCB) Property: Within the degenerated
parity packet that is associated with row j ∈ {1, 2, . . . , J}
of C, there is no cut-off bit in the component that corre-
sponds to column j of C.

(d) Equal-Larger-Smaller (ELS) Property: During the OBR-
ED process, if the equality sign occurs within the region
as described by condition (6) in Cu, the sign closely
below the equality is ‘‘larger than’’, and the signs above
the equality are all ‘‘smaller than’’.

All the above follow purely or in part from the cyclic nature
of T , which is a phenomenon that automatically applies to
its submatrices and the corresponding cyclic transformation
resultant. Besides, (b) follows in part from the fact that
the dotted curve in T is monotonically non-increasing and
removing certain rows and certain columns of T preserves
the non-increasing phenomenon, which also applies to the
submatrix of T and the corresponding cyclic transformation
resultant, (c) follows from the sub-packet fetching method
OBR-F, and (d) follows from (6).

2) OBR-F COMBINED WITH OBR-ED CAN RECONSTRUCT
ALL THE ORIGINAL INFORMATION
Theorem 2: For the (n, k) CP-BZD code, based on the

resultant sub-packets obtained by applying OBR-F on arbi-
trary k packets, OBR-ED is able to reconstruct all the original
information.

Proof: We divide the proof into two steps. In Step I,
we show that by applying OBR-F, we can always transform
matrix T− into form C that satisfies the condition in (6),
which is dealt with in Lemma 3. In Step II, based on the
sub-packets obtained by OBR-F, we prove that the OBR-ED
method can recover all the original information. In particular,

FIGURE 6. Illustrative example for cyclic transformation in OBR-F.

we prove that those cut-off bits in the left hand side and
right hand side do not prevent from recovering all the original
information in Lemma 4 and Lemma 5, respectively.
Lemma 3: Given a J × J submatrix T− obtained from the

k × k matrix T by taking its arbitrary J rows and J columns,
OBR-F can transform T− into matrix C which satisfies con-
dition (6).

Proof: According to the first three steps of OBR-F,
cyclic transformation on a matrix is implemented by finding
a submatrix/block that is formed by consecutive rows and
columns within the corresponding big matrix. Within such a
big matrix, if we can draw a dashed diagonal line of length J ,
such that the J × J submatrix that uses this line as diagonal
line satisfies conditions c1 and c2 as shown below, then the
condition in (6) can be satisfied.

c1) The top ‘‘larger than’’ sign in the submatrix is closely
below the diagonal line.

c2) Within this submatrix, no ‘‘larger than’’ sign occurs
above the diagonal line.

The former condition is to ensure that those elements in
the top row of the submatrix increase monotonically, and the
latter condition follows from the fact that the DRD holds for
T and its submatrices and the corresponding cyclic transfor-
mation resultant. Note that it is also possible that there is
no ‘‘larger than’’ sign within such a submatrix. In this case,
condition (6) is automatically satisfied.

We claim that we are able to find or draw such a diagonal
line and find the corresponding submatrix C. We start by
testing the J × J submatrix in the top-left corner, namely A.
According to Step I of OBR-F, A satisfies condition c1,
namely the start points of the dotted curve and the dashed
diagonal line in the top-left corner of A overlap. As a result,
according to the MD property, there are in total three pos-
sibilities for the location relationship between the dotted
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FIGURE 7. An illustrative example for sub-packets fetching under OBR-F.

curve and the dashed diagonal line, which are illustrated to
be cases (a), (b), and (c) as shown in Fig. 5. The first two
cases represent scenarios where the dotted curve is below
or above the dashed diagonal line, respectively. The third
case represents the scenario where there exist points of the
dotted curve that are sometimes below and sometimes above
the dashed diagonal line. For case (a), the condition in (6)
is automatically satisfied. For cases (b) and (c), without loss
of generality, we only illustrate the case for (b). As shown
in Fig. 4, we shift A along its diagonal to B where A and
B have a common vertex O. We draw the tangent lines for
the dotted curve in A and B, and let PA and PB denote
the point of tangency, respectively. Due to simple geometry
knowledge, these two tangent lines must overlap. We thus
shift A along its diagonal line to C with PA serving as the
top-left vertex of C. It is straightforward that submatrix C
satisfies the condition in (6), which can be observed visually
from Fig. 4.

Based on matrix form C and corresponding sub-packets,
we investigate the decoding process from the left hand side
to the right hand side.
Lemma 4: Based on the sub-packets fetched by the

OBR-F method, OBR-ED can initiate the decoding process
from the left hand side and propagate to the state as if those
cut-off bits on the left hand side are not removed.

Proof: Consider the top row of C. According to con-
struction of C, within the degenerated parity packet that is
associated with this row, there is no cut-off bit on the left hand
side. The ED rule can be directly applied to this row, which
leads to the equality sign in the (1, 1)-th position of Cu

= C.
We proceed to consider the 2 × 2 submatrix in the top-

left corner of Cu. According to the ELS property, the sign in
the (2, 1)-th position is ‘‘larger than’’ which indicates that all
those cut-off bits on the left hand side of the component that
are associated with column 1 have been recovered. Besides,
due to the NCB property, there is no cut-off bit on the left
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FIGURE 8. An illustrative example for decoding process in OBR-ED.

hand side of the component that is associated with column 2.
Therefore, the decoding process within this 2×2 submatrix is
equivalent to the case where the bits on the left hand side are
not removed. According to Theorem 1, the above decoding
process within the 2×2 submatrix can propagate towards the
right ceaselessly until an external condition is satisfied, where
the external condition is when one accumulated element in
either the first column or the second column within the 2× 2
submatrix is equal to a certain element to its right. According
to (6), the above process terminates when Cu

2,2 = C2,3, where
these two elements are updated and original, respectively.

Now, consider the 3 × 3 submatrix in the top-left corner.
According to the ELS property, the (3, 2)-th sign is ‘‘larger
than’’, which indicates that those cut-off bits on the left hand
side of the component that are associated with column 2 have
been recovered. Similar to the previous case, the decoding
process within the 3 × 3 submatrix is equivalent to the case
where those cut-off bits on the left hand side of the compo-
nents that are associated with the 3 × 3 submatrix are not
removed and hence can propagate until when Cu

3,3 = C3,4.
The above process continues until the (J − 1, J − 1)-th

accumulated element is equal to the (J − 1, J )-th element,
namely when

Cu
J−1,J−1 = Cu

J−1,J . (10)

This fact combined with the NCB property indicates that all
those cut-off bits on the left hand side of those J degenerated
parity packets have been recovered.
As all those cut-off bits on the left hand side have been

recovered, the decoding process is equivalent to the decod-
ing process in [14]. Therefore, according to Theorem 1, the
decoding process continues to the right hand side. We will
show that those cut-off bits on the right hand side do not affect
the decodability as well.
Lemma 5: Based on those sub-packets obtained by

OBR-F, we can use OBR-ED until all those cut-off bits on

the left hand side are recovered, namely until (10) is satisfied.
Afterwards, during the process of applying OBR-ED,
(a) All bits are recovered at pivotal elements of Cu in the

sense that the bits are recovered at the component that is
associated with the pivotal element’s column.

(b) All the original information can be recovered, namely
those cut-off bits on the right hand side can be deemed
as if not removed at all.
Proof: In substep I of OBR-ED, according to the ELS

property, (10) indicates the ED algorithm is applied on the
J -th row which results in the equality sign in the (J , J )-th
position. Those bits are recovered at the J -th pivotal element.

Now, since those elements in the top row of Cu increase
monotonically, we can apply substep II of OBR-ED on Cu

iteratively. During such an ED application, it is straightfor-
ward that all bits are recovered at those pivotal elements as the
following shows: Initially, applying ED to the top row results
in the equality sign at position (1, 1). Equality sign at position
(t, t) indicates a ‘‘larger than’’ sign at position (t + 1, t) and
applying ED results in an equality sign at position (t+1, t+1).
This completes the proof for statement (a).

Statement (a) indicates that those bits are recovered at
those pivotal elements instead of at the position of cut-off
bits. Since those bits in the component that is associated with
pivotal element are not cut off, we conclude that recovering
all the information does not need the cut-off bits on the right
hand side.

C. AN INTUITIVE EXAMPLE
1) EXAMPLE SETTING
Set L = 15 and k = 6. Use packets c4, c5, c7, c9, c10, and
c12 to recover the original information. Systematic packets
c4 and c5 have length L, while parity packets c7, c9, c10, and
c12 all have length L + k(k−1)

2 = L + 15. As described in
Subsec. II-C, systematic packets c4 and c5 do not require any
decoding and hence can be directly recovered. Furthermore,
they can be substituted into the parity packets, which is
equivalent to removing the corresponding columns (columns
4 and 5) in the matrix. This removal of rows and columns is
illustrated in Fig. 6 (a), where the removal of rows 2 and 5
corresponds to the fact that parity packets ck+2 and ck+5 are
not fetched. We rewrite those remaining rows and columns
into a 4× 4 matrix as shown in Fig. 6 (b).

2) SUB-PACKET FETCHING AND DECODING
The process of cyclic transformation on the matrix is shown
in Fig. 6 (c), with the resultant matrix C together with those
pivotal elements as shown in Fig. 6 (d), where the bits-chosen
pattern is denoted by squares around each pivotal element.
The corresponding packets are shown in Fig. 7, where the two
dashed crossings on two parity packets indicate that parity
packets c8 and c11 are not fetched. Note that within each of the
remaining degenerated packets, there are two vertical dashed
lines with relative distance L, which means the sub-packet
within these two vertical lines are fetched. More specifically,
in packets c7, c9, c10, and c12, we choose L consecutive bits
starting from 1, 0, 3, and 1, respectively. A detailed decoding
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process in the first few steps, actually the updating of each
element in corresponding Cu, is illustrated in Fig. 8.

VI. CONCLUSION
A data reconstruction scheme for the storage code that pos-
sesses the combination property (CP) and zigzag decod-
able (ZD) is proposed for distributed storage systems. Our
proposed scheme contacts k packets and fetches sub-packets
of length L bits from each packet. It is optimal in terms
of bandwidth usage in the sense that the amount of bits
downloaded is equal to the amount of information to be
reconstructed.
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