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ABSTRACT Vascular diseases cause a wide range of severe health problems. Vessel images are often
corrupted by intensity inhomogeneity and blurry boundary, which makes it difficult to segment vessel image
to identify vascular lesions. Integrating the fuzzy decision and a special local energy functional, in this
paper, a robust active contour model is proposed to segment preprocessed vessel images. First, as for the
blurry boundary problem, unlike the traditional method, a fractional-order differential method is used to
enhance the original image for accurate segmentation utilizing fully high-frequency marginal features. Then,
to deal with intensity inhomogeneity, a novel energy functional is formulated by considering the local fuzzy
statistical information of boundaries. At the same time, a double-well potential function is designed to
automatically limit the values of the membership function in the range [0, 1] during the curve evolution.
Finally, Experiments on synthetic and real images are carried out, showing the accuracy of the proposed
model and the robustness to the initial contour when working on vascular images.

INDEX TERMS Active contour, vascular segmentation, fuzzy energy, double-well potential function,
fractional-order differentiation.

I. INTRODUCTION
Vascular disease is a pathological state of large and medium
muscular arteries and is triggered by endothelial cell dysfunc-
tion [1]. Disorders in this vast network of blood vessels can
cause a range of health problemswhich can be severe or prove
fatal. For example, cardiovascular disease causes more than
17 million deaths in the world each year [2]. In addition,
the evaluation of vascular abnormalities (such as stenoses
and plaques) is heavily dependent on the quality of vessel
segmentation, which also affects the results of the following
high level tasks, such as computer-aided diagnosis, surgery
planning and treatment. Therefore, vessel segmentation is one
of demanding applications that has received a considerable
attention [3], [4]. Until now, a large number of methodologies
have been proposed for vessel segmentation, such as tubular
structure [5], [6], pattern recognition [7], [8] and centerline
based approaches [9], [10]. Due to instrumental limitations,
vessel images are often corrupted by intensity inhomogeneity,
which makes the segmentation of vascular images to be a
challenging problem in medical image domain.

In the literature, active contour models (ACMs) [11], [12]
and fuzzy clustering [13], [14] have gained more attention
as their good experimental performance and sound theo-
retical foundation. Among the fuzzy clustering methods,
Fuzzy c-means (FCM) [15] algorithm is one of the most
widely used methods in image segmentation because of its
well performance. Although FCM can retain more informa-
tion from original image than hard clustering method, it fails
to segment imageswith intensity inhomogeneity. On the other
hand, a great deal of attention has been paid to ACMs thanks
to their impressive achievements in terms of accuracy. The
basic idea of ACMs consists in implicitly representing a
curve as the zero level set of a higher dimensional func-
tion, called level set function (LSF) [16]. By minimizing the
defined energy functional, a partial differential equation can
be obtained to drive the evolution of the curve.

Generally speaking, the existing ACMs can be roughly
classified into two categories: edge-based models [17], [18]
and region-based models [19]–[23]. Edge-based ACMs uti-
lize image gradient information to guide the evolution curve
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toward the boundaries of the interested objects. Conse-
quently, they have difficulty in detecting weak boundary
and are sensitivity to the noise. Region-based ACMs use a
certain region-based image information to guide the curve
evolution toward the desired boundaries. Comparing with
edge-based ACMs, region-based ACMs generally offer better
performance in the case of weak object boundaries. One of
the most popular region-based ACMs is the Chan-Vese (CV)
model [19]. More recently many fuzzy logic based ACMs are
proposed to enhance the robustness of the model [24]–[28].
For example, S. Krinidis and V. Chatzis [24] proposed a fuzzy
energy-based active contour model (FEBAC), Wu et al. [27]
proposed another fuzzy active contour model with kernel
metric (KFAC). Just like the CV model, they have difficulty
in dealing with intensity inhomogeneous images, since they
rely on global information of images. In case of intensity
inhomogeneity, global information may be far different from
the actual data of image. In fact, intensity inhomogeneity
images are frequently observed in vessel images [29]. In [28]
a selective level set segmentation (SLSS)method, using fuzzy
region competition, is proposed to cope with this problem.
Unfortunately, the SLSS model still suffers from some draw-
backs in face of inhomogeneity. Many studies have shown
that incorporating local image information into the energy
functional is an effective way to tackle intensity inhomogene-
ity. The local binary fitting model (LBF) [20], [21] is a well-
known local information based active contour model, which
gets desirable segmentation results of images with intensity
inhomogeneity. The main drawback of LBF model is highly
dependent on the initial contour.

Vessel images often exhibit low contrast, which makes
it difficult to segment vessel. A large number of contrast
enhancement techniques have been proposed to overcome
this problem [30]. Recently, methods based on fractional dif-
ferentiation [31], [32] are proposed to deal with the problem
of low contrast and give better performance than traditional
ones. Fractional order differentiation is a generalization of the
ordinary differentiation and can provide the best description
for many natural phenomena. Due to more precisely deriva-
tives of arbitrary order, fractional order differential methods
can retain high-frequency marginal features in the areas of
gray-level dramatic changes and preserve low-frequency fea-
tures in smooth areas [31]–[35].

In the present work, a robust fuzzy active contour model is
proposed to segment vessel images. Because the fractional-
order differential methods preserve not only low-frequency
but also high-frequency features of images [31]–[35],
we construct a fractional-ordermask to enhance vessel image.
Then, the enhanced image is used to define the local statisti-
cal information and to guide the curve evolution. As men-
tioned above, incorporating local image information into
the energy functional is an effective way to tackle intensity
inhomogeneity and soft clustering method can retain more
information from original image. We propose a local fuzzy
energy functional integrating the advantage of local-based
ACMs and fuzzy energy-based ACMs. By taking the local

fuzzy intensity information into account, the proposed model
can better deal with intensity inhomogeneity. In addition,
the Gaussian filtering method is used to regularize the pseudo
level set function, which can keep the level set function
smoothing in the evolution of curve. Noting that the member-
ship function u may break the constraint (0 ≤ u ≤ 1) during
the curve evolution, we define a new embedded penalty func-
tion to limit the pseudo level set function in the range [0, 1],
whichmakes the proposedmodel more robust. The advantage
of the proposed model compared with the FEBAC model and
the classic CVmodel is that it can segment images with inten-
sity inhomogeneity. Compared with the well-known LBF
model, the proposed model is more robustness to the initial
contour.

In summary, the main contributions of the paper are as
follows. (1) We use the filtered image resulting from frac-
tional order differentiation as a guide image to accurately
estimate the local fuzzy information. The increased quality of
this guide image improves the performance of the proposed
model. (2) We combine the idea of the local-based ACMs
and the fuzzy-based ACMs into the energy functional which
can exploit the benefits of both methods. (3) Based on the
observation of the membership function, we propose a new
embedded penalty function to limit it in the range [0, 1],
which makes the proposed model more robust.

The remainder of this paper is organized as follows.
Section 2 gives a brief review on related works and indi-
cates their limitations. We describe the proposed active con-
tour model for vessel segmentation in details in Section 3.
Section 4 presents the experimental results and the compar-
isons on real and synthetic images. Finally, conclusions are
drawn in Section 5.

II. BACKGROUND
Active contour model is computer-generated curves that
move within images to find object boundaries. It is popu-
lar in computer vision, and is greatly used in applications
like object tracking, shape recognition, edge detection and
segmentation. The basic idea of the related works and the
proposed method is to implicitly represent an evolving curve
as the zero level set of a higher dimension level set function,
and an evolving curve is driven by a partial differential equa-
tion obtained by minimizing a predefined energy functional.
In this section, we will give a brief review on related works
for image segmentation and also indicate their limitations.

A. CV MODEL
By simplifying the Munford-Shah model [22],
Chan and Vese [19] proposed a region-based active contour
model. They defined the following energy functional

ECV (φ, c1, c2) = λ1

∫
�

|I (x)− c1|2Hε(φ(x))dx

+λ2

∫
�

|I (x)−c2|2(1−Hε(φ(x)))dx (1)

where λ1 > 0, λ2 > 0, are fixed parameters. I (x) is the
intensity at a point x. c1 and c2 are the average intensities
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inside and outside the contour C = {x ∈ � : φ(x) = 0}.
Normally, the level set function φ is initialized as the signed
distance function

φ(x) =

{
+distance(x,C), x ∈ interior of C
−distance(x,C), x ∈ exterior of C

(2)

The modified Heaviside function Hε(φ) is defined by

Hε(z) =
1
2

(
1+

2
π
arctan

( z
ε

))
, z ∈ R (3)

The assumption of the CV model is that image intensity is
constant in foreground and background. Although it is robust
against noise and less sensitive to initial contour, it does not
work well on images intensity inhomogeneity.

B. FEBAC MODEL
The FEBAC model [24] is a fuzzy energy-based active con-
tour model, which divides the image into foreground and
background. Different from the CV model [19] which uses
the sign distance function [36] as the initial level set function,
the curve C is implicitly represented by the pseudo zero level
set function, such that

C = {x ∈ � : u(x) = 0.5}
inside(C) = {x ∈ � : u(x) > 0.5}
outside(C) = {x ∈ � : u(x) < 0.5}

(4)

and the fuzzy energy functional is defined as follows

EFEBAC (u, c1, c2) = λ1

∫
�

[u(x)]m|I (x)− c1|2dx

+λ2

∫
�

[1−u(x)]m|I (x)−c2|2dx (5)

where λ1 > 0, λ2 > 0 are fixed parameters. u(x) is the
degree of the membership of pixel x belong to c1, and 1−u(x)
is the degree of the membership of pixel x belong to c2. m
is a weighting exponent on each fuzzy membership, which
is usually set to 2. Keeping u fixed and minimizing the
energy functional (5) with respect to c1 and c2, we obtain the
updating equations of c1, c2 as follows

c1 =

∫
�
[u(x)]mI (x)dx∫
�
[u(x)]mdx

, c2 =

∫
�
[1− u(x)]mI (x)dx∫
�
[1− u(x)]mdx

(6)

It can be observed that the constant c1, c2 are the aver-
age intensity inside and outside the contour C . Like the
CV model, the FEBAC model is proposed with assumption
that foreground and background are homogeneous. Conse-
quently, the FEBAC model still fails to segment images with
intensity inhomogeneity. The KFACmodel, proposed in [27],
is similar to the FEBAC model. Although the KFAC model
is more robust to images in the presence of noise than the
CV model and the FEBAC model, it also fails to deal with
intensity inhomogeneity because only global information is
used.

C. LBF MODEL
To solve the drawback of the global information based
models, which have undesirable performance on images
with intensity inhomogeneity, Li et al. proposed the
LBF model [20], [21]. The local statistical information is
obtained by introducing a kernel function. They defined the
energy functional as follows

ELBF (φ, f1, f2)

= λ1

∫
�

∫
�

Kσ (x − y)|I (y)− f1(x)|2Hε(φ(y))dydx

+λ2

∫
�

∫
�

Kσ (x−!y)|I (y)−f2(x)|2(1−Hε(φ(y)))dydx

(7)

where Kσ is the Gaussian kernel function with standard devi-
ation σ , λ1 > 0, λ2 > 0 are fixed parameters. Keeping level
set function φ fixed and minimizing the energy functional (7)
with regard to local center f1 and f2, we can obtain the
following equation

f1(x) =

∫
�
Kσ (x − y)I (y)Hε(φ(y))dy∫
�
Kσ (x − y)Hε(φ(y))dy

f2(x) =

∫
�
Kσ (x − y)I (y)(1− Hε(φ(y)))dy∫
�
Kσ (x − y)(1− Hε(φ(y)))dy

(8)

Though the LBF model can effectively segment inhomoge-
neous images, it is sensitive to initial contour.

III. THE PROPOSED MODEL
In order to overcome the drawbacks of the active contour
models discussed in section 2, in this section, we present a
novel fuzzy energy based active contour model and describes
it in details. We firstly introduce the fractional order differ-
ential method used to enhance image. Then, we formulate a
new local-based energy functional and define a new penalty
function.

A. FRACTIONAL-ORDER DIFFERENTIATION
The fractional order differentiation is a generalization of the
ordinary differentiation. The definition of fractional order
differentiation is studied by many researchers from different
views and more than one exist in the literature. In this paper,
we use Grünwald-Letnikov (GL) definition [31], which can
be expressed as

t0D
v
t s(t) = lim

h→0

1
hv

[(t−t0)/h]∑
j=0

(−1)j
(
v
j

)
s(t − jh) (9)

where
(v
j

)
=

0(v+1)
0(j+1)0(v−j+1) , 0 < v ≤ 1,0 is the Gamma func-

tion. The explicit numerical approximation can be expressed
as

t0D
v
t s(t) ≈

1
hv

[(t−t0)/h]∑
j=0

w(v)
j s(t − jh) (10)
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FIGURE 1. Fractional order enhancement mask W .

where wvj = (−1)j
(v
j

)
. Setting h = 1 and n = [t − t0],

the v order fractional differential expression of two-
dimensional signal s(p, q) can be expressed as

∂vs(p, q)
∂pv

≈ s(p, q)+(−v)s(p−1, q)+
(−v)(−v+1)

2
s(p−2, q)

+
(−v)(−v+ 1)(−v+ 2)

6
s(p− 3, q)+ · · ·

+
0(−v+ 1)

n!0(−v+ n+ 1)
s(p− n, q) (11)

∂vs(p, q)
∂qv

≈ s(p, q)+(−v)s(p, q−1)+
(−v)(−v+1)

2
s(p, q−2)

+
(−v)(−v+ 1)(−v+ 2)

6
s(p, q− 3)+ · · ·

+
0(−v+ 1)

n!0(−v+ n+ 1)
s(p, q− n) (12)

We can find that the corresponding coefficients of the v order
fractional partial differential on negative p and q coordinate
is same. These coefficients can be got from (11) and (12)

wν0 = 1,wν1 = −v, . . . ,w
ν
n =

0(−v+ 1)
n!0(−v+ n+ 1)

(13)

The fractional enhancement maskW can be constructed as it
shown in Figure 1. Obviously, the defined mask is rotation
invariant, and the filtered value of the pixel I (p, q) can be
calculated using

DvI (p, q) =

n−1
2∑

i=− n−1
2

n−1
2∑

j=− n−1
2

W (i, j)I (p+ i, q+ j) (14)

where W is the mask shown in Figure 1 and n (and odd inte-
ger) is the size of the mask. From (13), we can find that these
coefficients are nonzero and the summation is also nonzero.
As far as possible to ensure the intensity of I (p, q) is within
[0, 255], the filtered image is divided by the summation of
these nonzero coefficients. Therefore, (14) can be rewritten

as

DvI (p, q)

=

 n−1
2∑

i=− n−1
2

n−1
2∑

j=− n−1
2

W (i, j)I (p+ i, q+ j)

 /(8 n∑
i=0

wνi )

(15)

It is not difficult to find that the bigger the mask size is,
the higher degree of accuracy will be obtained, but the com-
putation time will be consuming. In this paper, we select
the size of n = 5. Selecting an appropriate parameter v is
also a difficult task. There is no doubt that one value cannot
fit all images. Fortunately, v = 0.2 is appropriate for all
experiments in this paper.

B. ENERGY FORMULATION
Recall that local image information is the key to seg-
ment images with intensity inhomogeneity. Like the
LBF model [20], [21], we define the following local fuzzy
energy functional by using a Gaussian kernel.

ELocal(u, f1, f2)

= λ1

∫
�

∫
�

Kσ (x − y)|DvI (y)− f1(x)|2[u(y)]mdydx

+λ2

∫
�

∫
�

Kσ (x − y)|DvI (y)− f2(x)|2[1− u(y)]mdydx

(16)

where λ1 > 0, λ2 > 0 are fixed parameters. Kσ is a
Gaussian kernel with standard deviation σ . In this paper, σ is
set to 5. f1(x) and f2(x) are two smooth functions that fit
the local statistical prototypes of the image DvI inside and
outside the contour C . u and 1 − u are the degree of the
membership of pixel x belong to f1(x) and f2(x), respectively.
m is a weighting exponent on each fuzzy membership. For the
fixedmembership function u, byminimizing the fuzzy energy
functional (16) with respect to the function f1(x) and f2(x),
we get the updating equations of f1(x) and f2(x) as follows

f1(x) =

∫
�
Kσ (x − y)DvI (y)[u(y)]mdy∫
�
Kσ (x − y)[u(y)]mdy

f2(x) =

∫
�
Kσ (x − y)DvI (y)[1− u(y)]mdy∫
�
Kσ (x − y)[1− u(y)]mdy

(17)

f1(x) and f2(x) given by (17) are two local fuzzy clustering
center functions, which compute the local intensity means
inside and outside the contour C defined in (4) in a neigh-
borhood of x. Local information based model, which can
get well performance on segmenting images with intensity
inhomogeneity, are sensitive to the initial contour. But our
model is based on fuzzy clustering method, which can deal
with this problem, as shown in section 4.

Note that the fuzzy membership function u may break the
constraint (0 ≤ u ≤ 1) during the curve evolution, in [27]
they set u = 0, if u < 0 and u = 1, if u > 1 after updating u.
However, this crude approach will reduce the stability of the
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level set evolution. In this paper, we propose an embedded
penalty function to automatically limit u in the range [0, 1],
which makes the proposed model more robust. The penalty
function is defined by

R(u) =
∫
�

p(u(x))dx (18)

with

p(s) =
1
4
(s(s− 1))2 (19)

The function (19) is a double-well potential function, which
has two minimum points s = 0 and s = 1. When minimizing
the penalty energy term (18), it can be observed that values
less than zero are driven toward 0 and values greater than 1
are driven toward 1. Thus, the values of u can be limit in the
range [0, 1].
The whole fuzzy energy functional is expressed by

E(u, f1, f2) = αELocal(u, f1, f2)+ βR(u) (20)

where α > 0, β > 0 are fixed parameters. Keeping fi
(i = 1, 2) fixed, we minimize the energy functional (20) with
respect to u, we obtain the following formulation

∂u
∂t
= α[−m(u(x))m−1λ1e1(x)+ m(1− u(x))m−1λ2e2(x)]

−β[
1
2
u(x)(2u(x)− 1)(u(x)− 1)] (21)

where ei(x) (i = 1, 2) are the functions

ei(x) =
∫
�

Kσ (y− x)|DvI (x)− fi(y)|2dx, i = 1, 2 (22)

here, f1 and f2 are given by (17).

C. ALGORITHM
Before the evolution of curve, the normalization of the input
image is applied for a stable updating of u, and the Gaussian
filtering method [23] is used to smooth the pseudo level set
function. The filtering process can be expressed as

uk+1 = Kξuk (23)

where ξ is the standard deviation, k is the number of iter-
ations. In this paper, we set ξ = 0.5 for all experiments.
(21) is solved by a finite difference scheme. In the image
domain, the spacial partial derivative ∂u/∂x and ∂u/∂y are
approximated by the central difference with fixed space steps
1x = 1y = 1. The temporal partial derivative ∂u/∂t
is approximated by the forward difference with time step
1t = 1. Therefore, (21) can be discretized as a finite equation
defined as follows

uk+1i,j − u
k
i,j

1t
= A

(
uki,j
)
. (24)

where A
(
uki,j
)

is the approximation of the right hand
side in (21). The steps of the proposed model are as
follows
1. Normalize the original image.

2. Initialize the pseudo level set function, set u > 0.5 for one
part and u < 0.5 for the other part. Initialize fi (i = 1, 2).
3. Update uk+1i,j = uki,j +1t · A

(
uki,j
)
.

4. Update fi (i = 1, 2) by (17).
5. Smooth the level set function u by (23).
6. Check whether the evolution is stationary. If not, return to
step 3.

IV. EXPERIMENTAL RESULTS
This section shows the experimental results of the proposed
model. To validate the effectiveness of the proposed model,
we compare the proposed model with two classical active
contour models and a fuzzy energy based model: global
energy based model (CV model [19]), local energy based
model (LBFmodel [20]), fuzzy energy based model (FEBAC
model [24], KFAC [27], SLSS [28]). All the experiments are
carried out by Matlab (R2014b) in the PC with Dual 3.2 GHz
processor. The parameters are set as follows: m = 2, λ1 =
λ2 = 1, α = β = 1. According to the segmentation results,
v = 0.2 is appropriate for all experiments. The parameters
of the compared methods are set according to the original
papers.

A. APPLICATION ON SYNTHETIC IMAGES
Figure 2 shows the results of two homogeneous images.
Figure 3 shows the results of images with intensity inhomo-
geneity. The first column shows the original images with the
same initial contour. The second column to the last column
show the segmentation results of our model, CV model,
FEBAC model and LBF model, respectively. From Figure 2,
it can be observed that all methods work well on two homoge-
neous images. Two images showed in Figure 3 are corrupted
by intensity inhomogeneity. It can be seen that our model and
LBF model obtain satisfactory segmentation results. How-
ever, CV model and FEBAC model fail to segment them
due to only using the global mean of intensities. Using local
image information ensures our model and the LBF model to
effectively extract the object boundaries.

FIGURE 2. Segmentation results on homogeneous images. First column:
original images with initial contour. Second column to fifth column:
segmentation results of our model, CV model, FEBAC model and LBF
model, respectively.

Figure 4 shows the comparisons with FEBAC model and
KFAC model. The top row shows that our model and KFAC
model work well on images in the presence of noise. Incor-
porating kernel metric makes KFAC model more robust
against the noise. Because only global information is used,
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FIGURE 3. Segmentation results on images with intensity inhomogeneity.
First column: original images with initial contour. Second column to
fifth column: segmentation results of our model, CV model, FEBAC model
and LBF model, respectively.

FIGURE 4. Comparisons with FEBAC model and KFAC model. First column:
original images with initial contour. Second column to forth column:
segmentation results of FEBAC model, KFAC model and our model,
respectively.

KFACmodel fails to tackle intensity inhomogeneity as shown
in the bottom row. In contrast, the proposed model achieves
a much better performance, which benefited from the new
penalty function and the usage of local fuzzy information.

B. APPLICATION ON REAL VESSEL IMAGES
Intensity inhomogeneity often occurs in real vessel images.
In this section, comparisons are made to validate the per-
formance of our model. Figure 5 shows the comparisons
with FEBAC model, SLSS model and KFAC model on real
vessel images. First row to forth row show the segmentation
results of FEBAC model, SLSS model, KFAC model and our
model, respectively. The segmentation results show desirable
performance of the proposed model over these fuzzy logic
based methods in terms of accuracy.

Figure 6 and Figure 7 show the vessel segmentation of dif-
ferent modalities. Figure 6 shows the segmentation results of
three vessel images with intensity inhomogeneity. Two digital
subtraction angiography (DSA) images and one infrared fun-
dus vessel image with initial contours are shown in the first
column. Figure 7 shows the segmentation results for differ-
ent vessel images: abdominal vessel (computed tomography,
CT), carotid vessel (magnetic resonance angiography,MRA),
and pulmonary vessel (ultrasonic imaging, US). They are
shown in the first column from top to bottom. In Figure 6 and
Figure 7, the segmentation results of our model, CV model,
FEBAC model, LBF model are shown from the second col-
umn to the last column, respectively.

In Figure 6, vessel images with weak boundaries render it a
nontrivial problem to segment them. From the segmentation

FIGURE 5. Comparisons with FEBAC model, SLSS model and KFAC model.
First row to forth row: segmentation results of FEBAC model, SLSS model,
KFAC model and our model, respectively.

FIGURE 6. Segmentation results on DSA and infrared vessel images.
First column: original images with initial contour. Second column to
fifth column: segmentation results of our model, CV model, FEBAC model
and LBF model, respectively.

results, we can see that the compared models fail to segment
these images. In contrast, our model obtains satisfactory seg-
mentation results. The reason is that incorporating local fuzzy
statistical information into the model makes our model more
effective to cope with intensity inhomogeneity. In Figure 7,
the segmentation results of CV model and FEBAC model are
better than the LBF model, because the global based models
are more robust than the local based models, which are easily
trapped into local minimum. Compared with CV model and
FEBAC model, the proposed model can accurately segment
the weak boundaries. Compared with LBF model, our model
is more robust.

Figure 8 shows the segmentation results of four retinal
vessel images. These images exhibit low contrast and weak
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FIGURE 7. Segmentation results on CT, MRA and US vessel images. First
column: original images with initial contour. Second column to fifth
column: segmentation results of our model, CV model, FEBAC model and
LBF model, respectively.

FIGURE 8. Segmentation results on retinal vessel images. First column:
original images with initial contour. Second column to fifth column:
segmentation results of our model, CV model, FEBAC model and
LBF model, respectively.

boundaries and are shown in the first column from top to
bottom. Each row corresponding to the original image with
initial contour and the final evolution results of our model,
CV model, FEBAC model and LBF model, respectively. The
segmentation results demonstrate that the proposed model
can extract the real vessel boundaries accurately. Because our
model is not directly defined on the original image, but is
defined on the enhanced image, which makes the proposed
model work well on low contrast vessel images.

C. ROBUSTNESS TO INITIAL CONTOURS
To further evaluate the capability of our model in coping
with intensity inhomogeneity and its robustness to initial
contours, we apply our model and LBF model to segment
two vessel images with different initial contours. Figure 9 and
Figure 10 show the segmentation results. The first row shows
the five different initializations. The second row is the results
of our model. The third row is the results of LBFmodel. From
the segmentation results, we can see that LBF model can get

FIGURE 9. Segmentation results on a vessel image with different initial
contours. First row: original image with initial contour. Second row:
segmentation results of our model. Third row: segmentation results of
LBF model.

FIGURE 10. Segmentation results on a vessel image with different initial
contours. First row: original image with initial contour. Second row:
segmentation results of our model. Third row: segmentation results of
LBF model.

accurate segmentation results on image with the first initial
contour, but fails to segment others, because the local statis-
tical information used by the LBF model is easily affected
by the intensity of a certain point. In contrast, our model has
desirable performance on images with five different initial
contours. In other words, our model is less sensitive to initial
contour than LBF model owe to considering not only local
statistical information but also fuzzy clustering method.

V. CONCLUSION
In this paper, we propose a robust local fuzzy active contour
model for vascular segmentation. It incorporates the fuzzy
local statistical information into the model by the usage
of a Gaussian kernel function. Moreover, our model is not
directly defined on the original image, but is defined on the
image enhanced by the designed fractional-order differential
operation. The proposed model overcomes the drawbacks of
traditional local energy-based models, which highly depend
on the position of initial contour. Meanwhile, the proposed
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model works well on images with inhomogeneous intensity
and low contrast. In addition, our model allows for a flexible
initialization. Experimental results demonstrate the desirable
performance of our model for vessel images with inhomo-
geneity in terms of accuracy and robustness.

REFERENCES
[1] J. Thangavel et al., ‘‘The vascular endothelium and human diseases,’’ Int.

J. Biol. Sci., vol. 9, no. 10, pp. 1057–1069, Nov. 2013.
[2] S. Davis, S. Mendis, and B. Norrving, ‘‘Organizational update: The World

Health Organization global status report on noncommunicable diseases
2014; one more landmark step in the combat against stroke and vascular
disease,’’ Stroke, vol. 46, no. 5, pp. e121–e122, May 2015.

[3] J. S. Suri, K. Liu, L. Reden, and S. Laxminarayan, ‘‘A review on MR vas-
cular image processing: Skeleton versus nonskeleton approaches: Part II,’’
IEEE Trans. Inf. Technol. Biomed., vol. 6, no. 4, pp. 338–350, Dec. 2002.

[4] C. Scharfenberger, A. G. Chung, A. Wong, and D. A. Clausi, ‘‘Salient
region detection using self-guided statistical non-redundancy in natural
images,’’ IEEE Access, vol. 4, pp. 48–60, 2016.

[5] M. Hernandez and A. F. Frangi, ‘‘Non-parametric geodesic active regions:
Method and evaluation for cerebral aneurysms segmentation in 3DRA and
CTA,’’ Med. Image Anal., vol. 11, no. 3, pp. 224–241, Jun. 2007.

[6] R. Manniesing, B. K. Velthuis, M. S. van Leeuwen, I. C. van der Schaaf,
P. J. van Laar, and W. J. Niessen, ‘‘Level set based cerebral vasculature
segmentation and diameter quantification in CT angiography,’’Med. Image
Anal., vol. 10, no. 2, pp. 200–214, Apr. 2006.

[7] M. S. Hassouna, A. A. Farag, S. Hushek, and T. Moriarty, ‘‘Cerebrovascu-
lar segmentation from TOF using stochastic models,’’ Med. Image Anal.,
vol. 10, no. 1, pp. 2–18, Feb. 2006.

[8] R. Gan, W. C. Wong, and A. C. Chung, ‘‘Statistical cerebrovascular
segmentation in three-dimensional rotational angiography based on max-
imum intensity projections,’’ Med. Phys., vol. 32, no. 9, pp. 3017–3028,
Sep. 2005.

[9] S. Worz and K. Rohr, ‘‘Segmentation and quantification of human vessels
using a 3-D cylindrical intensity model,’’ IEEE Trans. Image Process.,
vol. 16, no. 8, pp. 1994–2004, Aug. 2007.

[10] W. C. K. Wong and A. C. S. Chung, ‘‘Bayesian image segmentation using
local iso-intensity structural orientation,’’ IEEE Trans. Image Process.,
vol. 14, no. 10, pp. 1512–1523, Oct. 2005.

[11] G. Yu, Y. L. Miao, P. Li, and Z. Z. Bian, ‘‘Multiscale active contour model
for vessel segmentation,’’ J. Med. Eng. Technol., vol. 32, no. 1, pp. 1–9,
Jan./Feb. 2008.

[12] Y. Shang et al., ‘‘Vascular active contour for vessel tree segmen-
tation,’’ IEEE Trans. Biomed. Eng., vol. 58, no. 4, pp. 1023–1032,
Apr. 2011.

[13] Z. Wang, X. Wei, W. Huang, J. Zhou, and S. K. Venkatesh, ‘‘A fuzzy
clustering vessel segmentation method incorporating line-direction infor-
mation,’’ Proc. SPIE, vol. 8314, p. 83143I, Feb. 2012.

[14] J. Z. Yang, S. Ma, W. J. Tan, Q. Sun, P. Cao, and D. Z. Zhao, ‘‘MRA fuzzy
c-means vessel segmentation algorithm based on tubular structure,’’
J. Med. Imag. Health Inform., vol. 5, no. 8, pp. 1853–1858, Dec. 2015.

[15] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York, NY, USA: Plenum, 1981.

[16] V. Estellers, D. Zosso, R. Lai, S. Osher, J. P. Thiran, and X. Bresson,
‘‘Efficient algorithm for level set method preserving distance function,’’
IEEE Trans. Image Process., vol. 21, no. 12, pp. 4722–4734, Dec. 2012.

[17] V. Caselles, F. Catté, T. Coll, and F. Dibos, ‘‘A geometric model for active
contours in image processing,’’ Numer. Math., vol. 66, no. 1, pp. 1–31,
Dec. 1993.

[18] V. Caselles, R. Kimmel, and G. Sapiro, ‘‘Geodesic active contours,’’ Int. J.
Comput. Vis., vol. 22, no. 1, pp. 61–79, Feb. 1997.

[19] T. F. Chan and L. A. Vese, ‘‘Active contours without edges,’’ IEEE Trans.
Image Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[20] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, ‘‘Implicit active contours driven
by local binary fitting energy,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2007, pp. 1–7.

[21] C. Li, C.-Y. Kao, J. C. Gore, and Z. Ding, ‘‘Minimization of region-scalable
fitting energy for image segmentation,’’ IEEE Trans. Image Process.,
vol. 17, no. 10, pp. 1940–1949, Oct. 2008.

[22] D. Mumford and J. Shah, ‘‘Optimal approximations by piecewise smooth
functions and associated variational problems,’’ Commun. Pure Appl.
Math., vol. 42, no. 5, pp. 577–685, 1989.

[23] K. Zhang, H. Song, and L. Zhang, ‘‘Active contours driven by local image
fitting energy,’’Pattern Recognit., vol. 43, no. 4, pp. 1199–1206, Apr. 2010.

[24] S. Krinidis and V. Chatzis, ‘‘Fuzzy energy-based active contours,’’ IEEE
Trans. Image Process., vol. 18, no. 12, pp. 2747–2755, Dec. 2009.

[25] T.-T. Tran, K.-K. Shyu, V.-T. Pham, and P.-L. Lee, ‘‘Global and local fuzzy
energy-based active contours for image segmentation,’’ Nonlinear Dyn.,
vol. 67, no. 2, pp. 1559–1578, Jan. 2012.

[26] Q. T. Thieu, M. Luong, J.-M. Rocchisani, N. Linh-Trung, and E. Viennet,
‘‘Novel active contour model for image segmentation based on local fuzzy
Gaussian distribution fitting,’’ J. Electron. Sci. Technol., vol. 10, no. 2,
pp. 113–118, Jun. 2012.

[27] Y. Wu, W. Ma, M. Gong, H. Li, and L. Jiao, ‘‘Novel fuzzy active contour
model with kernel metric for image segmentation,’’ Appl. Soft. Comput.,
vol. 34, pp. 301–311, Sep. 2015.

[28] B. N. Li, J. Qin, R. Wang, M. Wang, and X. Li, ‘‘Selective level set
segmentation using fuzzy region competition,’’ IEEE Access, vol. 4,
pp. 4777–4788, 2016.

[29] S. Fu, Q. Ruan, W. Wang, F. Gao, and H.-D. Cheng, ‘‘A feature-dependent
fuzzy bidirectional flow for adaptive image sharpening,’’Neurocomputing,
vol. 70, no. 4, pp. 883–895, Jan. 2007.

[30] S. J. Fu, C. Zhang, and X. Tai, ‘‘Image denoising and deblurring: Non-
convex regularization, inverse diffusion and shock filter,’’ Sci. China Inf.
Sci., vol. 54, no. 6, pp. 1184–1198, Jun. 2011.

[31] Y.-F. Pu, J.-L. Zhou, and X. Yuan, ‘‘Fractional differential mask: A frac-
tional differential-based approach for multiscale texture enhancement,’’
IEEE Trans. Image Process., vol. 19, no. 2, pp. 491–511, Feb. 2010.

[32] S. Khanna and V. Chandrasekaran, ‘‘Fractional derivative filter for image
contrast enhancement with order prediction,’’ in Proc. IET Conf. Image
Process. (IPR), 2012, pp. 1–6.

[33] N. He, J.-B. Wang, L.-L. Zhang, and K. Lu, ‘‘An improved fractional-order
differentiation model for image denoising,’’ Signal Process., vol. 112,
pp. 180–188, Jul. 2015.

[34] B. Li and W. Xie, ‘‘Adaptive fractional differential approach and its
application to medical image enhancement,’’ Comput. Elect. Eng., vol. 45,
pp. 324–335, Jul. 2015.

[35] B. Li and W. Xie, ‘‘Image denoising and enhancement based on adap-
tive fractional calculus of small probability strategy,’’ Neurocomputing,
vol. 175, pp. 704–714, Jan. 2016.

[36] M. Sussman, P. Smereka, and S. Osher, ‘‘A level set approach for com-
puting solutions to incompressible two-phase flow,’’ J. Comput. Phys.,
vol. 114, no. 1, pp. 146–159, Sep. 1994.

HONGLI LV received the B.S. degree from the
School of Mathematics and Statistics, Henan
University, Kaifeng, China, in 2007, and the
M.S. degree from the College of Mathematics and
Information Science from Wenzhou University,
Wenzhou, China, in 2015. He is currently pursu-
ing the Ph.D. degree with the School of Mathe-
matics, Shandong University, China. His research
interests include medical image processing and
computer vision, especially image denoising and

image segmentation.

ZIYU WANG received the B.S. degree in radiology
from Shandong Medical College in 1999. He is
currently a Physician with the Department of
Radiology, Yidu Central Hospital of Weifang,
China. He has authored several papers in important
medical journals and conferences. His research
interests include medical imaging and medical
image quality assessment.

7760 VOLUME 5, 2017



H. Lv et al.: Robust Active Contour Segmentation Based on Fractional-Order Differentiation and Fuzzy Energy

SHUJUN FU received the B.S. degree in
power engineering and the M.S. degree in
computational mathematics from Shandong Uni-
versity in 1990 and 1999, respectively, and the
Ph.D. degree in signal and information process-
ing from Beijing Jiaotong University in 2009.
He is currently a Professor with the School
of Mathematics, Shandong University. He has
authored about 60 papers in important journals and
conferences. His research interests include image

processing, partial differential equations, numerical computing, medical
imaging, image measurement, and target detection and recognition. He is
also a Peer Reviewer on some important journals.

CAIMING ZHANG received the B.S. degree
and the M.E. degree in computer science from
Shandong University in 1982 and 1984,
respectively, and the Dr.Eng. degree in computer
science from the Tokyo Institute of Technol-
ogy, Japan, in 1994. He is currently a Profes-
sor and the Doctoral Supervisor with the School
of Computer Science and Technology, Shandong
University. From 1997 to 2000, he has held visiting
position with the University of Kentucky, USA.

His research interests include CAGD, CG, information visualization, and
medical image processing.

LIN ZHAI received the B.S. degree from the
School of Information Science and Engineering
from Dalian Ocean University, Dalian, China,
in 2011, and the M.S. degree from the School
of Computer and Information Engineering from
Inner Mongolia Agricultural University, Hohhot,
China, in 2014. She is currently pursuing the
Ph.D. degree with the School of Mathematics,
Shandong University, Jinan, China. Her research
interests include medical image denoising and

pattern recognition.

XUYA LIU received the B.S. degree from the
School of Mathematics, Qufu Normal University,
China, in 2014. She is currently pursuing the
Ph.D. degree with the School of Mathematics,
Shandong University, China. She has been taking
successive postgraduate and doctoral programs of
study for doctoral degree, since 2014. Her research
interests are medical image processing and image
analysis, especially in image denoising.

VOLUME 5, 2017 7761


