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ABSTRACT In this paper, we tackle the problem of jointly separating instantaneous linear underdetermined
mixtures of latent sources from multiple data sets, where the number of sources exceeds that of observations
in each data set. Currently available blind source separation (BSS) methods, including joint BSS (JBSS)
and underdetermined BSS (UBSS), cannot address this underdetermined problem effectively. We exploit
the second-order statistics of observations, and present a novel BSS method, referred to as underdetermined
joint BSS for multiple data sets (UJBSS-m), as a generalization of our previous work on two data sets. In this
paper, the cross correlation between each pair of data sets is modeled by a third-order tensor in which a set
of spatial covariance matrices corresponding to different time delays are stacked. Considering the latent
common structure of these constructed tensors, the mixing matrices are jointly estimated via joint canonical
polyadic decomposition of these specialized tensors. Furthermore, we recover the sources from each data
set separately based on the estimated mixing matrices. Simulation results demonstrate that the proposed
UJBSS-m method yields superior performances when compared with commonly used single-set UBSS and
JBSS methods.

INDEX TERMS Underdetermined joint blind source separation, joint canonical polyadic decomposition,
cross correlation.

I. INTRODUCTION
The increasing availability of multiset and multimodal
signals has posed new challenges for conventional blind
source separation (BSS) methods which are originally
designed to analyze one data set at a time. There are many
applications involving multiple datasets which have depen-
dence relationships between them and need to be jointly
analyzed [1]–[3], such as electroencephalography (EEG),
electrocardiography (ECG), and magnetic resonance imag-
ing (MRI) data. Hence, joint blind source separation (JBSS)
algorithms have attracted great interest in the fields of signal
processing owing to their ability to simultaneously recover
the underlying and physiologically meaningful components
from multiple datasets. The crucial difference between BSS
and JBSS is reflected by the fact that BSS only examines each
dataset separately, whereas JBSS generalizes BSS to con-
sider the dependence across multiple datasets [4]. Compared
with conventional single-set BSS methods, JBSS generally
could yield better performances. In addition, JBSS can keep

the extracted components aligned across different datasets,
an important feature that is not provided by single-set BSS
methods.

The most original JBSS method was likely canonical
correlation analysis (CCA), which has been popular to
analyze relationships between two sets of variables [5].
It seeks a linear transformation of the observations such that
the obtained corresponding source components across two
datasets are maximally correlated. A generalization of CCA
from two datasets to multiple datasets, the multiset canoni-
cal correlation analysis (MCCA), was shown to be flexible
and powerful for discovering associations across multiple
datasets [6]. Another recent extension of CCA is the joint
diagonalization of many cross-cumulate matrices [7], which
is especially effective when there is no explicit source distri-
bution known in advance [7]. In addition to CCA-type algo-
rithms, numerous models have been introduced to generalize
the idea of single-set BSS to JBSS. Independent component
analysis (ICA), for example, has been extended to handle
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multiple datasets [8]. The group ICA and the joint ICA
attempt to concatenate multiple datasets into one dataset in
the vertical and horizontal dimension respectively, and then
the standard ICA can be performed on the concatenated
single dataset [8]. Based on themodular Bayesian framework,
Groves et al. proposed a novel Linked ICA [9], encapsulating
the ideas from both the group ICA and joint ICA. Independent
vector analysis (IVA) generalizes ICA to multiple datasets by
exploring statistical dependences across datasets [8].

It is worth noting that the above mentioned JBSS algo-
rithms were originally proposed for the determined case,
since they generally assume that the number of sources is
equal to or less than that of the observations. This assump-
tion may not be true in some practical applications, due to
concerns such as the cost or time issues [10]. However, to our
best knowledge, in the current literature there is only very
limited work on JBSS methods specifically designed for the
underdetermined case (i.e., the number of sources is greater
than that of observations), even though there have been more
single-set underdetermined BSS (UBSS) methods [11]–[17]
which can be used to unmix the mixtures from each dataset
separately. These UBSS methods can be divided mainly into
two categories [18]. Most UBSS methods rely upon the spar-
sity of source signals in a specific domain, e.g., the time-
frequency domain [13], [16], [17]. This category of methods
usually require exhaustive computation, especially when the
number of sources is large.Many algebraicmethodswere also
proposed for unmixing the mixtures in the underdetermined
case, most of which are based on decomposition of different
data structures, e.g., covariance matrices [12].

In our previous paper [19], we proposed an underde-
termined joint blind source separation method for two
datasets (UJBSS-2) based on the decomposition of a spe-
cialized tensor. However, it can only jointly estimate the
mixing matrices from two datasets and cannot be extended
directly to unmix themixtures frommultiple (larger than two)
datasets [20]. To fill this gap in the literature, in this paper,
we plan to extend the idea of JBSS to the underdetermined
case and generalize the idea of underdetermined joint blind
source separation (UJBSS) for two datasets to that for multi-
ple datasets.

More specifically, inspired by the MCCA model and the
simultaneous diagonalization of covariance matrices [12],
[21], [22], we exploit second-order statistics of the obser-
vations in each pair of datasets and propose a novel BSS
method, termed as the underdetermined joint blind source
separation for multiple datasets (UJBSS-m). Unlike the tradi-
tional (over)determined JBSSmethods, the proposed UJBSS-
m consists of two steps: 1) jointly estimate the mixing
matrices from multiple datasets, and 2) recover the under-
lying sources individually based on each mixing matrix
estimated in step 1). The most challenging task is to esti-
mate the unknown mixing matrices precisely, which is the
main concern of this paper. In this work, this problem is
tackled via joint canonical polyadic decomposition of spe-
cialized tensors. The dependence information between each

pair of datasets is modeled by a third-order tensor where a
set of spatial covariance matrices related to different time
delays are stacked. Considering the possible combinations
of two datasets, the pairs of the corresponding tensors share
a common factor and then the mixing matrices (i.e., fac-
tor matrices of those tensors) can be jointly estimated by
optimization-based methods. The estimated mixing matrices
are further used to recover the sources from each dataset.
In this work, we explore a novel subspace representation
based method [13] to recover the sources.

Our main contributions are summarized as follows:
1) This paper extends the idea of (over)determined JBSS

to that of the underdetermined case.
2) Exploiting the cross correlation between each pair of

datasets, we propose a novel and effective method to jointly
estimate the mixing matrices for multiple datasets. More
precise estimates of the mixing matrices can be achieved via
the proposed UJBSS-mmethod compared to several classical
single-set UBSS methods and JBSS methods.

3) The proposed UJBSS-m method can be used to solve
single set UBSS problems and could achieve better per-
formance in some cases, as demonstrated in the promising
application of noise enhanced signal processing.

4) The proposed UJBSS-m method does not rely upon the
sparsity of signals and therefore it can be applied to a wide
class of signals, e.g., audio/speech and biomedical signals.

II. NOTATIONS AND PRELIMINARIES
In this paper, we generally use the notation of [23], which
was adapted by [24] and [25]. A tensor can be interpreted
as multi-index numerical array, whereby the order of a ten-
sor is the dimensionality of the array. Scalars, denoted as
lowercase letters, e.g., x, are said to be tensors of zero
order. Vectors (first-order tensors) are denoted by boldface
lowercase letters, e.g., x. Matrices (second-order tensors) are
denoted by boldface capital letters X . Third-order or higher-
order tensors are denoted by boldface Euler script letters,
e.g., X . The transpose, inverse, Moore-Penrose pseudo
inverse, norm are denoted by (·)T , (·)−1, (·)†, ‖ · ‖.
The operation of matricization reorders the elements of

a higher-order tensor into a matrix. For example, mode-
n matricization of a N th-order tensor X ∈ RI1×I2×···×IN

yields a matrix X (n) ∈ RIn× (I1×I2×···×In−1×In+1×···×IN ) whose
columns are all mode-n fibers arranged in a specifically
predefined order. In this paper, tensor element xi1,i2,...,iN cor-
responds to matrix elements x(n)(in,j) , where

j = 1+
N∑
l=1
l 6=n

(il − 1)(
l−1∏
k=1
k 6=n

Ik ).

The inner product of two same-sized tensors X ,Y ∈

RI1×I2×···×IN is the sum of the products of their elements, i.e.,

< X ,Y >=

I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN=1

xi1,i2,...,iN yi1,i2,...,iN .
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The Frobenius norm of a tensor X is the square root of its
inner product with itself, i.e.,

‖X‖ =
√
< X ,X >.

The outer product of vectors {a(n)} ∈ RIn , n = 1, 2, . . . ,N
yields a rank-one tensor X = a(1) ◦a(2) ◦ . . . a(N ) with entries
xi1,i2,...,iN = a(1)i1 a

(2)
i2
. . . a(N )

iN , where the ◦ represents the outer
product operation. The superscript in parentheses represents
one element in a sequence, e.g., a(n) represents the nth vector
in a sequence of vectors.

In order to demonstrate multi-waymodels, the usual matrix
product, such as Kronecker product and Khatri-Rao product,
is not sufficient. A frequently used operation is the mode-
n product, denoted by ×n. The mode-n product of a tensor
X ∈ RI1×I2×···×IN with a matrix A ∈ RJn×In amounts to the
product of all mode-n fibers with A and yields a tensor with
the size of (I1× I2× · · · × In−1× Jn× In+1 · · · × IN ), whose
entries are given by

(X ×n A)i1,i2,...,in−1,jn,in+1...,iN

=

In∑
in=1

xi1,i2,...,in−1,in,in+1...iN ajn,in .

The mode-n product of a tensor and a vector is a special
case of the mode-n product of a tensor and a matrix with the
size of (1×In). Note that the order of the result is (N−1), one
less than the order of the original tensor. It is often useful to
calculate the product of a tensor with a sequence of vectors.
Let X denote a tensor with the size of I1× I2× · · · × IN , and
let {a(n)} (n = 1, 2, . . . ,N ), be a sequence of vectors, each
with the length of In. Then the product of X with a sequence
of vectors in all modes yields a scalar, i.e.,

y = X ×1 a(1) ×2 a(2) ×3 · · · ×N a(N )

=

I1∑
i1=1

I2∑
i2=1

· · ·

IN∑
iN

xi1,i2,...,iN a
(1)
i1
a(2)i2 . . . a

(N )
iN .

We refer the readers to [24] and [25] for further details and
discussions about various tensor operations.

III. PROBLEM FORMULATION
The problem of interest here is the underdetermined JBSS
for multiple datasets, e.g., K datasets. TheM observations of
each dataset contain the linear mixtures of the corresponding
N sources. We can model the mixing process as follows,

X (k)
= A(k)S(k) + E(k), k = 1, 2, . . . ,K . (1)

X (k)
= [x(k)1 , x

(k)
2 , . . . , x

(k)
M ]T denotes the M -dimensional

observations with real values and x(k)m is the mth channel of
the observations in dataset k . S(k) = [s(k)1 , s

(k)
2 , . . . , s

(k)
N ]T

means the underlying N -dimensional sources with real val-
ues and s(k)n is the nth source for dataset k . A(k)

=

[a(k)1 , a
(k)
2 , . . . , a

(k)
N ] ∈ RM×N with M < N (i.e., the under-

determined case) denotes the unknown mixing matrix, whose
nth column a(k)n corresponds to the source s(k)n for dataset k .

E(k) means the possible additive noise which is generally
assumed to be zero mean, temporally white and uncorrelated
with the source signals.

Similar to several existing JBSS methods, e.g. MCCA [6]
and JDAIG-SOS [7], we have the following assumptions
regarding the sources:

(1) The sources are uncorrelated within each dataset:

E{s(k)i (t)(s(k)j (t + τ ))T } = 0

∀τ, 1 ≤ i 6= j ≤ N , k = 1, 2, . . . ,K , (I)

where s(k)i (t) is the i-th source in dataset k and s(k)j (t + τ )
represents the j-th source with the time delay τ in dataset k .

(2) Only the corresponding sources from two different
datasets have non-zero correlations:

D(τ )
= E{S(k1)(t)(S(k2)(t + τ ))T }

= Diag(ρ1(τ ), ρ2(τ ), . . . , ρN (τ )), (II)

where Diag(·) represents the diagonal matrix, the ρn(τ ) =
E{s(k1)n (t)(s(k2)n (t + τ ))T } denotes the covariance between
s(k1)n (t) and s(k2)n (t + τ ). This assumption means that the
corresponding sources in multiple datasets are second-order
correlated with each other. In addition, the sources within
[s(1)i , s

(2)
i , . . . , s

(K )
i ] are uncorrelated with the sources within

[s(1)j , s
(2)
j , . . . , s

(K )
j ] for 1 ≤ i 6= j ≤ N .

The task of estimating the mixing matrices {A(k)
} and

retrieving the underlying sources are not equivalent in the
underdetermined case. Therefore, most UBSS methods con-
sist of two stages: estimate the mixing matrices first and then
retrieve the underlying sources. The major problem under
consideration is to estimate {A(k)

} jointly up to permutation
and scaling. In this paper, this problem is addressed via
a specially designed joint tensor decomposition. In addi-
tion, retrieving the underlying sources when the mixing
matrices are estimated or known is a classic inverse prob-
lem [11]. In order to further demonstrate the performance
of the proposed mixing matrices estimation method, we also
implement an approach for source recovering based on the
estimated A(k).

IV. CANONICAL POLYADIC DECOMPOSITION OF TENSOR
A polyadic decomposition aims to decompose a higher-order
tensor as a linear combination of rank-one tensors [25], [26].
For the case of a third-order tensor X ∈ RI×J×K , it can be
written in the form

X =
N∑
n=1

an ◦ bn ◦ cn, (2)

where N is a positive integer and an ∈ RI , bn ∈ RJ , cn ∈ RK .
Equivalently, it can be written element wisely as

xi,j,k =
N∑
n=1

ai,nbj,nck,n, (3)

where i = 1, 2, . . . , I , j = 1, 2, . . . , J and k = 1, 2, . . . ,K .
The rank of a tensor is the smallest number of rank-one
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tensors that yield the tensor in theway as (2). If rank(X ) = N ,
(2) is the Canonical Polyadic Decomposition (CPD) of X ,
which is also known as the canonical decomposition (CAN-
DECOMP) or parallel factor analysis (PARAFAC) [23]. The
canonical polyadic approximation means that

X ≈ [[A,B,C]]

≡

N∑
n=1

an ◦ bn ◦ cn, (4)

where N = rank(X ).
The factor matrices refer to the combination of the vectors

corresponding to each rank-one tensor and can be written as

A = [a1, a2, . . . , aN ] ∈ RI×N

B = [b1, b2, . . . , bN ] ∈ RJ×N

C = [c1, c2, . . . , cN ] ∈ RK×N . (5)

To a large extent, the power of CPD mainly stems from its
uniqueness property. The uniqueness of CPD means that the
decomposition is the only possible combination of rank-one
tensors which sum to the objective tensor with the exception
of the indeterminacies of column permutation and scaling.
The permutation indeterminacy refers to the fact that we can
permute the rank-one terms arbitrarily. The scaling indeter-
minacy means that we can scale the individual column of the
factor matrices as long as their product remains the same, i.e.,

X =
N∑
n=1

(α1nan) ◦ (α
2
nbn) ◦ (α

3
ncn) if α1nα

2
nα

3
n = 1. (6)

The uniqueness condition is based on the rank of tensors. The
most famous result on uniqueness of CPD was reported by
J. Kruskal [27]. Kruskal’s theorem states that the CPD of a
third-order tensor X ∈ RI×J×K is deterministically unique if
N (where N = rank(X )) satisfies

N ≤
kA + kB + kC − 2

2
, (7)

where k· denotes the k-rank of a givenmatrix (·), meaning that
k· is the largest integer that any k· columns of the matrix (·)
are linearly independent. Checking deterministic conditions
can be cumbersome. De Lathauwer have studied different
methods to determine the rank of a tensor and concluded that
the decomposition of a third-order tensor X ∈ RI×J×K is
generically unique (i.e., with probability one) [28] provided
that N satisfies

N ≤ K and N (N − 1) ≤ IJ (I − 1)(J − 1)/2. (8)

Domanov and Lathauwer further complemented the existing
bounds for generic uniqueness of the CPD [29] and concluded
that the CPD of a third-order tensor X ∈ RI×J×K of rank N
is generically unique if

2 ≤ I ≤ J ≤ K ≤ N

N ≤
I + J + 2K − 2−

√
(I − J )2 + 4K

2
, (9)

or

3 ≤ I ≤ J ≤ N ≤ K

N ≤ (I − 1)(J − 1). (10)

There are two main approaches to compute the CPD of
a tensor, namely the linear algebra [30] and optimization
based methods [23], [31]. Both types of methods have their
own strengths and weaknesses. For a thorough study of the
uniqueness conditions and computation, we refer to [25],
[28], [32], and the references therein.

V. ALGORITHM FOR ESTIMATING THE MIXING
MATRICES IN UJBSS
How to estimate the mixing matrix is still a challenging prob-
lem, even for underdetermined case of single dataset. In this
paper, we propose a novel and effective algorithm to jointly
estimate the mixing matrices from multiple dataset, which
can be regarded as an extension of the method based on sta-
tistical property of signals, e.g., simultaneous diagonalization
of the second order autocovariance and CPD of a specialized
tensor [12], [19], [21]. For ease of presentation, we take the
case of 3 datasets as an example, e.g., X (1), X (2) and X (3),
and it can be easily generalized to the case of more than
3 datasets. The problem is reformulated as joint canonical
polyadic decomposition of a sequence of third-order tensors,
which share common factor matrices. It should be mentioned
that the proposed method is limited to real-valued problems
and cannot be directly generalized to complex-valued cases.

A. TENSOR CONSTRUCTION
The cross covariance of the observations with time delay τ ,
such as the observations in dataset k1, X (k1)(t), and the obser-
vations in dataset k2 with time delay τ , X (k2)(t + τ ), can be
formulated as

E{X (k1)(t)X (k2)(t + τ )T }

= (A(k1))E{S(k1)(t)S(k2)(t + τ )T }(A(k2))T , (11)

where k1 and k2 represent the index of each dataset and range
from 1 to 3. Considering the correlations within and between
each pair of datasets, the covariance matrices between X (1)

and X (2) with time delay τ satisfy

P(1)
= E{X (1)(t)X (2)(t + τ1)T } = (A(1))U (τ1)(A(2))T ,

P(2)
= E{X (1)(t)X (2)(t + τ2)T } = (A(1))U (τ2)(A(2))T ,

...

P(L)
= E{X (1)(t)X (2)(t + τL)T } = (A(1))U (τL )(A(2))T ,

(12)

in which τl means the time delay and the matrix U (τl ) =

E{S(1)(t)S(2)(t + τl)T } is diagonal, for l = 1, 2, . . . ,L.
We stack the sequence of covariance matrices

P(1),P(2), . . . ,P(L), denoted as {P(l)
}, in a tensor P ∈

RM×M×L as follows: (P)i,j,l = (P(l))i,j, i = 1, 2, . . . ,M ,
j = 1, 2, . . . ,M , l = 1, 2, . . . ,L. We define the matrix U
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FIGURE 1. Illustration of how to generate tensors by incorporating the dependence information between each pair of datasets.

of size L × N with the element U l,n = (U (τl ))n,n, for
l = 1, 2, . . . ,L, n = 1, 2, . . . ,N. Then we can represent
P as (see Fig. 1):

P =
N∑
n=1

a(1)n ◦ a
(2)
n ◦ un, (13)

in which a(1)n and a(2)n are the nth column of the mixing
matrices A(1) and A(2) respectively, and un is the nth column
of the matrix U .
Similarly, the covariance matrix between the other two

pairs of observations with time delay τl , denoted as
Q(l) and R(l) satisfy

Q(l)
= E{X (1)(t)X (3)(t + τl)T } = (A(1))V (τl )(A(3))T ,

R(l)
= E{X (2)(t)X (3)(t + τl)T } = (A(2))W (τl )(A(3))T ,

(14)

where V (τl ) = E{S(1)(t)S(3)(t + τl)T } and W (τl ) =

E{S(2)(t)S(3)(t + τl)T } for l = 1, 2, . . . ,L. Stack these two
sequence of covariance matrices {Q} and {R} in tensors Q ∈
RM×M×L and R ∈ RM×M×L as follows: (Q)i,j,l = (Q(l))i,j,
(R)i,j,l = (R(l))i,j, i = 1, 2, . . . ,M, j = 1, 2, . . . ,M,
l = 1, 2, . . . ,L. To simplify the notation, we further define
the matrix V ∈ RL×N and W ∈ RL×N with the element
V l,n = (V (τl ))n,n andW l,n = (W (τl ))n,n, for l = 1, 2, . . . ,L,
n = 1, 2, . . . ,N. Then these two tensors can be represented
as (see Fig. 1):

Q =
N∑
n=1

a(1)n ◦ a
(3)
n ◦ vn,

R =
N∑
n=1

a(2)n ◦ a
(3)
n ◦ wn, (15)

in which a(k)n is the nth column of the mixing matrices A(k) for
k = 1, 2, 3, vn and wn are the nth column of the matrix V and
W respectively.

It should be mentioned that the choices of τ1, τ2, . . . ,
τL may affect the estimation precision of the mixing matri-
ces. If τl is too large, the correlation between two related
sources with the delay will be close to 0 and then the covari-
ance matrix might be ill conditioned. It is desired to select
τ1, τ2, . . . , τL such that U , V and W are well conditioned.
In addition, if the time delay τ is too large, the covariance
matrix of the sources in two datasets (e.g., U (τ )) will be close
to a null matrix and thus the assumption (II) may not hold.
Here, we heuristically choose the time delay as τl ∈ [0, 200]
data samples.

Fig. 1 illustrates how to generate these tensors by incor-
porating the dependence information between each pair of
datasets. It is worth noting that each pair of tensors share a
common factor matrix, e.g.,P andQ are coupled in the mode
of A(1).

B. JOINT TENSOR POLYADIC DECOMPOSITION
Considering the common latent structure, now the problem
of estimating the mixing matrices A(k) can be reformu-
lated as a problem of joint CPD of a collection of tensors,
e.g., P , Q and R for the case of three datasets. There
are two main approaches to jointly decompose a sequence
of tensors, i.e., linear algebra [33] and optimization based
methods [34]–[36]. Sørensen et al. [33] took into account
the coupling between multiple tensors and developed a linear
algebra based algorithm. This method can provide an explicit
solution for exact tensor decomposition. However, in practice
data are noisy and consequently the estimation may be not
accurate. In addition, it is notable that the linear algebra based
method requires the full column rank of the common factor
matrices whereas the common factors in our problem are rank
deficient [33]. In this paper, we generalize the idea of coupled
matrix and tensor factorization (CMTF) and jointly decom-
pose a sequence of tensors via gradient-based optimization
method [34]–[36].

The uniqueness condition of the joint CPD is important in
practice. Simply said, the solution of the joint CPD will be

7478 VOLUME 5, 2017



L. Zou et al.: Underdetermined Joint Blind Source Separation of Multiple Data Sets

generic unique if all the individual CPDs are unique. In this
paper, we can get the unique solution of each mixing matrix
generically, providing the number of sources satisfies the con-
dition (9) or (10). It is worth mentioning that this uniqueness
condition of the joint CPD might be further relaxed, but the
topic itself deserves a stand-alone theoretical paper and it is
out of scope of the current paper.

The aim is to find the factor matrices {A(k)
} ∈ RM×N

and the covariance of sources between different datasets
U,V and W ∈ RL×N which can minimize the following
objective function, a variant of Frobenius norm of the differ-
ence between the given tensors and their canonical polyadic
approximation, written as

f (A(1),A(2),A(3),U,V ,W )

=
1
2
‖P − [[A(1),A(2),U]]‖2︸ ︷︷ ︸

f (1)(A(1),A(2),U)

+
1
2
‖Q− [[A(1),A(3),V ]]‖2︸ ︷︷ ︸

f (2)(A(1),A(3),V )

+
1
2
‖R− [[A(2),A(3),W ]]‖2︸ ︷︷ ︸

f (3)(A(2),A(3),W )

. (16)

where [[·]] denotes the canonical polyadic approximation of a
given tensor. This equation simultaneously takes the coupling
information between different tensors into account. We pro-
pose to solve this problem via a gradient-based optimization
method. Proposition 1 elaborates the partial derivative of
the objective function f with respect to each column of the
desiredmatrices, i.e. {a(k)n }, un, vn andwn for n = 1, 2, . . . ,N .
The equations in Proposition 1 is proved in the Appendix.

Then the gradient of f can be assembled via stacking the
partial derivatives with respect to each column of the factor
matrices, as

∇f =
[
∂f

∂a(1)1

;
∂f

∂a(1)2

; . . . ;
∂f

∂a(1)N
; . . . ;

∂f
∂w1
; . . . ;

∂f
∂wN

]T
.

(17)

Once we get this gradient, we can calculate the factor
matrices, including the mixing matrices and the covari-
ance matrices, based on any first-order optimization method.
In this paper, we employ the nonlinear conjugate gradi-
ent algorithm (NCG) implemented in [37] to solve the
unconstrained optimization problem and estimate the mix-
ing matrices of multiple datasets simultaneously. Compared
with second-order optimization methods, such as Newton-
based methods, NCG always requires less computation and
memory [36].

VI. SOURCE EXTRACTION BASED ON THE ESTIMATED
MIXING MATRICES
Unlike the (over)determined case, the estimation of the mix-
ing matrix is not equivalent to recovering the underlying
sources in UBSS. A complete UBSS approach always con-
sists of both mixing matrix estimation and source extraction,
even though our main focus in this paper is the estimation
of mixing matrices. Extracting the sources when the mixing

matrix is estimated is a classic inverse problem. Many tech-
niques have already been proposed in the literature, including
array processing techniques [38] and methods exploiting the
sparsity of sources in a domain, e.g., the time-frequency (TF)
domain [13]. In order to demonstrate the performance of
the proposed mixing matrices estimation method, we adopt
a recently-developed subspace representation method [15]
to recover the latent sources based on the estimated mixing
matrices. For simplicity, the proposed method for extract-
ing sources is derived without considering the background
noise. However, it was shown to be robust to the background
noise [15].

For any underdetermined non-homogeneous linear equa-
tion, the complete solution can be represented as the sum
of its particular solution and a general solution of the corre-
sponding homogeneous equation. As to the case in this paper,
A(k)S(k) = X (k), the general solution of source S(k) can be
written as

S(k) = S(k)p + S
(k)
h , (18)

where the S(k)p denotes its particular solution and S(k)h denotes
a general solution of the corresponding homogeneous equa-
tion A(k)S(k) = 0. One particular solution of the above
mentioned non-homogeneous equation is

S(k)p = (A(k))†X (k), (19)

where (A(k))† denotes the pseudo-inverse of the mixing
matrix A(k). In addition, the general solution of the homo-
geneous equation A(k)S(k) = 0 can be expressed as

S(k)h = VZ(k), (20)

where V is an N ∗ (N −M ) matrix whose columns are bases
of the nullspace of A(k) and Z(k) is an arbitrary matrix with
the size of (N − M ) ∗ T (T represents the total number of
samples in each channel) [39]. The basis matrix V can be
obtained from the mixing matrix A(k) and then the problem
which aims to estimate the N dimensional observations boils
down to the problem of estimating N −M dimensional latent
variable Z(k).
In order to be applicable to a wide class of signals, such

as audio and biological signals EEG, EMG, the Generalized
Gaussian Distribution (GGD) [40] is utilized to model the
source distributions. Mathematically, it is expressed in the
following equation

py(y; σ, β) =
v(β)
σ

exp{−c(β)|
y− µ
σ
|
2/(1+β)

}, (21)

where

c(β) = (
0(3/2(1+ β))
0(1/2(1+ β))

)1/(1+β)

v(β) =
0(3/2(1+ β))1/2

(1+ β)0(1/2(1+ β))3/2
, (22)

in which 0(·) is the Gamma function. σ is the standard
derivation and µ is the mean of a continuous random vari-
able y. In this paper, the mean of source is assumed to be 0.
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Proposition 1: The partial derivative of the objective function f with respect to each column of the desired matrices , i.e., {a(k)n },
un, vr and wn, are given by

∂f

∂a(1)n
= −P ×2 a(2)n ×3 un −Q×2 a(3)n ×3 vn +

N∑
c=1

[(a(2)n )T a(2)c (un)Tuc + (a(3)n )T a(3)c (vn)T vc]a(1)c

∂f

∂a(2)n
= −P ×1 a(1)n ×3 un −R×2 a(3)n ×3 wn +

N∑
c=1

[(a(1)n )T a(1)c (un)Tuc + (a(3)n )T a(3)c (wn)Twc]a(2)c

∂f

∂a(3)n
= −Q×1 a(1)n ×3 vn −R×1 a(2)n ×3 wn +

N∑
c=1

[(a(1)n )T a(1)c (vn)T vc + (a(2)n )T a(2)c (wn)Twc]a(3)c

∂f
∂un
= −P ×1 a(1)n ×2 a(2)n +

N∑
c=1

[(a(1)n )T a(1)c (a(2)n )T a(2)c ]uc

∂f
∂vn
= −Q×1 a(1)n ×2 a(3)n +

N∑
c=1

[(a(1)n )T a(1)c (a(3)n )T a(3)c ]vc

∂f
∂wn
= −R×1 a(2)n ×2 a(3)n +

N∑
c=1

[(a(2)n )T a(2)c (a(2)n )T a(3)c ]wc.

We define the parameter set θ = {β, σ } for simplicity,
where each component of β = [β1, . . . , βN ] and σ =

[σ1, . . . , σN ] correspond to each channel of the sources.
The parameters of the GGD θ can be estimated to maxi-
mize the likelihood of the observed mixtures X (k) based on
Expectation-maximization (EM) algorithm. Then Z can be
obtained by sampling from p(Z(k)|X (k), θ) as

Ẑ
(k)
=

1
G

G∑
g=1

Z(k)g , (23)

where {Z(k)1 , . . . ,Z
(k)
G } are the G samples drawn from

p(Z(k)|X (k), θ ) using theMarkovChainMonte Carlo (MCMC)
method. Then we recover the underlying sources based on

Ŝ
(k)
= (A(k))†X (k)

+ VZ(k). (24)

The major steps of the proposed UJBSS-m algorithm are
summarized in Algorithm 1. The number of time delays is
20 in default. The step size of time delays, i.e. τl+1 − τl ,
is suggested to be 2 samples (corresponding to 0.25ms) and
5 samples (corresponding to 5ms) for audio signals and phys-
iological signals respectively.

VII. NUMERICAL STUDY FOR THE MULTIPLE
DATASET CASE
To demonstrate the joint separation performance for multi-
ple datasets, simulations are performed on both audio and
biological signals when applying the proposed UJBSS-m
and several commonly used BSS methods. Two performance
indices are used to evaluate the separation performances. One
is the estimation error of the mixing matrices, defined as:

Error = 10log10{mean(
||A− Â||
||A||

)}, (25)

where Â denotes the optimally ordered estimate of A. The
other measures the Pearson correlation coefficient (PCC)
between the estimated sources and the original ones, which
is defined as

PCC(s(k)n , ŝ
(k)
n ) =

cov(s(k)n , ŝ
(k)
n )

σs(k)n
σŝ(k)n

, (26)

where ŝ(k)n means the estimate of the source s(k)n in the
kth dataset, cov(·, ·) means the covariance between two vari-
ables and σ means the standard deviation. In order to ensure
the dependence between the sources of each pair of datasets,
the sources are synthesized as follows,

S(1) = [s(1)1 , s
(1)
2 , . . . , s

(1)
N ]T ;

S(2) = S(1). ∗ (unifrnd(0, 1,S(1))

S(3) = S(1). ∗ (unifrnd(0, 1,S(1)), (27)

where unifrnd(0, 1,S(1)) generates a matrix with the same
size of S(1) and each element of the matrix is randomly drawn
from the continuous uniform distribution on the interval (0,1).
The average correlation between the source s(1)n and the cor-
responding source s(k)n (k = 2, 3) is about 0.85; the average
correlation between the source s(2)n and the corresponding
source s(3)n is about 0.7, both of which can be regarded as
highly correlated.

A. SIMULATION 1: AUDIO SIGNALS
The sources used in this simulation include 8 audio sig-
nals, such as two pieces of sound from the cable news net-
work (CNN) news and a piece of sound of an anonymous
singer, all of which are publicly available.1 The sampling rate
is 8000Hz. The mixing matrices are generated randomly with

1http://research.ics.aalto.fi/ica/cocktail/sounds.html
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Algorithm 1TheUJBSS-mAlgorithmBased on Joint Tensor
Decomposition

Input: M -dimensional observations {X (k)
} and the number

of sources N in each datasets, for k = 1, 2, . . . ,K .
Output: the estimated mixing matrices {A(k)

} and the
recoveredN -dimensional sources {S(k)}, for k = 1, 2, . . . ,K .

STEP 1: For each pair of datasets, e.g., X (k1) and
X (k2)(k1 6= k2), we calculate the cross covariance matrices
as (11) and stack them to construct a third-order tensor as
in Section V-A. Considering the combination of datasets,
we get

(K
2

)
tensors where each pair of tensors share a

common factor matrix, as shown in Fig. 1;
STEP 2: Calculate the joint polyadic decomposition of
the tensors constructed in step 1 via optimization based
method and estimate the mixing matrices {A(k)

} as in
Section V-B;
STEP 3: Estimate the parameters of the Generalized Gaus-
sian distribution based on the EM algorithm.
Initialize: initialize the parameter θ to some random

values.
E-step: calculate the expected value of the log likelihood

function with respect to the conditional distribution of Z(k)

given the observation X (k) under the current estimate of θ .
It can be expressed as Ep(Z(k)|X (k),θ∗)(log(p(Z

(k)
|X (k), θ ))),

where θ∗ means the parameter value got in the initializa-
tion or the previous M-step.

M-step: update the parameter set θ to maximize the
above expected value. The updated value is

θ = argmax
θ

Ep(Z(k)|X (k),θ∗)(log(p(Z
(k)
|X (k), θ )))

≈ argmax
θ

1
G

G∑
g=1

log(p(Z(k)g |X
(k), θ )),

where {Z(k)1 , . . . ,Z
(k)
G } are G samples drawn from

p(Z(k)|X (k), θ ) based on the MCMC method.
Iterate: iterate the E-step andM-step until convergence.

STEP 4: Recover the sources S(k) based on the minimum
mean-square error criterion as in Equation (24).

elements following the uniform distribution U [−1, 1]. For
simplicity, each column of the mixing matrices is normalized
into a unit vector. Three datasets are generated following (27).
In our first setting, 5 sources are mixed into 4 observations in
each dataset and the corresponding sources in the different
datasets are highly correlated. With different signal-to-noise
ratios (SNRs), we compare the proposed UJBSS-m method
with a commonly-used single-set UBSS method, SOBIUM
[12], when it is applied to each dataset separately. We also
test the performance of our recent work on UJBSS for two
datasets, UJBSS-2 [19], when two datasets are available,
e.g., X (1) and X (2). We repeat the simulation 1000 times
and the performance is shown in Fig. 2. Results are given

FIGURE 2. Simulation 1: Performance comparisons on audio signals
when using the proposed UJBSS-m method and other UBSS methods,
including the single-set UBSS method SOBIUM [12] and the UJBSS
method for two dataset, i.e., UJBSS-2 [19]. Here the number of sources
N = 5 and the number of observations M = 4. The number of time delays
L = 20 and the step size of time delays (i.e., τl − τl−1) is 2 data samples,
corresponding to 0.25ms. Similar results are observed for A(2) and A(3).

FIGURE 3. Simulation 1: Estimation error of A(1) when employing the
proposed UJBSS method. Here the number of sources N = 8 and the
number of observations M varies from 4 to 7. The number of time delays
L = 20 and the step size of time delays (i.e., τl − τl−1) is 2 data samples,
corresponding to 0.25ms.

according to the SNR level in the range of −5dB - 40dB.
Benefiting from dependence information between different
datasets, the proposed UJBSS can provide more accurate esti-
mation of the mixing matrices, while SOBIUM neglects the
possible inter-dataset information. Compared with UJBSS-2,
the proposed UJBSS-m takes into account more dependence
information, among three datasets rather than between two
datasets, and yields better performance. We also note that
the Error measure from the single set UBSS and UJBSS
methods decreases with the increase of the SNR. The pro-
posed UJBSS-m consistently provides the best results over
the whole SNR range, suggesting the performance stability
of the proposed algorithm.
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FIGURE 4. Simulation 1: An illustrative example from the proposed UJBSS-m method. First row: The original 4 sources;
Second row: 3 channels of the mixed observations; Third row: the recovered 4 sources from the first dataset.

We also examine the performance of the proposed method
with the decrement of the under-determinacy level, i.e., the
number of the observations increases from 4 to 7 while the
number of sources is set to be 8. As noted in Fig. 3, the estima-
tion performance is getting better whenmore observations are
available. Besides the degraded estimation precision, a higher
under-determinacy level also requires higher computational
complexity. The performance is getting better when the SNR
is increased from −5dB to 20dB. The change of estimation
error is not obvious when the SNR is greater than 20dB even
there are some fluctuations. It is shown that the estimation
performance relies upon several factors such as the noise level
SNR, under-determinacy level (i.e., the number of sources for
a given number of sensors) and the correlation between each
pair of datasets.

We recover the latent sources from each dataset based on
the estimated mixing matrices. In an illustrative example,
we linearly mix 4 audio sources into 3 observations in each
dataset. Fig. 4 shows the separation results of the first dataset
in the time domain. The top four subfigures of Fig. 4 rep-
resent the original sources, the middle three subfigures are
the mixed observations and the bottom four subfigures are
the recovered sources via the proposed UJBSS-m method.
In addition, we compare the proposed method with other
three single-set UBSS methods, including SOBIUM, UBSS
based on subspace representation (UBSS-SR for short) [15]
and UBSS based on sparse coding (UBSS-SC for short)
[14], as well as the JBSS method MCCA [6] and UJBSS
for two datasets UJBSS-2 [19], in term of the PCC between
the original sources and the recovered ones. Both UBSS-
SR and UBSS-SC are based on single source detection,
which assumes that the TF points are occupied by a single

source or the corresponding single source possesses dominant
energy. However, the performance of estimating the mixing
matrix deteriorates when this assumption is not satisfied. Fur-
thermore, given that the time-frequency analysis method [13],
[19] is memory-intensive and time-consuming, we estimate
the mixing matrices via UJBSS-2 and SOBIUM respectively,
and then extract the sources using the same method as in
UBSS-SR [15]. The performance results of these six methods
are reported in Table 1.

Despite adopting the same technology in extracting
sources, the performance of the proposed method is sig-
nificantly better than that of the single-set SOBIUM and
UBSS-SR method. This observation confirms the impor-
tance of estimating mixing matrices accurately. In addition,
the proposed method also outperforms a recently proposed
UBSSmethod UBSS-SC. The main reason is that such UBSS
methods always require the sparsity of the sources to some
extent, while the assumption may not be satisfied in reality.
MCCA,which has been successfully used inmany fields [41],
assumes that the number of sources is equal to the number
of observations in each dataset and it could not be used to
separate sources in the underdetermined case directly.We add
one observation in each dataset so that MCCA can be applied.
Therefore it is not really a fair setting and comparison to the
proposed method. However, we note that the performance
of MCCA is not as good as that of the proposed method,
even with an additional observation signal. The following
reasons could contribute to the worse performance ofMCCA:
it is mainly due to the fact that the correlation coefficients
between sources in two datasets are quite close [6], [42]; the
performance of MCCA may suffer from error accumulation
of the deflation-based separation methods [7].
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TABLE 1. PCC performance results in Simulation 1.

FIGURE 5. Simulation 2: Performance comparisons on physiological
signals between the proposed UJBSS-m method and two other
methods (i.e., the single-set UBSS method SOBIUM [12] and UJBSS
method for two dataset, UJBSS-2 [19]). Here the number of sources
N = 4 and the number of observations M = 3. The number of time delays
L = 20 and the step size of time delays (i.e., τl − τl−1) is 2 data samples.
Similar results are observed for A(2) and A(3).

B. SIMULATION 2: PHYSIOLOGICAL SIGNALS
In this experiment, we employ four physiological signals as
sources, including ECG, EEG, electrooculography (EOG)
and electromyography (EMG) from a publicly available
database [43]. The sampling rate is 1000 Hz. The sources
corresponding to the other two datasets are generated follow-
ing (27). We get similar results as that in the simulation 1.
As can be seen from Fig. 5, the estimation performance is
getting better with the increase of the SNR of observations.
In the whole SNR range, the proposed UJBSS-m method
estimates the mixing matrices with higher accuracy than the
single-set UBSS method SOBIUM and UJBSS method for
two datasets UJBSS-2.

FIGURE 6. Simulation 2: Performance of the proposed UJBSS-m method
when the step size of time delays (i.e., τl − τl−1) varies from 1 to 9. Here
the number of sources N = 4 and the number of observations M = 3. The
number of time delays L = 20. Similar results are observed for
A(2) and A(3).

We also investigate the effect of the time delays, as shown
in Fig. 6. At high SNR level, e.g. SNR = 20dB, the average
Error of the proposed UJBSS-m is −11.57dB when the step
size of the time delays is 5 data samples,corresponding to
5ms. However, the average Error corresponding to 3 data
samples is −6.67dB, significantly larger than that of 5 data
samples. The main reason is that the change of the covari-
ance matrices is not obvious for the small step size and the
covariance matrices related to these delays could not provide
enough information to estimate the common factors, i.e. the
mixing matrices. If the time delay is too large, such as more
than 500 data samples (corresponding to 500ms), the covari-
ance between two datasets will be close to 0. Here, we select
5 data samples as the step size of the time delays. In practice,
we should select the time delays empirically based on the
characters of the sources, e.g., we suggest the time delays
smaller than 100ms for physiological signals. In addition,
we evaluate the role of the number of time delays and find that
it has less impact on the performance. In this paper, we set the
number of time delays to 20.

We further show the performances in term of the PCC
results between the original sources and the estimated ones.
As shown in Table 2, the proposed method yields promising
results when it is used to separate the latent and underde-
termined mixtures. Compared to the classical JBSS method
MCCA, the proposed UJBSS approach needs fewer number
of observations in each dataset, while it yields a better perfor-
mance.

VIII. A CASE STUDY: SOLVE A SINGLE SET UBSS
PROBLEM BASED ON UJBSS-m
In this section, we show that the proposed UJBSS-m method
can be employed to solve a single set UBSS problem,
the noise enhanced signal processing problem,with a superior
performance. As in Simulation 1, we employ 5 real audio
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TABLE 2. PCC performance results in Simulation 2.

signals as the sources. These 5 audio signals are mixed into
4 observations with a mixing matrix A(1) whose elements
follow the uniform distribution U [−1, 1]. We generate three
datasets as

X (1)
= A(1)S(1)

X (2)
= awgn(X (1), 20 dB)

X (3)
= awgn(X (1), 20 dB), (28)

where awgn(X (1), 20 dB) represents adding white Gaussian
noise to the signals X (1) (i.e., the real observations) with
SNR of 20dB. Noise, traditionally regarded as the unwanted
signal, can play a very important constructive role in esti-
mation problems, which is known as noise enhanced signal
processing. X (2) and X (3) are random noise added signals
based on X (1).

The problem of interest here is to estimate the mixing
matrix A(1). Traditionally, we can estimate A(1) from the
dataset X (1) based on the single set UBSS method SOBIUM.
Here we also can apply the proposed algorithm as mentioned
in Section V. Then we recover the sources via the method
mentioned in Section VI based on the estimated mixing
matrix A(1). We repeat the experiment for 1000 times and
calculate the sum of the absolute PCC (SAPCC) between the
recovered sources and the original ones, which is calculated
as

SAPCC =
5∑

n=1

abs(PCC(s(1)n , ŝ
(1)
n )), (29)

where abs(·) represents the absolute value function. Fig. 7
shows the distribution of the performance for 1000 repeats of
the experiments. The average SAPCC for UBSS is 4.53 while
that for the proposed UJBSS-m is 4.76, even with the same
source extraction technology. The one-way analysis of vari-
ance (ANOVA) is performed on the results provided by these

FIGURE 7. The sum of the absolute correlation coefficients between the
recovered sources and the original ones. The blue asterisks represent the
averages and the red lines stand for the medians. The edges of the box
are the lower and upper quartiles.

1000 repeats. The obtained p value is 1.5677e-11, which
means that the results of the proposed UJBSS-m method
and single set UBSS method are significantly different. The
proposed UJBSS-m algorithm demonstrates more robust and
better performance. This example illustrates that the estima-
tion accuracy could be improved by adding suitable noises to
the input signals.

IX. CONCLUSIONS AND DISCUSSION
In this paper, we extend the idea of (over)determined JBSS to
the underdetermined case and further generalize the UJBSS
for two datasets (i.e., UJBSS-2) to the case of multiple
datasets. The basic idea is similar to that in UJBSS-2, which
estimate the mixing matrices jointly first and then restore the
source signals. In this paper, we exploit the cross correla-
tion of the observations between each pair of datasets and
present a novel underdetermined joint blind source separation
method, namely UJBSS-m, to jointly estimate the mixing
matrices from multiple datasets when the number of observa-
tions is smaller than that of the sources. The mixing matrices
are accurately estimated through joint canonical polyadic
decomposition of a sequence of specialized tensors in which a
set of covariance matrices are stacked. Further the sources are
recovered based on the estimatedmixingmatrices. Numerical
results on multiple datasets demonstrate the superior per-
formances of the proposed method when compared to the
commonly used JBSS and single-set UBSS methods. As an
example application for noise enhanced signal processing,
we also show that the proposed UJBSS-m method can be
utilized to solve the single-set UBSS problem when suitable
noise is added to the observations. In addition, the proposed
UJBSS-m method does not rely upon sparsity of signals and
therefore it can be applied to a wide class of signals.

APPENDIX
The Appendix is the proof of Proposition 1.
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Proof: The three components of the objective func-
tion in (16), i.e., f (1)(A(1),A(2),U), f (2)(A(1),A(3),V ) and
f (3)(A(2),A(3),W ), share similar structure, which is the dif-
ference between one tensor and the corresponding estimated
results. Therefore, we take f (1)(A(1),A(2),U) and its partial
derivative with respect to a(1)n for further analysis. It can be
rewritten as

f (1)(A(1),A(2),U)

= ‖P − [[A(1),A(2),U]]‖2

= ‖P‖2︸ ︷︷ ︸
f (1)1

−2< P, [[A(1),A(2),U]] >︸ ︷︷ ︸
f (1)2

+‖[[A(1),A(2),U]]‖2︸ ︷︷ ︸
f (1)3

.

(A.1)

The first summand f (1)1 does not involve any variable and
therefore

∂f (1)1

∂a(1)n
= 0, (A.2)

where 0 is the zero vector with the same length as a(1)n .
The second summand f (1)2 is the inner product of the tensorP
with its its polyadic decomposition, and it can be computed
as

f (1)2 = < P, [[A(1),A(2),U]] >

= < P,
N∑
n=1

a(1)n ◦ a
(2)
n ◦ un >

=

N∑
n=1

M∑
i1=1

M∑
i2=1

L∑
i3=1

pi1,i2,i3a
(1)
i1,n

a(2)i2,nui3,n

=

N∑
n=1

(P ×1 a(1)n ×2 a(2)n ×3 un)

=

N∑
n=1

(P ×2 a(2)n ×3 un)T a(1)n . (A.3)

The partial derivative of f (1)2 with respect to each column of
A(1) is

∂f (1)2

∂a(1)n
= P ×2 a(2)n ×3 un. (A.4)

The third summand is the square of the Frobenius norm of
P’s polyadic decomposition, and it can be computed as

f (1)3 = ‖[[A(1),A(2),U]]‖2

= <

N∑
n=1

a(1)n ◦ a
(2)
n ◦ un,

N∑
n=1

a(1)n ◦ a
(2)
n ◦ un >

=

N∑
b=1

N∑
c=1

((a(1)b )T (a(1)c )(a(2)b )T (a(2)c )(ub)T (uc))︸ ︷︷ ︸
F(b,c)

= F(n, n)+
N∑
b=1
b6=n

N∑
c=1
c6=n

F(b, c)+ 2
N∑
c=1
c6=n

F(n, c), (A.5)

where b and c denote the indices of the factor matrices. The
first summand of f (1)3 is

F(n, n) = (a(1)n )T (a(1)n )(a(2)n )T (a(2)n )(un)T (un), (A.6)

and its partial derivative with respect to the nth column of the
factor matrix A(1) is

∂F(n, n)

∂a(1)n
= 2((a(2)n )T a(2)n uTn un)a

(1)
n . (A.7)

The second summand of f (1)3 does not involve the variable
a(1)n and therefore the corresponding partial derivative with
respect to a(1)n is the zero vector with the same length as a(1)n .
The third summand of f (1)3 is

2
N∑
c=1
c6=n

F(n, c) = 2
N∑
c=1
c6=n

(a(1)n )T (a(1)c )(a(2)n )T (a(2)c )(un)T (uc),

(A.8)

and its partial derivative with respect to the a(1)n can be com-
puted as 2

∑N
c=1
c6=n

[(a(2)n )T a(2)c (un)Tuc]a
(1)
c . Therefore,

∂f (1)3

∂a(1)n
= 2((a(2)n )T a(2)n uTn un)a

(1)
n

+ 2
N∑
c=1
c6=n

[(a(2)n )T a(2)c (un)Tuc]a(1)c

= 2
N∑
c=1

[(a(2)n )T a(2)c (un)Tuc]a(1)c . (A.9)

Combining all the above results, i.e., equation (A.2), (A.4)
and (A.9), the partial derivative of f (1)(A(1),A(2),U) with
respect to the a(1)n can be computed as

∂f (1)(A(1),A(2),U)

∂a(1)n

=
∂f (1)1

∂a(1)n
− 2

∂f (1)2

∂a(1)n
+
∂f (1)3

∂a(1)n

= −2P ×2 a(2)n ×3 un + 2
N∑
c=1

[(a(2)n )T a(2)c (un)Tuc]a(1)c .

(A.10)

Similarly, we can calculate the partial derivative of
f (2)(A(1),A(3),V ) with respect to the a(1)n as

∂f (2)(A(1),A(3),V )

∂a(1)n

= −2Q×2 a(3)n ×3 vn + 2
N∑
c=1

[(a(3)n )T a(3)c (vn)T vc]a(1)c .

(A.11)
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f (3)(A(2),A(3),W ) does not involve the variable a(1)n and
therefore

∂f (3)(A(2),A(3),W )

∂a(1)n
= 0. (A.12)

Consequently, the partial derivative of the objective function
with respect to a(1)n is

∂f (A(1),A(2),A(3),U,V ,W )

∂a(1)n

=
1
2
∂f (1)

∂a(1)n
+

1
2
∂f (2)

∂a(1)n
+

1
2
∂f (3)

∂a(1)n
= −P ×2 a(2)n ×3 un −Q×2 a(2)n ×3 vn

+

N∑
c=1

[(a(2)n )T a(2)c (un)Tuc + (a(3)n )T a(3)c (vn)T vc]a(1)c .

(A.13)

This completes the proof of the first equation in Proposition 1.
The proof of other equations is similar to that of (A.13) and
thus omitted here.

REFERENCES
[1] T. Adali,M.Anderson, andG.-S. Fu, ‘‘Diversity in independent component

and vector analyses: Identifiability, algorithms, and applications in medical
imaging,’’ IEEE Signal Process. Mag., vol. 31, no. 3, pp. 18–33,Mar. 2014.

[2] G. Zhou, Q. Zhao, Y. Zhang, T. Adali, S. Xie, and A. Cichocki, ‘‘Linked
component analysis from matrices to high-order tensors: Applications to
biomedical data,’’ Proc. IEEE, vol. 104, no. 2, pp. 310–331, Feb. 2016.

[3] S. Ge et al., ‘‘A brain-computer interface based on a few-channel EEG-
fNIRS bimodal system,’’ IEEE Access, vol. 5, pp. 208–218, Mar. 2017.

[4] X. Chen, Z. J. Wang, and M. McKeown, ‘‘Joint blind source separation
for neurophysiological data analysis: Multiset and multimodal methods,’’
IEEE Signal Process. Mag., vol. 33, no. 3, pp. 86–107, May 2016.

[5] J. R. Kettenring, ‘‘Canonical analysis of several sets of variables,’’
Biometrika, vol. 58, no. 3, pp. 433–451, 1971.

[6] Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, ‘‘Joint blind source
separation by multiset canonical correlation analysis,’’ IEEE Trans. Signal
Process., vol. 57, no. 10, pp. 3918–3929, Oct. 2009.

[7] X.-L. Li, T. Adalı, and M. Anderson, ‘‘Joint blind source separation by
generalized joint diagonalization of cumulant matrices,’’ Signal Process.,
vol. 91, no. 10, pp. 2314–2322, 2011.

[8] T. Adali, Y. Levin-Schwartz, and V. D. Calhoun, ‘‘Multimodal data fusion
using source separation: Two effective models based on ICA and IVA and
their properties,’’ Proc. IEEE, vol. 103, no. 9, pp. 1478–1493, Sep. 2015.

[9] A. R. Groves, C. F. Beckmann, S. M. Smith, and M.W.Woolrich, ‘‘Linked
independent component analysis for multimodal data fusion,’’ Neuroim-
age, vol. 54, no. 3, pp. 2198–2217, 2011.

[10] M. Kleinsteuber and H. Shen, ‘‘Blind source separation with compres-
sively sensed linear mixtures,’’ IEEE Signal Process. Lett., vol. 19, no. 2,
pp. 107–110, Feb. 2012.

[11] Z. Koldovský, P. Tichavský, A. H. Phan, and A. Cichocki, ‘‘A two-stage
MMSE beamformer for underdetermined signal separation,’’ IEEE Signal
Process. Lett., vol. 20, no. 12, pp. 1227–1230, Dec. 2013.

[12] L. De Lathauwer and J. Castaing, ‘‘Blind identification of underdetermined
mixtures by simultaneous matrix diagonalization,’’ IEEE Trans. Signal
Process., vol. 56, no. 3, pp. 1096–1105, Apr. 2008.

[13] S. Xie, L. Yang, J.-M. Yang, G. Zhou, and Y. Xiang, ‘‘Time-frequency
approach to underdetermined blind source separation,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 306–316, Feb. 2012.

[14] L. Zhen, D. Peng, Z. Yi, Y. Xiang, and P. Chen, ‘‘Underdetermined blind
source separation using sparse coding,’’ IEEE Trans. Neural Netw. Learn.
Syst., to be published, doi: 10.1109/TNNLS.2016.2610960.

[15] S. Kim and C. D. Yoo, ‘‘Underdetermined blind source separation based
on subspace representation,’’ IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2604–2614, Jul. 2009.

[16] V. G. Reju, S. N. Koh, and Y. Soon, ‘‘An algorithm for mixing matrix
estimation in instantaneous blind source separation,’’ Signal Process.,
vol. 89, no. 9, pp. 1762–1773, 2009.

[17] G. Wunder, H. Boche, T. Strohmer, and P. Jung, ‘‘Sparse signal pro-
cessing concepts for efficient 5G system design,’’ IEEE Access, vol. 3,
pp. 195–208, Sep. 2015.

[18] P. Tichavsky and Z. Koldovsky, ‘‘Weight adjusted tensor method for blind
separation of underdetermined mixtures of nonstationary sources,’’ IEEE
Trans. Signal Process., vol. 59, no. 3, pp. 1037–1047, Apr. 2011.

[19] L. Zou, X. Chen, and Z. J. Wang, ‘‘Underdetermined joint blind source
separation for two datasets based on tensor decomposition,’’ IEEE Signal
Process. Lett., vol. 23, no. 5, pp. 673–677, May 2016.

[20] L. Zou, Z. J. Wang, X. Chen, and X. Ji, ‘‘Underdetermined joint blind
source separation based on tensor decomposition,’’ in Proc. IEEE Electr.
Comput. Eng. (CCECE), Apr. 2016, pp. 1–4.

[21] X.-F. Gong, X.-L. Wang, and Q.-H. Lin, ‘‘Generalized non-orthogonal
joint diagonalization with lu decomposition and successive rotations,’’
IEEE Trans. Signal Process., vol. 63, no. 5, pp. 8–12, May 2015.

[22] M. Congedo, R. Phlypo, and J. Chatel-Goldman, ‘‘Orthogonal and non-
orthogonal joint blind source separation in the least-squares sense,’’ in
Proc. IEEE 20th Eur. Signal Process. Conf. (EUSIPCO), Apr. 2012,
pp. 1885–1889.

[23] E. Acar, D. M. Dunlavy, and T. G. Kolda, ‘‘A scalable optimization
approach for fitting canonical tensor decompositions,’’ J. Chemometrics,
vol. 25, no. 2, pp. 67–86, 2011.

[24] H. A. Kiers, ‘‘Towards a standardized notation and terminology in multi-
way analysis,’’ J. Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[25] T. G. Kolda and B. W. Bader, ‘‘Tensor decompositions and applications,’’
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[26] G. Zhou and A. Cichocki, ‘‘Canonical polyadic decomposition based on a
single mode blind source separation,’’ IEEE Signal Process. Lett., vol. 19,
no. 8, pp. 523–526, Aug. 2012.

[27] J. B. Kruskal, ‘‘Three-way arrays: Rank and uniqueness of trilinear decom-
positions, with application to arithmetic complexity and statistics,’’ Linear
Algebra Appl., vol. 18, no. 2, pp. 95–138, 1977.

[28] L. De Lathauwer, ‘‘A link between the canonical decomposition in multi-
linear algebra and simultaneous matrix diagonalization,’’ SIAM J. Matrix
Anal. Appl., vol. 28, no. 3, pp. 642–666, 2006.

[29] I. Domanov and L. D. Lathauwer, ‘‘Generic uniqueness conditions for
the canonical polyadic decomposition and indscal,’’ SIAM J. Matrix Anal.
Appl., vol. 36, no. 4, pp. 1567–1589, 2015.

[30] I. Domanov and L. D. Lathauwer, ‘‘Canonical polyadic decomposition of
third-order tensors: Reduction to generalized eigenvalue decomposition,’’
SIAM J. Matrix Anal. Appl., vol. 35, no. 2, pp. 636–660, 2014.

[31] L. Sorber, M. Van Barel, and L. De Lathauwer, ‘‘Optimization-based
algorithms for tensor decompositions: Canonical polyadic decomposition,
decomposition in rank-(L_r,L_r, 1) terms, and a new generalization,’’
SIAM J. Optim., vol. 23, no. 2, pp. 695–720, 2013.

[32] I. Domanov and L. De Lathauwer, ‘‘Canonical polyadic decomposition
of third-order tensors: Relaxed uniqueness conditions and algebraic algo-
rithm,’’ Linear Algebra Appl., vol. 513, pp. 342–375, Apr. 2017.

[33] M. Sørensen, I. Domanov, and L. De Lathauwer, ‘‘Coupled canoni-
cal polyadic decompositions and (coupled) decompositions in multilin-
ear rank-(L_r, n,L_r, n, 1) terms—Part II: Algorithms,’’ SIAM J. Matrix
Anal. Appl., vol. 36, no. 3, pp. 1015–1045, 2015.

[34] E. Acar, T. G. Kolda, and D. M. Dunlavy. All-at-Once Optimiza-
tion for Coupled Matrix and Tensor Factorizations. [Online]. Available:
https://arxiv.org/abs/1105.3422

[35] L. Sorber, M. V. Barel, and L. D. Lathauwer, ‘‘Structured data fusion,’’
IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 586–600, Jun. 2015.

[36] N. Vervliet, O. Debals, and L. De Lathauwer, ‘‘Tensorlab 3.0-
numerical optimization strategies for large-scale constrained and coupled
matrix/tensor factorization,’’ in Proc. Conf. Rec. IEEE 50th Asilomar Conf.
Signals, Syst. Comput., Sep. 2016.

[37] D.M. Dunlavy, T. G. Kolda, and E. Acar, ‘‘Poblano v1. 0: Amatlab toolbox
for gradient-based optimization,’’ Sandia Nat. Lab., Albuquerque, NM and
Livermore, CA, USA, Tech. Rep. SAND2010-1422, 2010, pp. 1–48.

[38] H. L. Van Trees, Detection, Estimation, and Modulation Theory, Optimum
Array Processing. Hoboken, NJ, USA: Wiley, 2004.

[39] G. Strang, Introduction to Linear Algebra. Cambridge, MA, USA:
Wellesley-Cambridge Press, 2003.

[40] S. Kim and C. D. Yoo, ‘‘Underdetermined blind source separation based
on generalized gaussian distribution,’’ in Proc. 16th IEEE Signal Process.
Soc. Workshop Mach. Learn. Signal Process., Apr. 2006, pp. 103–108.

7486 VOLUME 5, 2017



L. Zou et al.: Underdetermined Joint Blind Source Separation of Multiple Data Sets

[41] N. M. Correa, T. Adali, Y.-O. Li, and V. D. Calhoun, ‘‘Canonical correla-
tion analysis for data fusion and group inferences,’’ IEEE Signal Process.
Mag., vol. 27, no. 4, pp. 39–50, Jun. 2010.

[42] X. Chen, Z. J. Wang, and M. J. McKeown, ‘‘A three-step multimodal
analysis framework for modeling corticomuscular activity with application
to Parkinson’s disease,’’ IEEE J. Biomed. Health Informat., vol. 18, no. 4,
pp. 1232–1241, Apr. 2014.

[43] A. L. Goldberger et al., ‘‘Physiobank, physiotoolkit, and physionet com-
ponents of a new research resource for complex physiologic signals,’’
Circulation, vol. 101, no. 23, pp. e215–e220, 2000.

LIANG ZOU received the B.Sc. degree in
microelectronics from Anhui University, China,
in 2010, and the M.Sc. degree in biomedical engi-
neering from the University of Science and Tech-
nology of China in 2013. He is currently pursuing
the Ph.D. degree with The University of British
Columbia, Canada. His current research interest
includes statistical signal processing and machine
learning.

XUN CHEN received the B.S. degree in electrical
engineering from the University of Science and
Technology of China in 2009 and the Ph.D. degree
in biomedical engineering from The University
of British Columbia, Canada, in 2014. He was a
Research Scientist with the Department of Electri-
cal and Computer Engineering, The University of
British Columbia. He is currently with the Depart-
ment of Biomedical Engineering, Hefei University
of Technology, China, as a Full Professor. His

research interests include the broad areas of statistical signal processing and
machine learning in biomedical applications.

XIANGYANG JI received the B.S. degree in
materials science and the M.S. degree in computer
science from the Harbin Institute of Technology,
Harbin, China, in 1999 and 2001, respectively,
and the Ph.D. degree in computer science from
the Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China. He joined
Tsinghua University, Beijing, in 2008, where he
is currently a Full Professor with the Department
of Automation, School of Information Science and

Technology. His research interests include signal processing, image/video
processing, image/video compression and communication, 3-D representa-
tion, and reconstruction.

Z. JANE WANG (F’17) received the B.S. degree
from Tsinghua University, China, in 1996, and
the M.S. and Ph.D. degrees from the University
of Connecticut in 2000 and 2002, respectively,
all in electrical engineering. She was a Research
Associate with the Electrical and Computer
Engineering Department, University of Maryland,
College Park. Since 2004, she has been with the
Department Electrical and Computer Engineer-
ing, The University of British Columbia, Canada,

where she is currently a Full Professor. Her research interests include sta-
tistical signal processing theory and applications with a current focus on
brain data analytics. She has been an Associate Editor of the IEEE Signal
Processing Magazine, the IEEE TRANSACTIONS ON SIGNAL PROCESSING, and the
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II.

VOLUME 5, 2017 7487


