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ABSTRACT The generalized l1 greedy algorithm was recently proposed and shown to outperform the
standard reweighted l1-minimization and l1-greedy algorithms for image reconstruction in computed tomog-
raphy (CT). Herein, this algorithm is extended as a semisoft generalized l1 greedy algorithm by adapting
the wavelet technique of semisoft thresholding. The extended algorithm can also be applied to image
reconstruction by incorporating it into the BCPCS framework, resulting in a semisoft generalized total
variation minimization (SSGTV) algorithm for CT. Numerical tests indicate that the proposed SSGTV
algorithm improves the image reconstruction for CT.

INDEX TERMS Generalized l1 greedy algorithm, reweighted l1-minimization, semisoft thresholding, total
variation.

I. INTRODUCTION
Iterative algebraic algorithms are widely applied in signal
processing and image reconstruction since they yield more
accurate results than analytic approaches in certain cases. Let

Ax = b (1)

be a consistent underdetermined system of linear equations,
where A is an m × n matrix (m � n), x ∈ Rn a sparse
signal vector and b ∈ Rm the measurement vector. Finding
the sparsest solution of the system is equivalent to solving
the following l0 -minimization problem

min ||x||0 subject to Ax = b.

However, the l0-minimization problem is NP-hard [15].
Compressed sensing theory suggests an alternative
l1-minimization

min ‖x‖1 subject to Ax = b, (2)

to recover sparse signals x [5], [8]. However, l1-minimization
is biased against sparse signals with a few large com-
ponents. To address this setback the standard reweighted
l1-minimization algorithm [6] minimizes ‖W kx‖1 instead of
‖x‖1, where W k

= diag{wk1, · · · ,w
k
n} with w

k
i , 1 ≤ i ≤ n,

inversely proportional to the magnitude of xk−1i , i.e.,

wki =
1

ε +

∣∣∣xk−1i

∣∣∣ .
Here ε > 0 is chosen to avoid division by zero.
The above weights were modified in the l1 greedy

algorithm [16] as

wki =

{
δ, for

∣∣∣xk−1i

∣∣∣ ≥ βkM
1, otherwise,

where β is a parameter between 0 and 1, andM = ‖x0‖∞ for
an initial solution x0. Later the weights were further extended
as

wki =



δ, for
∣∣∣xk−1i

∣∣∣ ≥ βMsk−1
γ, for

∣∣∣xk−1i

∣∣∣ < αMsk−1

1

ε +

∣∣∣xk−1i

∣∣∣ , otherwise,

(3)

where 0 ≤ α ≤ β ≤ 1, γ ≥ 1000, δ ∈ (0, 1
1000 ],

s ∈ (0, 1], ε > 0, in the generalized l1 greedy (GLG)
algorithm [19].
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Algorithm 1 Generalized l1 Greedy Algorithm (GLG)

1. generate x0 by reweighted l1-minimization.
2. set M = ||x0||∞, initialize parameters.
3. for k = 1 to kmax

3.1. update the diagonal matrix W k by (3).
3.2. solve the reweighted l1-minimization problem:

xk = argmin ||W kx||1 subject to Ax = b.
3.3. return if a stop criterion holds.

end

In [19], the GLG algorithm was applied to computed
tomography (CT) image recovery. The details are discussed
below after introducing some terminology and notations.

In computed tomography (CT), the gradients of images
are often sparse because most images can be approximately
modeled to be essentially piecewise constant. So a 2D image
x in CT can be effectively reconstructed by minimizing the
following total variation [4], [6],

min ||x||TV subject to Ax = b, (4)

where the total variation ||x||TV is defined as the l1 -norm of
the magnitudes of the components of the discrete gradient,

||x||TV =
∑

i,j

√
(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2,

and the symbol x in the system Ax = b stands for the vector
corresponding to the 2D image x for convenience.

Let ai and bi be the ith column of AT and the ith component
of b, respectively. The orthogonal projection from x to the ith
hyperplane Hi = {y : 〈y, x〉 = bi}, where 〈y, x〉 is the inner
product, is given by

Pix = x +
bi −

〈
ai, x

〉
||ai||22

ai.

A cyclic projection is a composition of the projections to each
hyperplane Hi, i = 1, 2, . . . , n. Suppose that A and b in the
system (1) are partitioned, respectively, as

A =

A1...
Ar

 and b =

 b
1

...

br

,
where the jth block corresponds to the jth projection direction
for j = 1, 2, . . . , r .
A block cyclic projection method incorporating the

total variation minimization in the compressed sensing
scheme (BCPCS) was introduced in [14] and its convergence
was derived in [2], [3]. The BCPCS algorithm is performed
as follows: for each block, first a cyclic projection is applied
and then an approximation x is updated by the steepest decent
method. Letµ be the gradient of x. The steepest decent direc-
tion d is computed by d = − ∂

∂x

∑
|µ|. An approximation x

is updated by x = x+τd/||d ||∞ with a step size τ . Repetition
of the procedure will solve the total variation minimization.

As an application of the GLG algorithm, the generalized
total variation minimization (GTV) algorithm below incor-
porates the GLG algorithm into the BCPCS framework to
recover CT images [19].

Algorithm 2 Generalized Total Variation Minimization for
CT (GTV)

1. generate x0 by reweighted l1-minimization.
2. initialize parameters.
3. for k = 1 to kmax

for j = 1 to r
3.1. update xk−1 using a cyclic projection on the jth

block.
3.2. calculate the gradient µ of xk−1 and the steepest

decent direction d .
3.3. revise weights wki by (3).
3.4. set a reweighted direction d = W kd .
3.5. update xk−1 = xk−1 + τk d

||d ||∞
,
∑
τk <∞.

end
3.6. xk = xk−1.

end

Numerical tests have shown that the GLG and GTV algo-
rithms outperform both the reweighted l1-minimization and
l1 greedy algorithms in signal recovery and CT image recon-
struction [1]. However, the discontinuity of the weight func-
tions used in these algorithms is likely to generate artifacts
which affect the accuracy of the results. In this paper, we
address these shortcomings bymodifying the weight function
making use of the concept of thresholding from the wavelet
literature.

The rest of this paper is organized as follows. In Section II,
a semisoft generalized l1 greedy (SSGLG) algorithm is pro-
posed and then incorporated into the BCPCS framework
to develop a semisoft generalized total variation minimiza-
tion (SSGTV) algorithm for CT. Numerical tests of the
algorithm in reconstructing medical images are conducted
and the results are reported in Section III. Final conclusions
are drawn in Section IV.

II. SSGLG AND SSGTV ALGORITHMS
In this section, we will improve the GLG algorithm by adapt-
ing the wavelet technique of semisoft thresholding.

Wavelet thresholding techniques have been used to
improve the performance of wavelet transformations in signal
processing and speech enhancement [7], [9]. There are three
common thresholdings: hard, soft, and semisoft threshold-
ings. They are defined as follows. For a certain positive
threshold t and positive thresholds t1 < t2,
(i) hard thresholding:

h1(x) =

x, if |x| > t

0, if |x| ≤ t
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FIGURE 1. Three common thresholdings.

FIGURE 2. The weights for GLG and SSGLG algorithms.

(ii) soft thresholding:

h2(x) =

{
sign(x)(|x| − t), if |x| > t
0, if |x| ≤ t

(iii) semisoft thresholding:

h3(x) =


0, if |x| ≤ t1

sign(x)
t2(|x| − t1)
t2 − t1

, if t1 < |x| ≤ t2

x, if |x| > t2

The graphs of the three thresholding functions are shown in
Figure 1. The hard thresholding function causes discontinuity
of the wavelet coefficients of a signal and possibly generates
artifacts. But soft thresholding, though keeping smoother
coefficients, affects the accuracy of the reconstructed signal
because of the constant deviation between the true and esti-
mated signals. The semisoft thresholding function overcomes
the disadvantages of the hard and soft thresholdings with
respect to the output quality [11], [17]. In this paper, semisoft
thresholding is implemented in the weight function of the
GTV algorithm to improve its performance.

Observe that the weight function (3) in the k-th itera-
tion of the GLG algorithm assigns a very large weight γ
for entries with magnitudes smaller than τ1 = αMsk−1,
a very small weight δ for entries with magnitudes greater
than τ2 = βMsk−1, and reciprocal weight 1

ε+|xk−1i |
for the

remaining entries. The discontinuity of the weight function
can be seen in Figure 2.With the technique of semisoft thresh-
old, the new algorithm makes use of a continuous weight
function as follows.

In the new algorithm, a parameter r ∈ (0, 0.1] is introduced
to shrink the domain of the reciprocal curve to [(1 + r)τ1,
(1 − r)τ2]. Two line segments s1(x) and s2(x) are utilized
on the intervals [τ1, (1 + r)τ1] and [(1 − r)τ2, τ2] to con-
nect the reciprocal curve with the constant levels w = γ ,
w = δ, respectively. As a consequence, the new weight func-
tion is continuous without a constant deviation, as shown in
Figure 2. More precisely, the weights wki in the k-th iteration
of the proposed semisoft generalized l1 greedy (SSGLG)
algorithm for signal recovery are revised by

wki =



γ, for
∣∣∣xk−1i

∣∣∣ < τ1

s1(x
k−1
i ), for τ1 ≤

∣∣∣xk−1i

∣∣∣ ≤ (1+ r)τ1
1

ε + |xk−1i |
, for (1+ r)τ1 <

∣∣∣xk−1i

∣∣∣ < (1− r)τ2

s2(x
k−1
i ), for (1− r)τ2 ≤

∣∣∣xk−1i

∣∣∣ ≤ τ2
δ, for

∣∣∣xk−1i

∣∣∣ > τ2.

(5)

It is remarked that the weight function in (5) is an extension
of the one used in the GLG algorithm. As r approaches 0,
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Algorithm 3 Semisoft Generalized l1 Greedy (SSGLG)
Algorithm

1. initialize x0 by reweighted l1-minimization.
2. Initialize parameters.
3. for k = 1 to kmax

3.1. update weights in W k using (5).
3.2. xk = argminx ||W kx||1 subject to Ax = b.

end

the new weight function is reduced to the one in the GLG
algorithm.

The SSGLG algorithm can also be applied to image recon-
struction by incorporating it into the BCPCS framework,
resulting in the following new algorithm.

Algorithm 4 Semisoft Generalized Total Variation
Minimization (SSGTV) for CT

1. initialize x0 by reweighted l1-minimization.
2. initialize parameters.
3. for k = 1 to kmax

for each block of A
3.1.update xk−1 using a cyclic projection.
3.2.compute gradient µ, steepest decent direction d .
3.3.update d = W kd using (5).
3.4.update xk−1 = xk−1 + tk d

||d ||∞
,
∑
tk <∞.

end
3.5. xk = xk−1.
3.6. exit if a stop criterion holds.
end

III. NUMERICAL TESTS
The SSGTV algorithm is tested with the 2D Shepp-Logan
phantom [10] and a CT cardiac image [18] of size 256× 256
to compare its performance with the standard total variation
minimization (TV) (4) and the GTV algorithms. All tests are
conducted for the three reconstruction algorithms under the
same parameters on an Intel i7 3.40 GHz PC with MATLAB.

The strip-based projection model [13], [20] takes into
account x-ray beams of finite width. The projection equa-
tions are defined to be the sum of fractional areas of the
cells covered by the x-ray beams. Therefore, the strip-based
projection model is closer to reality than the line-based pro-
jection model in some applications. It is implemented using
rational slope projections in order to generate a consistent
and underdetermined system Ax = b, where A is a sparse
0-1 block matrix, x is the reconstruction image, and b is the
projection data. The number of blocks of A is the same as
the number of projection directions used, i.e., each block of
A corresponds to a rational projection direction. The location
of the unique entry of value one in every column within each
block is well determined [12]. For example, let C be the 0-1
sub-matrix of A with N 2 columns generated from scanning
an N -by-N image along a rational direction −p/q, where the

integers p, q > 0 and gcd(p, q) = 1. Then the entry cij = 1
if and only if i = pu+ qv+ 1 and j = uN + v+ 1 for some
nonnegative integers u, v < N . Thus for the ith row of C
there are at most N entries of value 1, whose column indices
are known and denoted by a set Ji. The ith component of the
product Cx is equal to

∑
j∈Ji xj. In other words, the vector

multiplication of matrices is implemented in terms of scalar
addition operations to significantly reduce the computational
cost.

The values of the parameters in the GTV and SSGTV
algorithms are listed below:

α = 0.13, β = 0.8, γ = 1000,

δ = 0.001, ε = 0.1, s = 0.9, tk = 0.7× 0.97k−1.

An additional parameter r = 0.05 is used in the SSGTV
algorithm.

The total iteration number is preset to 100 for all the
algorithms. For the GTV and SSGTV algorithms, 5 iterations
of the standard total variation minimization and 20 iterations
of the reweighted l1-minimization are set to yield an initial
solution x0. The parameter kmax for the maximum number
iterations in Step 3 of both algorithms is set to 75.

Let G denote a reconstructed image of a 2D image f and
fave denote the average of the pixel values of f . The relative
error RE = ‖f−G‖2

‖f ‖2
< 0.005 is selected as an alternative stop

criterion for both GTV and SSGTV iterations.
Experimental results are also evaluated using the root-

mean-square error (RMSE), the normalized root mean square
deviation (NRMSD), and the normalized mean absolute devi-
ation (NMAD) which are defined as follows:

RMSE =

√√√√∑
m,n

(f (m, n)− G(m, n))2

m ∗ n
,

NRMSD =

√√√√√√
∑
m,n

(f (m, n)− G(m, n))2∑
m,n

(fave − f (m, n))2
,

NMAD =

∑
m,n
|f (m, n)− G(m, n)|∑
m,n
|f (m, n)|

.

These measurements reflect different aspects of the quality
of the recovered images. RMSE evaluates the reconstruction
quality on a pixel-by-pixel basis. NRMSD emphasizes large
errors in a few pixels of the recovered image. NMAD focuses
on small errors in the recovered image.

In our tests with the Shepp-Logan phantom, the strip-
based model is implemented with projections in 24 different
directions. The size of the resulting coefficient matrix A is
26002 × 65536. The reconstructed images are shown in the
first row of Figures 3. The experimental results are sum-
marized in Table 1. From Table 1 one can easily deter-
mine that the values of RE, RMSE, NRMSD, and NMAD
for the SSGTV algorithm are 87%, 91%, 87%, and 97%,
respectively, smaller than the corresponding values for the
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FIGURE 3. Shepp-Logan phantom and reconstructed images.

TABLE 1. Experimental data with Shepp-Logan phantom.

TABLE 2. Experimental data with a cardiac image.

TABLE 3. Experimental data with Shepp-Logan phantom in noisy projection.

GTV algorithm. Table 1 also shows that the GTV algorithm
produces more large errors in a few pixels and more small
errors in many pixels than the SSGTV algorithm, demonstrat-
ing the better performance of SSGTV.

The graph of relative errors vs. the number of iterations
for the three different algorithms appears in Figure 4 (a).
It is observed that during the last 47 iterations the relative
error RE for the SSGTV algorithm is reduced from 0.046 to
0.006 while RE for the GTV algorithm changes only slightly
and slowly from 0.0611 to 0.046 and remains the same
afterwards. In summary, the SSGTV algorithm applied to the

Shepp-Logan phantom results in significant improvements in
all the measurements (RE, RMSE, NRMSD, and NMAD)
compared with the GTV algorithm with comparable times.

Tests are also conducted with a real CT cardiac image to
compare the performance of the algorithms. The CT cardiac
image is preprocessed to produce the desired sparsity. For
this test 32 directions are chosen in the implementation of
the strip-based model. The size of the resulting coefficient
matrix A is 39254 × 65536. The reconstructed images are
shown in Figure 5. The experimental results are summarized
in Table 2, and the corresponding relative errors are shown
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FIGURE 4. Relative errors of reconstruction: (a) Shepp-Logan phantom; (b) cardiac image.

FIGURE 5. Cardiac image and reconstructed images.

in Figure 4 (b). The numerical results indicate again that the
SSGTV algorithm is superior to the other two algorithms in
image recovery in CT.

To evaluate the performance of SSGTV for the
Shepp-Logan phantom with noisy data, Gaussian noise with
standard deviation of 0.04 was added to synthetic projection
data. The total iteration number is preset to 45, and the values
of some parameters are slightly adjusted. The reconstructed
images are shown in the second row of Figure 3, and the
experimental data are summarized in Table 3. The results
also indicate the improvement of SSGTV over GTV but to
a smaller extent than with the non-noisy data.

IV. CONCLUSION
The generalized l1 greedy (GLG) algorithm has recently been
developed to solve an underdetermined linear system Ax = b
for a sparse solution. However, the weight function in the
GLG algorithm is discontinuous and thus affects the accuracy
of a solution. In this paper, the GLG algorithm is extended as
a semisoft generalized l1 greedy (SSGLG) algorithm with a
continuous weight function utilizing the technique of wavelet
semisoft thresholding. The SSGLG algorithm is applied to
image reconstruction in CT resulting in a semisoft gener-
alized total variation minimization (SSGTV) algorithm and
implemented in the block cyclic projection method in the
compressed sensing scheme.

In image reconstruction experiments, the relative
error (RE), the root-mean-square error (RMSE), the nor-
malized root mean square deviation (NRMSD), and the

normalized mean absolute deviation (NMAD) are used to
measure the quality of recovered images. Numerical tests
on the Shepp-Logan phantom and a CT cardiac image
demonstrate that for all these metrics the SSGTV algorithm
outperforms the standard total variation and generalized total
variation algorithms in image recovery in the noise-free case.
In the tests, the selections of the values of the parame-
ters for the SSGTV algorithm are not optimal. However,
numerical experiments indicate that the advantages of the
SSGTV algorithm are not affected by different values of the
parameters involved. The optimal selections of parameters
for the SSGTV will be investigated in the future.

The performance of the SSGTV algorithm with noisy
images will be further studied taking into consideration
neighboring pixel correlations.
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