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ABSTRACT The performance of surface textures with dimensional uncertainty due to the manufacturing
process is investigated with statistical models. The uncertainty parameters are geometrical dimensions
(i.e., dimple diameter, area ratio, and dimple depth) and the performance parameters include the friction
force, the load-carrying capacity, and the coefficient of friction. The results show that logarithmic models
provide an excellent fit to the data and can explain more than 99.98% of the variance in data. The most
critical geometric parameter for the coefficient of friction and the load-carrying capacity is found to be
the dimple diameter, whereas the most critical geometric parameter for the friction force is the area ratio.
Manufacturing errors that follow normal distribution with three-sigma quality are found to be insignificant.
Under the conditions simulated, it is determined that a dimple diameter of 1883 µm and a dimple depth
of 5.5∼6.5µm yield optimal performance when operating in the hydrodynamic lubrication regime. The area
ratio is the key parameter and must be determined based on the requirements of the load-carrying capacity
and the coefficient of friction.

INDEX TERMS Dimension uncertainties, parameter optimization, statistical simulation, surface textures.

I. INTRODUCTION
Over the last decade, surface texturing has been identified
as an effective method for improving the tribological perfor-
mance of mechanical parts. It involves manufacturing micro-
patterns — such as dimples, grooves, etc. — on contact
surfaces in the presence of a lubricating film. These micro-
patterns can behave as ‘‘tiny hydrodynamic bearings’’ that
provide load-carrying support and improve lubrication effi-
ciency [1], [2]. Many micro-machining techniques have been
employed to fabricate textured surfaces [3]. Among the avail-
able manufacturing techniques, laser surface texturing is by
far the most widely used approach since it can be easily
applied to different materials [4].

In recent years, a great deal of effort has been devoted to
studying the effects of texture’s geometric parameters, such
as dimple diameter, dimple depth, and the area ratio (the
ratio of the textured area and the domain). Both experimental
and theoretical research shows that these parameters have a
significant effect on tribological performance [5]. Therefore,
many studies have been carried out to determine the optimum
value of the parameters [6], [7]. Reference [8] provides a
survey of papers that focus on the optimization of dimensions

in surface texturing to achieve the best performance. This is
often achieved by performing an analysis based on specific
operating conditions. Ideally, a series of experiments should
be conducted to search for the best performance, a process
that is time-consuming and expensive due to the large number
of tests required.

In most published research on surface texturing, the geo-
metric parameters are considered to be deterministic. How-
ever, the dimensions of surface textures vary within certain
limits because of manufacturing tolerances [9]. As the thick-
ness of the lubricant film and the size of textures are very
small —typically on the order of a micron— uncertainty
in the size of the texture dimensions may greatly influence
performance. This paper is devoted to the evaluation of sur-
face texture performance with the provision for dimensional
uncertainty. The results are also presented to determine the
optimized size of a texture based on statistical analyses.

II. UNCERTAINTY OF TEXTURE DIMENSIONS
Texture dimensions are usually not deterministic due to the
uncertainty in the manufacturing processes. This uncertainty
can be classified into two categories: systematic errors that
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are repeatable and reproducible and random errors that vary
even when the system is subjected to the same operating
conditions. As a result, the texture dimensions usually vary
within the manufacturing tolerances.

Previous studies of the uncertainty of manufacturing
dimensions have branched out in two directions. One branch
of study investigates how uncertainty influences manufactur-
ing performance. The other branch investigates how to set the
best manufacturing tolerance of parameters in response to the
uncertainty.

Regarding the first branch, a typical application is
in gear systems where manufacturing errors result in
vibrations. For spur gears, for example, manufacturing
errors are simulated by generating a random profile,
which fits the gear K-chart [10]. For planetary gear sets,
Bodas and Kahraman [11] report how manufacturing errors
and assembly variations influence the position of tooth con-
tact surfaces. Consideration is given to static conditions, and
only one error is investigated at a time assuming that all
other errors are absent. This approach does not provide any
information on the interaction among variables. A subse-
quent study investigated the errors associated with the carrier
pinhole position simulated at three fixed levels [12].

Regarding the second branch, the tolerance of
parameters —the so-called tuning parameters—are obtained
through various optimization methods, the Taguchi method,
and the method of imprecision [13], [14]. Including tuning
parameters in the design process can result in designs that
are more tolerant of variational noise. Analyzing the uncer-
tainty of parameters has become an important part of robust
mechanical design [15], [16]. Using the milling process as an
example, reference [17] analyzes the deviation between the
real surface and the nominal machine surface to determine
manufacturing tolerances. This approach has been proven to
be useful both in simulation and in practice.

Along with the improvement of machining accuracy, var-
ious statistical methods have been proposed to overcome
uncertainty. For example, Puh et al. [18] investigated the
multi-objective optimization of the turning process of an opti-
mal parametric combination to provide the minimum surface
roughness with the maximummaterial removal rate using the
Grey-Based Taguchi method. Prasad and Babu [19] applied
the analysis of variance (ANOVA) technique to evaluate the
significance of parameters on the overall quality character-
istics of the cutting process in an uncertain environment.
A variety of other methods have been presented for analyzing
nonlinear vibrations of spur gears in the presence of man-
ufacturing errors [10], [20]–[22]. Manufacturing errors are
treated stochastically, starting from the knowledge of the gear
tolerance class.

Although previous studies have considered the uncer-
tainty of texture dimensions, they usually have a number of
drawbacks. They are classified in three different categories.
(1) quantifying uncertaintywhere many studies used multiple
fixed levels, without considering the probability of each level.
(2) mixed uncertainty from multiple sources where only one

variable at a time is investigated, without considering the
interaction with other variables. (3) generalization of uncer-
taintywhere the simulated uncertainty is applied to a specific
manufacturing process and operating conditions, and thus it
is difficult to generalize the results to other conditions.

In this study, we present an analysis that treats the problem
of quantifying uncertainty from multiple sources in a more
general fashion and applies the technique to study the perfor-
mance of textured surfaces. The objective of the research is to
investigate the effects of uncertainty of geometrical parame-
ters (dimple diameter d0, area ratio Sp, and dimple depth hg)
on the performance of surface textures (friction force F , load-
carrying capacity W , and coefficient of friction f ). The tex-
ture shape is considered to be perfectly circular, but the value
of dimensions may vary with a certain probability. In order to
achieve the above results, the authors first explore the uncer-
tainty of geometrical parameters and then investigate their
influence on the performance of surface textures. Statistical
models are proposed and the key influential critical geometric
parameters are identified.

FIGURE 1. Schematic of a textured surface (a) distribution of textures;
(b) typical unit cell; (c) side view of a unit cell.

III. STATISTICAL MODEL OF PERFORMANCE OF SURFACE
TEXTURES
A. PROBLEM FORMULATION
The schematic of a textured surface is shown in Fig. 1. Each
dimple is located at the center of an imaginary square cell of
length L. To simplify the simulations, a single unit cell is used
as the computational domain [Fig. 1(b)]. Periodic boundary
conditions are applied in the sliding direction (X) to account
for the interaction between textures, and the boundaries in the
other direction (Y) are kept at ambient pressure. The dimple’s
diameter is denoted by d0 and its depth is hg. The area ratio
Sp can be calculated by

Sp =
πd20
4L2

. (1)

As shown in Fig. 1(c), one of the sliding pairs is stationary
and the other slides with a velocity (U ). The film thickness
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equation in cylindrical coordinates for two regions, one over
the asperity and the other in the grooves, is given as

h (r) =

{
h0, (d < d0)
h0 + hg, (d0 ≤ d ≤ L)

(2)

We assume that surfaces are rigid and that the density (ρ)
and viscosity (µ) variations across the thin lubricant are
negligible. Under the typical thin-film lubrication analyses,
the equation governing the hydrodynamic pressure distribu-
tion is given by the Reynolds equation

∂

∂x

(
h3
∂p
∂x

)
+
∂

∂y

(
h3
∂p
∂y

)
= 6µU

∂h
∂x

(3)

Equation (3) is solved based on the given film profile and
boundary conditions. The details are given in reference [31].
To non-dimensionalize the friction force (F) and the load-
carrying capacity (W ) the following dimensionless terms are
defined:

F̄ =
F

Pa(d0/2)2
W̄ =

W

Pa(d0/2)2
(4)

where F̄ and W̄ are the dimensionless friction force and
load-carrying capacity, and Pa is the ambient pressure in the
simulation.

B. STATISTICAL MODELING
In a real manufacturing environment, the structure of surface
textures is not perfect and dimensions such as the dimple
diameter, the dimple depth, and the area ratio differ from
the specified design dimensions. Regression models that do
not include the variables of manufacturing errors must be
explored to obtain a general overview of the efficiency of
different regression models. For this purpose, we examine
five different categories of models: linear models, quadratic
models, cubic models, logarithmic models, and logarithmic
cubic models (as given in Table 1). These models are basic
and lend themselves to simple regression analyses. Instead of
the disturbances/random errors εi and the parameters a, b, c,
and d , we estimate their values from sampled data and obtain
the fitted model with the residual εi and the parameters â, b̂,
ĉ, and d̂ .
In order to estimate the parameters in regression models,

data for the dimple diameter, the area ratio, the dimple depth,
the corresponding friction force, the load-carrying capacity,
and the coefficient of friction are required. The data are gen-
erated in numerical experiments by solving the appropriate
governing equations. The observed values of random texture
dimensions are first generated and then used in computer
programs to obtain the values of performance parameters
by solving the Reynolds equation. Each parameter has a
sample of 1000 data from the numerical experiments. Based
on this, the parameters in five regressionmodels are estimated
to determine the relationship between texture dimensions
and performance. Depending on the validity of the models,
the authors further add the manufacturing errors of texture
dimensions into the models that have high validity.

TABLE 1. Five regression models.

TABLE 2. Data used for the simulation.

IV. METHOD
A. GEOMETRIC PARAMETERS
For better readability, the following parameter definitions are
introduced.

x1 ∼= dimple diameter, d0.
x2 ∼= area ratio, Sp.
x3 ∼= dimple depth, hg.
e1 ∼= manufacturing errors of X1.
e2 ∼= manufacturing errors of X2.
e3 ∼= manufacturing errors of X3.
y1 ∼= dimensionless friction force, F̄ .
y2 ∼= dimensionless load-carrying capacity, W̄ .
y3 ∼= coefficient of friction, f .

The friction force, the load-carrying capacity, and the coef-
ficient of friction are treated as non-dimensional parameters.
The texture shape is considered to be perfectly circular, but
the values of the dimple diameter, the area ratio, and the
dimple depth are assumed to vary with a certain probability.
Thus, e1, e2, and e3 are random variables. The working
conditions (e.g., sliding velocity U , lubricant viscosity µ,
and minimum film thickness h0) and the length of the square
cell (L) are determined. The working conditions are fixed and
their values are listed in Table 2.

Table 3 lists some of the preferred geometric parameters
reported in the literature. Therefore, the range for textured
geometry in the simulations is 100∼2000 µm for the dimple
diameter, 5∼30% for the area ratio, and 1∼10 µm for the
dimple depth.
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TABLE 3. Preferred geometric parameters used in literature.

B. ASSUMPTIONS
Five main assumptions are as follows. Assumption 1 is
to simplify and standardize the surface textures. Assump-
tions 2, 3, 4, and 5 determine the statistical parameters accord-
ing to the actual manufacture and operation.
Assumption 1: Type of asperity geometries is a perfect

circle.
In a real manufacturing environment, the edge of the dim-

ple is not smooth enough and the type of asperity geometries
should be considered as an irregular polygon. However, this
research simplifies the shape of the dimple as a perfect circle
to focus on the influence of the diameter and depth of the dim-
ple, since these two dimple parameters are widely mentioned
in the studies of the performance of surface textures.
Assumption 2: The three geometrical parameters (dimple

diameter, area ratio, and dimple depth) are uniformly dis-
tributed as specified.

The recommended range for the textured geometry is
100∼2000 µm for the dimple diameter, 5∼30% for the area
ratio, and 1∼10 µm for the dimple depth. The value of
each texture’s geometry is usually determined by the design-
ers’ experience; they can set the textured geometry values
independently and randomly. Therefore, in this research, the
values of texture geometry are randomly picked from their
value range, and the possibility to pick each value is equal.
That is, x1, x2, and x3 are uniformly distributed.
Assumption 3: The manufacturing errors of three geomet-

rical parameters follow the normal distribution.
The distribution of random texture dimensions is related

to the manufacturing process. For example, depending on
the characteristics of the manufacturing drill, the dimple size
may be random and follow a uniform distribution, or it may
follow the normal distribution. No matter what the distri-
bution, according to the central limit theorem, it would be
approximately normally distributed for a sufficiently large
number. Thus, in this study, it is assumed that the random
variables follow the normal distribution.
Assumption 4: The laser texturing reaches three-sigma

performance level.

Since three-sigma is a common quality metric in manufac-
turing and is widely used to set the control limit, the manu-
facturing errors are expected to follow a normal distribution
with the three-sigma quality. That is, e1, e2, and e3 follow
the standard normal distribution, and 99.73% of geometrical
parameters are within three standard deviations of the mean.
Assumption 5: Manufacturing errors are independent, and

the relative tolerance band of e1, e2, and e3 is ±1%.
Suppose that e1, e2, and e3 are independent of each other.

Those larger than 1% of the designed size or smaller than 1%
of the designed size are considered to be defective. That is,
e1, e2, and e3 are within the range from 99% to 101% of the
average.

C. NUMERICAL EXPERIMENTS
Numerical experiments are used in this research to gener-
ate data for texture dimensions and associated manufactur-
ing errors. Since the one-factor-at-a-time strategy fails to
consider the interaction between the factors, the factorial
design (as given in Table 4) is implemented in the numerical
experiments.

TABLE 4. Factorial design of the numerical experiments.

Independent variables in the numerical experiments are
x1, x2, x3, e1, e2, and e3. x1, x2, and x3 are design variables.
Their values can be set randomly within the range. The range
of x1, x2, and x3 is equally divided into n proportions. That is,
x1, x2, and x3 have n+1 levels from the uniform distribution,
which could be used for the experiment. Few experiments
involve more than four levels per treatment factor [28]; there-
fore, the research determines three levels for each factor of
x1, x2, and x3. That is, n = 2, and there are 27 treatments.
The parameters e1, e2, and e3 represent the randomly

occurring manufacturing errors that cannot be controlled,
so they are assumed to follow the normal distribution with
three-sigma quality and a relative tolerance band of ±1%.
Based on this, N points are chosen from the normal distri-
bution curve of each factor (e1, e2, and e3). The N points can
be referred to as replication, which repeats the observations
at every level of the factors and increases the sample sizes.
Replication permits the experimenter to obtain a more precise
estimate of the parameter. Determining five replicates per
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factor can produce 125 observations in each treatment (the
cell in Table 4), which is deemed to be adequate to ensure
accuracy [29]. That is, N = 5, and there are 125 observations
for each treatment.

In Table 4, there are 3375 observations. They follow the
normal distribution. The average value equals each designed
value (x1, x2, and x3) and the standard deviation derives from
the three-sigma performance level and the tolerance band.
R programs are used to generate experimental data.

Dependent variables y1, y2, and y3 are used to measure
performance. They are computed based on the real value
rather than the designed value of geometrical parameters
using the Matlab R© program.

V. RESULTS
A. COMPARISON OF DIFFERENT MODELS
In order to select effective models, the abovementioned
five statistical models are compared using a sample size
of 1000 data obtained from numerical experiments that
involve solving the Reynolds equation. Using the results,
the statistical parameters of five regression models are cal-
culated.

TABLE 5. Summary of five models for each dependent variable.

As given in Table 5, the logarithmic cubic model out-
performs other models in terms of the highest explained
variance (R2) and the lowest residual standard error (RSE).
Although the cubic model has a slightly lower explained
variance than the logarithmic cubic model, the cubic model
has a higher residual standard error and more terms in the
equation.

On the other hand, the logarithmic model is much bet-
ter than the logarithmic cubic model due to fewer terms.
Compared with the logarithmic cubic model although the

explained variance is lower and the residual standard error
is higher, it is simple and easy to comprehend.

Therefore, the model that best fits the sample data is the
logarithmic cubic model; however, the large number of terms
makes it difficult to comprehend. Compromising predictive
power for comprehension, the logarithmic cubic models are
also good-fit models. Accordingly, the authors go on to derive
models with manufacturing errors based on the logarithmic
model.

B. MODEL WITH MANUFACTURING ERRORS
There are two models derived from the logarithmic model:
a model with independent manufacturing errors and a model
including interaction with manufacturing errors. In the first
model, the authors assume that manufacturing errors are inde-
pendent (e.g., manufacturing x1 would not influence x2 or x3).
In the second model, the authors assume that manufacturing
errors are dependent, e.g., with x1 and x3 manufactured using
the same tool. That is, the first model only considers the inter-
action between the texture dimensions, and the second model
considers the interaction between the texture dimensions and
the interaction with manufacturing errors.

TABLE 6. Summary of the model with independent manufacturing errors.

TABLE 7. Summary of the model including interaction with
manufacturing errors.

The results indicate that the first model and the second
model can explain 99.98% of the variance independent vari-
ables (as given in Table 6 and Table 7). The two models have
the comparative power to explain dependent variables. The
latter is slightly better in terms of smaller RSE but at the cost
of more terms and greater complexity. Therefore, the models
with manufacturing errors that only consider the interaction
between texture dimensions are used in the subsequent anal-
ysis.

The equations of the friction force F̄ , the load-carrying
capacity W̄ , and the coefficient of friction f are as
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FIGURE 2. The actual value and the predicted value for each performance parameter.

TABLE 8. Results of model fit test.

follows:

lnF̄ = 4.573217− 15.25076× Sp − 6.009112× e2
− 5.110964× 103 × hg + 22.72483× Sp × Sp
+ 4.826932× 108 × hg × hg
− 3.871218× 104 × Sp × hg (5)

lnW̄ = 2.643605+ 3.561460× 103 × d0
+ 5.642161× 102 × e1 − 10.64639× Sp
− 2.044102× e2 − 2.509898× 105 × hg
− 7.372122× 104 × e3 − 9.452432× 105 × d0
× d0 + 14.41329× Sp × Sp − 2.190898× 1010

× hg × hg + 6.746253× 104 × Sp × hg (6)

lnf = 1.929612− 3.561458× 103 × d0
− 5.642161× 102 × e1 − 4.604371× Sp
− 3.965011× e2 − 2.561008× 105 × hg
+ 6.942814× 104 × e3 + 9.452428× 105 × d0
× d0 + 8.311538× Sp × Sp + 2.239167× 1010

× hg × hg − 1.061747× 105 × Sp × hg (7)

C. MODEL FIT TEST
The models are derived from a data sample with 3375 obser-
vations (n = 2 and N = 5). To validate the models, a large
sample with 27000 observations is generated (n = 2 and
N = 10) and tests with the first model in the above section,
which only considers the interaction between texture dimen-
sions. The results of R2 show that this model has a very good

TABLE 9. The T value in the first model.

fit with accuracy above 99.98% regardless of the number of
observations (as given in Table 8).

To evaluate themodel fit, the predicted values of dependent
variables and their actual values are compared. As shown
in Fig. 2, the predicted value is almost identical to the actual
value of each performance parameter. Therefore, the models
are predictive.

D. CRITICAL TEXTURE DIMENSIONS
Critical texture dimensions are identified through the most
influential parameters in the regression models. Comparing
the coefficients of each variable is a good approach to iden-
tify critical dimensions. However, the orders of magnitude
of variables and their range of variation are different, so it
is difficult to compare them by their coefficients. Another
approach is to compare the T value of these variables. The
T value directly reflects the influence of independent vari-
ables on ln(F̄), ln(W̄ ), and ln(f ), and it is not restricted by
the orders of magnitude of variables. The T value of each
independent variable in the models is given in Table 9. Based
on this, the importance of each independent variable is shown
in Fig. 3.
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FIGURE 3. The importance of each independent variable in the model.

FIGURE 4. The actual value and the predicted value for each performance parameter.

Geometric factors have a greater influence on the
performance of surface textures than their manufacturing
errors. Some manufacturing errors also influence perfor-
mance but their extent of influence is much less. For the
friction force F̄ , the influential manufacturing error is rep-
resented by e2. For the load-carrying capacity W̄ and the
coefficient of friction f , the manufacturing errors e1, e2,
and e3 have comparable influence. However, they have little
influence on surface texture performance compared to the
dimple diameter, the area ratio, and the dimple depth.

VI. DISCUSSIONS
A. FURTHER ANALYSIS ON THE MODEL FIT
Regression models in the research have a remarkably high
model fit and have the capability to predict texture perfor-
mance. To explore the reasons for the high fit and further
evaluate the models, the ratios of actual value and predicted
value of texture performance are calculated.

The deviation between the actual value and the predicted
value is found to be small. The deviation of ratios is less than
0.01 in terms of the friction force (as shown in Fig. 4a). For

the load-carrying capacity and the coefficient of friction, the
deviation of ratios is slightly higher but remains less than
0.01 and 0.05, respectively [as shown in Figs. 4(b) and 4(c)].
Some variations of the first third of the samples have not
been explained. These samples have a small dimple diameter
(i.e., approximately 50 µm), but optimized values of the
texture performance call for a large diameter (as mentioned
in Table 11). Therefore, the deviations have little influence on
the prediction of optimal performance. The models are highly
predictive.

B. MODELS WITHOUT MANUFACTURING ERRORS
The analysis of critical texture dimensions reveals that manu-
facturing errors have little effect on texture performance. As a
result, the influence of manufacturing errors is removed in
those models. Models of the friction force, the load-carrying
capacity and the coefficient of friction without e1, e2, and e3
are then built and compared with those models with e1, e2,
and e3.

As shown in Table 10, the value of some statistical param-
eters shows a small decline, and the decrease of model fit is
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TABLE 10. Comparisons between models with E and models without E .

TABLE 11. Optimized values and corresponding parameters.

very little. One possible explanation is that almost 99.73% of
geometrical parameters are within three standard deviations
of the mean, and since those manufacturing errors are so
small, their influence is nil.

C. PARAMETERS OPTIMIZATION
Compared with the independent variables, the role of man-
ufacturing errors is very small. In addition, manufacturing
errors are random variables and very difficult to control.
Therefore, manufacturing errors are not considered in the
optimization process. The Nloptr library, which is an R inter-
face, is used to attain nonlinear optimization.

To reach the best texture performance, optimized values
of F̄ and f are minimum values, and an optimized value
of W̄ is a maximum value. The results indicate that optimized
values of F̄ , W̄ , and f call for different values of the dimple
diameter, the area ratio, and the dimple depth when operating
in a hydrodynamic lubrication regime (as given in Table 11).

The results reveal that a large dimple diameter yields a high
texture performance regardless of performance parameters.
A small value of the area ratio (Sp = 5%) is required
to attain a maximum value of the load-carrying capacity,
and a large value (Sp = 30%) is needed to attain mini-
mum values of the friction force and the coefficient of fric-
tion. A value of the dimple depth in medium range (hg =
5.5∼6.5 µm) can attain optimized values of the load-
carrying capacity and the coefficient of friction, and a large
value (hg = 10µm) can attain optimized values of the friction
force.

FIGURE 5. Standardized values of surface texture performance.

The coefficient of friction is more frequently used than the
friction force. If only considering the load-carrying capac-
ity and the coefficient of friction, an optimized value of
performance calls for a large value of the dimple diameter
and a median value of the dimple depth. However, it calls
for different values of the area ratio. As a result, the area
ratio may be a key parameter to balance the optimized value
of the load-carrying capacity and the coefficient of friction.
To investigate the impact of the area ratio, the predicted value
is regenerated by the models without e. For this purpose,
the dimple diameter is set at 1883.389 µm, the dimple depth
is set at 6 µm, and the area ratio varied from 5% to 30%.
The predicted values of the friction force, the load-carrying
capacity, and the coefficient of friction are not compara-
ble because their range is disparate. Therefore, the values
are standardized, and the range is from 0 to 1 (as shown
in Fig. 5). Along with the increase of the area ratio, both
the load-carrying capacity and the coefficient of friction are
decreased. Their curves are comparable, so the change of Sp
leads to a similar varying tendency. Therefore, it is difficult
to determine the area ratio to reach a relatively high load-
carrying capacity and lower coefficient of friction. The design
requirements will dictate which performance parameter is
more important.

In summary, when the designer chooses the dimple diam-
eter, the dimple depth, and the area ratio in the value
range (100 ∼2000 µm for the diameter, 1∼10 µm for the
depth, and 5∼30% for the area ratio), he or she should first
confirm which performance parameter is the most impor-
tant. To obtain the optimized values of the friction force F̄ ,
the load-carrying capacity W̄ , or the coefficient of friction f ,
the following equations are solved:

Min F̄ = f
(
d0, hg, Sp

)
(8)

Max W̄ = g
(
d0, hg, Sp

)
(9)

Min f = h(d0, hg, Sp) (10)
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Subject to:


100µm ≤ d0 ≤ 2000 µm
1 µm ≤ hg ≤ 10 µm
5% ≤ Sp ≤ 30%.

(11)

The optimized value of friction force F̄ calls for
hg = 10 µm, Sp = 30%.

The optimized value of load-carrying capacity W̄ calls for
d0 = 1883.389 µm, hg = 5.805 µm, Sp = 5%.
The optimized value of coefficient of friction f calls for

d0 = 1883.389 µm, hg = 6.430 µm, Sp = 30%.
Generally, a design calls for the optimized values on all

aspects of surface texture performance, but this is difficult to
satisfy due to the intertwined relationships among the aspects
of performance. For instance, if a design needs the optimal
combinatorial performance in load-carrying capacity and the
coefficient of friction, the dimple’s diameter and its depth
should be 1883 µm and 5.5∼6.5 µm, respectively, and the
value of the area ratio should be determined depending on
the design requirements.

D. COMPARISON WITH PHYSICAL EXPERIMENTAL
RESULTS
In this section, we compare the results of this research
with those of published experimental measurements. In sep-
arate research, Wang et al. [30] report an investigation
of the optimized value of the load-carrying capacity of
thrust bearings working in water lubrication. Their experi-
ments use seven combinations of the geometrical parameters,
including the dimple diameter (50∼650 µm), the dimple
depth (2∼16.6 µm), and the area ratio (2.8∼22.5%). Several
fixed levels of these parameters are determined. Results of the
experiments show that dimples with the diameter at 350 µm,
the depth at 3.2 µm, and the area ratio at 5% yield the
best performance in terms of generating the load-carrying
capacity. These findings are in accordance with the results of
this research in terms of the area ratio. That is, a relatively
small value of the area ratio yields a high level of load-
carrying capacity. Their research uses multiple fixed levels of
the geometrical parameters but only investigates one variable
at a time without considering the interaction among other
variables, which might bias the results.

Referring back to Fig. 3, the dimple’s diameter and its
depth have greater influence compared to the area ratio in
terms of the load-carrying capacity and the coefficient of
friction. Recall that the area ratio has the most influence com-
pared to other factors in terms of the friction force. This find-
ing agrees with the experimental evaluation of Yan et al. [26].
They carried out frictional tests on the textured specimens
of cast iron with oil lubrication under the contact pressures
of 0.2 and 1 MPa and sliding velocities of 0.1 and 0.5 m/s.
However, they also find that the frictional performance is
optimized when the dimple diameter is 100∼200 µm (range
from 50 to 300 µm), the area ratio is 5∼10% (range from 5%
to 20%), and the dimple depth is 10 µm (range from 5 µm to
20 µm). The findings are different from the results of this
research. One of the possible reasons is that the operating

conditions are different. Although they considered the inter-
action among variables, they also used fixed levels of
variables and only tested some levels of the factorial
design (16 levels among 64 levels), without considering the
probability of each level.

Reference [31] uses the same value of working conditions
under hydrodynamic lubrication as this research. They use
the numerical optimization approach to determine the opti-
mum texture shape for generating the highest load-carrying
capacity. Their research reveals that chevron-type shapes
and trapezoid-like shapes produce the highest load-carrying
capacity. The result of optimization shows that the highest
load-carrying capacity occurs at the area ratio of 49% for
unidirectional sliding and at the area ratio of 63.5% for
bidirectional sliding. The result is different than that of this
research which suggests that a small area ratio (i.e., 5%)
is needed to obtain great load-carrying capacity. One pos-
sible reason for the difference is that the shape of dimples
is different. However, to reduce the contact area and stress
concentration caused by surface texturing, research reported
by Wang et al. [32] recommends that the area ratio be less
than 20%. Simulation results of reference [31] show that the
proposed optimum trapezoid-like shapes always have greater
load-carrying capacity than the regular shapes at an area ratio
of 30%. Thus, dimples with trapezoid-like shapes could be
adopted in further research, and may obtain greater load-
carrying capacity than circular dimples.

Another important explanation for the difference between
results of this research and those of physical experiments is
that this research uses the Reynolds model, which underes-
timates the cavitation effects. Cavitation is shown to have
a significant influence on the performance of near-parallel
textured contacts [33]. In order to address the cavitation
effects, a mass-conservative algorithm proposed by Elrod
and Adams [34] is adopted to study the behavior of micro-
textured journal bearings [35], [36]. Comparisons between
the mass-conservative algorithm and Reynolds model show
that the Reynolds model largely underestimates the cavitation
area and yields inaccuracies in the prediction of the load-
carrying capacity. The Jakobsson–Floberg–Olsson (JFO)
model, which enforces mass conservation, is another widely
used cavitation model in hydrodynamic lubrication the-
ory [37]. The prediction from the JFO model is more realistic
than that from the Reynolds model, according to experi-
mental and simulation results on parallel thrust bearings and
journal bearings [38]–[40]. Modifications of computational
algorithms that incorporate the JFO model are proposed to
conserve mass continuity, improve numerical instability, and
overcome convergence issues [41]. Adopting the JFO model
and its modifications in numerical experiments probably
increases the model complexity, but it enhances the accuracy
of prediction.

VII. CONCLUSIONS
Compared with previous studies, this study adopts a gen-
eral procedure for quantifying uncertainty in the analysis
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of textured surfaces operating in the hydrodynamic lubrica-
tion regime. The statistical method in this research generally
solves the problems of quantifying uncertainty, mixed uncer-
tainty, and generalization of uncertainty mentioned above.
As to the problem of quantifying uncertainty, the study
considers the probability of each level and adopts a nor-
mal distribution to represent the multiple levels of uncer-
tain parameters. As to the mixed uncertainty from multiple
sources, the study considers three variables at a time and
investigates the interaction among these variables. As to the
generalization of uncertainty, the study uses a numerical
experiment and the statistical method to simulate the uncer-
tainty of the manufacturing process. These methods can be
generalized to other manufacturing processes and operating
conditions by adjusting model parameters. This study inves-
tigates a general way of quantifying uncertainty frommultiple
sources.

The following conclusions can be drawn from the results
of this investigation.

1) The statistical models can explain and predict the influ-
ence of texture dimensions with uncertainty on the per-
formance of surface textures. The logarithmic models
can explain more than 99.98% of the variance in data,
and they are verified to be robust among different data
samples.

2) The statistical models indicate that the most criti-
cal geometric parameter for the coefficient of friction
and the load-carrying capacity is the dimple diameter,
whereas the most critical geometric parameter for the
friction force is the area ratio.Manufacturing errors that
follow the normal distribution with three sigma quality
are not significant.

3) The dimple diameter of 1883µm is optimal to generate
a low friction force, a high load-carrying capacity, and a
low coefficient of friction. The dimple depth of 5.5∼6.5
µm is optimal for a high load-carrying capacity and
a low coefficient of friction. The area ratio should be
determined based on the importance degree of the load-
carrying capacity and the coefficient of friction.
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