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ABSTRACT A recurring problem faced when training neural networks is that there is typically not enough
data tomaximize the generalization capability of deep neural networks. There aremany techniques to address
this, including data augmentation, dropout, and transfer learning. In this paper, we introduce an additional
method, which we call smart augmentation and we show how to use it to increase the accuracy and reduce
over fitting on a target network. Smart augmentation works, by creating a network that learns how to generate
augmented data during the training process of a target network in a way that reduces that networks loss. This
allows us to learn augmentations that minimize the error of that network. Smart augmentation has shown
the potential to increase accuracy by demonstrably significant measures on all data sets tested. In addition,
it has shown potential to achieve similar or improved performance levels with significantly smaller network
sizes in a number of tested cases.

INDEX TERMS Artificial intelligence, artificial neural networks, machine learning, computer vision
supervised learning, machine learning algorithms, image databases.

I. INTRODUCTION
In order to train a deep neural network, the first and probably
most important task is to have access to enough labeled
samples of data. Not having enough quality labeled data
will generate overfitting, which means that the network is
highly biased to the data it has seen in the training set and,
therefore will not be able to generalize the learned model to
any other samples. In [1] there is a discussion about howmuch
the diversity in training data and mixing different datasets
can affect the model generalization. Mixing several datasets
might be a good solution, but it is not always feasible due to
lack of accessibility.

One of the other approaches to solving this problem is
using different regularization techniques. In recent years
different regularization approaches have been proposed and
successfully tested on deep neural networkmodels. The drop-
out technique [2] and batch normalization [3] are two well-
known regularization methods used to avoid overfitting when
training deep models.

Another technique for addressing this problem is called
augmentation. Data augmentation is the process of supple-
menting a dataset with similar data that is created from the
information in that dataset. The use of augmentation in deep
learning is ubiquitous, and when dealing with images, often

includes the application of rotation, translation, blurring and
other modifications to existing images that allow a network
to better generalize [4].

Augmentation serves as a type of regularization, reducing
the chance of overfitting by extracting more general infor-
mation from the database and passing it to the network. One
can classify the augmentation methods into two different
types. The first is unsupervised augmentation. In this type of
augmentation, the data expansion task is done regardless of
the label of the sample. For example adding a different kind
of noise, rotating or flipping the data. These kinds of data
augmentations are usually not difficult to implement.

One of the most challenging kinds of data expansion is
mixing different samples with the same label in feature space
in order to generate a new sample with the same label. The
generated sample has to be recognizable as a valid data
sample, and also as a sample representative of that specific
class. Since the label of the data is used to generate the new
sample, this kind of augmentation this can be viewed as a type
of supervised augmentation.

Many deep learning frameworks can generate augmented
data. For example, Keras [5] has a built inmethod to randomly
flip, rotate, and scale images during training but not all of
these methods will improve performance and should not be
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used ‘‘blindly’’. For example, on MNIST (The famous hand-
written number dataset), if one adds rotation, the network will
be unable to distinguish properly between handwritten ‘‘6’’
and ‘‘9’’ digits. Likewise, a system that uses deep learning
to classify or interpret road signs may become incapable
of discerning left and right arrows if the training set was
augmented with by indiscriminate flipping of images.

More sophisticated types of augmentation, such as selec-
tively blending images or adding directional lighting rely on
expert knowledge. Besides intuition and experience, there is
no universal method that can determine if any specific aug-
mentation strategy will improve results until after training.
Since training deep neural nets is a time-consuming process,
this means only a limited number of augmentation strategies
will likely be attempted before deployment of a model.

Blending several samples in the dataset in order to high-
light their mutual information is not a trivial task in practice.
Which samples should be mixed together how many of them
and how they mixed is a big problem in data augmentation
using blending techniques.

Augmentation is typically performed by trial and error,
and the types of augmentation performed are limited to the
imagination, time, and experience of the researcher. Often,
the choice of augmentation strategy can be more important
than the type of network architecture used [6].

Before Convolutional Neural Networks (CNN) became the
norm for computer vision research, features were ‘‘hand-
crafted’’. Handcrafting features went out of style after it was
shown that Convolutional Neural Networks could learn the
best features for a given task. We suggest that since the
CNN can generate the best features for some specific pattern
recognition tasks, it might be able to give the best feature
space in order to merge several samples in a specific class
and generate a new sample with the same label. Our idea is
to generate the merged data in a way that produces the best
results for a specific target network through the intelligent
blending of features between 2 or more samples.

II. RELATED WORK
Manual augmentation techniques such as rotating, flipping
and adding different kinds of noise to the data samples, are
described in depth in [4] and [7] which attempt to measure the
performance gain given by specific augmentation techniques.
They also provide a list of recommended data augmentation
methods.

In 2014, Srivastava et al. introduced the dropout tech-
nique [2] aiming to reduce overfitting, especially in cases
where there is not enough data. Dropout works by temporarily
removing a unit (or artificial neuron) from the Artificial
Neural Network and any connections to or from that unit.

Konda et al. Showed that dropout can be used for data
augmentation by ‘‘projecting the the dropout noise within a
network back into the input space’’ [8].

Jaderberg et al. devised an image blending strategy as
part of their paper ‘‘Synthetic Data and Artificial Neural
Networks for Natural Scene Text Recognition’’ [9]. They

used what they call ‘‘natural data blending’’ where each of the
image layers is blended with a randomly sampled crop of an
image from a training dataset. They note a significant (+44%)
increase in accuracy using such synthetic images when image
layers are blended together via a random process.

Another related technique is training on adversarial exam-
ples. Goodfellow et al. note that, although augmentation is
usually done with the goal of creating images that are as
similar as possible to the natural images one expects in the
testing set, this does not need to be the case. They fur-
ther demonstrate that training with adversarial examples can
increase the generalization capacity of a network, helping to
expose and overcome flaws in the decision function [10].

The use of Generative Adversarial Neural Networks [11]
is a very powerful unsupervised learning technique that
uses a min-max strategy wherein a ’counterfeiter’ network
attempts to generate images that look enough like images
within a dataset to ’fool’ a second network while the second
network learns to detect counterfeits. This process contin-
ues until the synthetic data is nearly indistinguishable from
what one would expect real data to look like. Generative
Adversarial Neural Networks can also be used to generate
images that augment datasets, as in the strategy employed by
Shrivastav et al. [12].

Another method of increasing the generalization capacity
of a neural network is called ‘‘transfer learning’’. In transfer
learning, we want to take knowledge learned from one net-
work, and transfer it to another [13]. In the case of Convolu-
tional Neural Networks, when used as a technique to reduce
overfitting due to small datasets, it is common to use the
trained weights from a large network that was trained for a
specific task and to use it as a starting point for training the
network to perform well on another task.

Batch normalization, introduced in 2015, is another pow-
erful technique. It was discovered upon the realization that
normalization need not just be performed on the input layer,
but can also be achieved on intermediate layers [3].

Like the above regularization methods, Smart Aug-
mentation attempts to address the issue of limited train-
ing data to improve regularization and reduce overfitting.
As with [10], our method does not attempt to produce aug-
mentations that appear ‘‘natural’’. Instead, our network learns
to combine images in ways that improve regularization.
Unlike [4] and [7], we do not address manual augmentation,
nor does our network attempt to learn simple transformations.
Unlike the approach of image blending in [9], we do not arbi-
trarily or randomly blend images. Smart augmentation can
be used in conjunction with other regularization techniques,
including dropout and traditional augmentation.

III. SMART AUGMENTATION
Smart Augmentation is the process of learning suitable aug-
mentations when training deep neural networks.

The goal of Smart Augmentation is to learn the best
augmentation strategy for a given class of input data.
It does this by learning to merge two or more samples
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FIGURE 1. Smart augmentation with more than one network A.

FIGURE 2. Diagram illustrating the reduced smart augmentation concept with just one network A.

in one class. This merged sample is then used to
train a target network. The loss of the target network
is used to inform the augmenter at the same time.
This has the result of generating more data for use by the tar-
get network. This process often includes letting the network
come up with unusual or unexpected but highly performant
augmentation strategies.

A. TRAINING STRATEGY FOR SMART AUGMENTATION
During the training phase, we have two networks:
Network A, which generates data; and network B, which
is the network that will perform a desired task (such as
classification). The main goal is to train network B to do
some specific task while there are not enough representative
samples in the given dataset. To do so, we use another
network A to generate new samples.

This network accepts several inputs from the same
class (the sample selection could be random, or it could use

some form of clustering, either in the pixel space or in the
feature space) and generates an output which approximates
data from that class. This is done by minimizing the loss
function LA which accepts out1 and image i as input. Where
out1 is the output of network A and mage i is a selected
sample from the same class as the input. The only constraint
on the network A is that the input and output of this network
should be the same shape and type. For example, if N samples
of a P-channel image are fed to network A, the output will be
a single P-channel image.

B. THE GENERATIVE NETWORK A AND LOSS FUNCTION
The loss function can be further parameterized by the inclu-
sion of α and β as f (LA,LB;α, β). In the experiments and
results sections of this paper, we examine how these can
impact final accuracy.

Network A can either be implemented as a single net-
work (figure 2) or as multiple networks, as in figure 1. Using
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more than one network A has the advantage that the networks
can learn class-specific augmentations that may not be suit-
able for other classes, but which work well for the given class.

Network A is a neural network, such as a generative model,
with the difference that network A is being influenced by
network B in the back propagation step, and network A
accepts multiple samples as input simultaneously instead of
just one at a time. This causes the data generated by net-
work A to converge to the best choices to train network B
for that specific task, and at the same time, it is controlled by
loss function LA in a way that ensures that the outputs are
similar to other members of its class.

The overall loss function during training is f (LA,LB)
where f is a function whose output is a transformation of
LA and LB. This function could be an epoch-dependent
function i.e. the function could change with the epoch num-
ber. In the training process, the error back-propagates from
network B to network A. This tunes network A to generate the
best augmentations for network B. After training is finished,
Network A is cut out of the model and network B is used in
the test process. The joint information between data samples
is exploited to both reduce overfitting and to increase the
accuracy of the target network during training.

FIGURE 3. The image on the left is created by a learned combination of
the two images on the right. This type of image transformation helped
increase the accuracy of network B. The image was not produced to be an
ideal approximation of a face but instead, contains features that helped
network B better generalize the concept of gender which is the task it
was trained for.

C. HOW SMART AUGMENTATION WORKS
The proposed method uses a network (network A) to learn the
best sample blending for the specific problem. The output of
network A is the used for the input of network B. The idea
is to use network A to learn the best data augmentation to
train network B. Network A accepts several samples from the
same class in the dataset and generates a new sample from
that class, and this new sample should reduce the training loss
for network B. In figure 3 we see an output of network A
designed to do the gender classification. The image on the
left is a merged image of the other two. This image represents
a sample from the class ‘‘male’’ that does not appear in the
dataset, but still, has the identifying features of its class.

Notice that in figure 3, an image was created with an open
mouth and open eyes from two images. The quality of the face
image produced by networkA does notmatter. Only its ability
to help network B better generalize. Our approach is most
applicable to classification tasks but may also have applica-
tions in any approach where the selective blending of sample

features improves performance. Our observations show that
this approach can reduce overfitting and increase accuracy.
In the following sections, we evaluate several implementa-
tions of our smart augmentation technique on various datasets
to show how it can improve accuracy and prevent overfitting.
We also show that with smart augmentation, we can train a
very small network to perform as well as (or better than) a
much larger network that produces state of the art results.

IV. METHODS
Experiments were conducted on NVIDIA Titan X GPU’s
running a pascal architecture with python 2.7, using the
Theano [14] and Lasange frameworks.

A. DATA PREPARATION
To evaluate our method, we chose 4 datasets with character-
istics that would allow us to examine the performance of the
algorithm on specific types of data. Since the goal of our
paper is to measure the impact of the proposed technique,
we do not attempt to provide a comparison of techniques that
work well on these databases. For such a comparison we refer
to [15] for gender datasets or [16] for the places dataset.

1) HIGHLY CONSTRAINED FACES DATASET (db1)
Our first dataset, db1 was composed from the AR faces
database [17] with a total of 4,000 frontal faces of male and
female subjects. The data was split into subject exclusive
training, validation, and testing sets, with 70% for training,
20% for validation, and 10% for testing. All face images were
reduced to 96X96 grayscale with pixel values normalized
between 0 and 1.

2) AUGMENTED, HIGHLY CONSTRAINED
FACES DATASET (db1a)
To compare traditional augmentation with smart augmenta-
tion and to examine the effect of traditional augmentation
on smart augmentation, we created an augmented version
of db1 with every combination of flipping, blurring, and
rotation (-5,-2,0,2,5 degrees with the axis of rotation at the
center of the image). This resulted in a larger training set
of 48360 images. The test and validation sets were unaltered
from db1. The data was split into a subject exclusive training,
validation, and testing sets with 70% for training, 20% for
validation, and 10% for testing. All face images were reduced
to 96X96 with pixel values normalized between 0 and 1.

3) FERET
Our second dataset, db2, was the FERET dataset. We con-
verted FERET to grayscale and reduced the size of each
image to 100X100 with pixel values normalized between
0 and 1. The data was split into subject exclusive training,
validation, and testing sets, with 70% for training, 20% for
validation and 10% for testing.

Color FERET [18] Version 2 was collected between
December 1993 and August 1996 and made freely avail-
able with the intent of promoting the development of face
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FIGURE 4. Arbitrarily selected images from FERET demonstrate
similarities in lighting, pose, subject, background, and other
photographic conditions.

FIGURE 5. Arbitrarily selected images from the Adience show significant
variations in lighting, pose, subject, background, and other photographic
conditions.

recognition algorithms. The images are labeled with gender,
pose, and name.

Although FERET contains a large number of high-quality
images in different poses and with varying face obstruc-
tions (beards, glasses, etc), they all have certain similarities
in quality, background, pose, and lighting that make them
very easy for modern machine learning methods to correctly
classify (see figure 4). In our experiments, we use all images
in FERET for which gender labels exist.

4) ADIENCE
Our third dataset, db3, was Adience (see figure 5). We con-
verted Adience to grayscale images with size 100× 100 and
normalized the pixel values between 0 and 1. The data was
split into subject exclusive training, validation, and testing
sets, with 70% for training, 20% for validation and 10% for
testing.

5) DB4
Our fourth dataset, db4, was the MIT places dataset [16].
The MIT PLACES dataset is a machine learning database
containing has 205 scene categories and 2.5 million labeled
images.

The Places Dataset is unconstrained and includes complex
scenery in a variety of lighting conditions and environments,
as shown in figure 6.

We restricted ourselves to just the first two classes in the
dataset (Abbey and Airport). Pixel values were normalized
between 0 and 1. The ‘‘small dataset,’’ which had been
rescaled to 256× 256 with 3 color channels, was used for all
experiments withoutmodification except for normalization of
the pixel values between 0 and 1.

V. EXPERIMENTS
In these experiments, we call network B the network that
is being trained for a specific task (such as classification).

FIGURE 6. Example images from the MIT places dataset showing two
examples from each of the two classes (abbey and airport) used in our
experiments.

TABLE 1. Full listing of experiments.

We call network A the network that learns augmentations that
help train network B.

All experiments are run for 1000 epochs. The test accuracy
reported is for the network that had the highest score on the
validation set during those 1000 epochs.

To analyze the effectiveness of Smart Augmentation,
we performed 30 experiments using 4 datasets with different
parameters. A brief overview of the experiments can be seen
in Table I. The experiments were conducted with the motiva-
tion of answering the following questions:

1) Is there any difference in accuracy between using smart
augmentation and not using it? (Is smart augmentation
effective?)

2) If smart augmentation is effective, is it effective on a
variety of datasets?

3) As the datasets become increasingly unconstrained,
does smart augmentation perform better or worse?

4) What is the effect of increasing the number of channels
in the smart augmentation method?

5) Can smart augmentation improve accuracy over tradi-
tional augmentation?

6) If smart augmentation and traditional augmentation
are combined, are the results better or worse than not
combining them?
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FIGURE 7. Illustration of network B1.

7) Does altering the α and β parameters change the
results?

8) Does Smart Augmentation increase or decrease over-
fitting as measured by train/test loss ratios?

9) If smart augmentation decreases overfitting, can we use
it to replace a large complex networkwith a simpler one
without losing accuracy?

10) What is the effect of the number of network A’s on
the accuracy? Does training separate networks for each
class improve the results?

As listed below, we used three neural network architectures
with varied parameters and connection mechanisms. In our
experiments, these architectures were combined in various
ways as specified in table 1.

• Network B1 is a simple, small Convolutional neural
network, trained as a classifier, that takes an image as
input, and outputs class labels with a softmax layer. This
network is illustrated in figure 7.

• Network B2 is a unmodified implementation of
VGG16 as described in [19]. Network B2 is a large
network that takes an image as input and outputs class
labels with a softmax layer.

• Network A is a Convolutional neural network that takes
one or more images as input and outputs a modified
image.

A. SMART AUGMENTATION WITH ONE NETWORK A ON
THE GENDER CLASSIFICATION TASK
Experiments 1-8, 19,22, and 24 as seen in table 1 were
trained for gender classification using the same technique as
illustrated in figure 9. In these experiments, we use smart
augmentation to train a network (network B) for gender clas-
sification using the specified database.

The first, k images are randomly selected from the same
class (male or female) in the dataset. These k samples are
merged into k channels of a single sample. The grayscale
values of the first image, img0, are mapped to channel 0 and
the grayscale values of the second image im1 are mapped to
channel 1 and so on until we reach the number of channels
specified in the experiments table. This new k channel image
is fed into the network A. Network A is a fully convolutional
neural network (See figure 8) which accepts images as the
input and gives the images with the same size at the output in
a single channel.

FIGURE 8. Illustration of network A.

An additional grayscale image is then randomly selected
from the same class in the dataset (this image should not be
any of those images selected in step 1). The loss function
for this network A is calculated as the mean squared error
between this randomly selected image and the output of
network A. The output of network A, and the target image
is then fed into network B as separate inputs. Network B is
a typical deep neural network with two convolutional layers
followed by batch normalization and max-pooling steps after
each convolutional layer. Two fully connected layers are
placed at the end of the network. The first of these layers has
1024 units and the second dense layer is made of two units as
the output of network B using softmax. Each dense layer takes
advantage of the drop-out technique in order to avoid over-
fitting. The loss function of network B is calculated as the
categorical cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combina-
tion of the loss functions of two networks. This approach is
designed to train a network A that generates samples which
reduce the error for network B. The validation loss was calcu-
lated only for network B, without considering network. This
allows us to compare validation loss with and without smart
augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.01
and momentum 0.9. The lasagne library used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels with a single network A
on db1, 2 channels on networkA for db2 and 3, and 2 channels
on network db1a as shown in the table of experiments.

B. SMART AUGMENTATION WITH TWO NETWORK A’s ON
THE GENDER CLASSIFICATION TASK
In experiments 9-16 and 20we evaluate a different implemen-
tation of smart augmentation, containing a separate network
A for each class. As before, the first k images are randomly
selected from the same class (male or female) in the dataset.
These k samples are merged into k channels of a single
sample.The grayscale values of the first image, img0, are
mapped to channel 0 and the grayscale values of the second
image, im1, are mapped to channel 1, and so on until we
reach the number of channels specified in the experiments
table just as before. Since we now have two network A’s, it is
important to separate out the loss functions for each network
as illustrated in figure 10.
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FIGURE 9. Diagram of simplified implementation of Smart Augmentation showing network A and network B.

FIGURE 10. Diagram of our implementation of Smart Augmentation with one network A for each class.

All other loss functions are calculated the same way as
before.

One very important difference is the updated learning
rate (0.005).While performing initial experiments we noticed
that using a learning rate above 0.005 led to the ‘‘dying

RELU’’ problem and stopped effective learning within the
first two epochs. This network is also more sensitive to vari-
ations in batch size.

The goal of these experiments was to examine how
using multiple network As impacts accuracy and overfitting
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compared to just using one network A. We also wanted to
know if there were any differences when trained on a manu-
ally augmented database (experiment 20).

FIGURE 11. Diagram of implementation of network B without Smart
Augmentation.

C. TRAINING WITHOUT SMART AUGMENTATION ON
THE GENDER CLASSIFICATION TASK
In these experiments, we train a network [network B (see
figure 11)] to perform gender classification without applying
network A during the training stage. These experiments (23,
21, 18, and 17) are intended to serve as a baseline comparison
of what network B can learn without smart augmentation
on a specific dataset (db3,db2, db1a, and db1 respectively).
In this way, we measure any improvement given by smart
augmentation. A full implementation of Network B is shown
in figure 7.

This network has the same architecture as the network B
presented in the previous experiment except that it does not
utilize a network A.

As before, two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer has two units (one for each class). Each
dense layer takes advantage of the drop-out technique in order
to avoid over-fitting.

All loss functions (training, validation, and testing loss)
were calculated as the categorical cross-entropy between the
outputs and the targets.

As before, models were trained using Stochastic Gradi-
ent Descent with Nesterov Momentum [20], learning rate
0.01 andmomentum 0.9. The lasagne library was used to train
the network in python.

D. EXPERIMENTS ON THE PLACES DATASET
In the previous experiments in this section, we used 3 dif-
ferent face datasets. In experiments 25 - 30 we examine the
suitability of Smart Augmentation with color scenes from
around the world from the MIT Places dataset to evaluate our
method on data of a completely different topic. We varied
the α and β parameter in our global loss function so that we
could identify how they influence results. Unlike in previous
experiments, we also retained color information.

Experiment 25 utilized a VGG16 trained from scratch as
a classifier, chosen because VGG16 models have performed
very well on the places dataset in public competitions [16].
The input to network A was 256× 256 RGB images and the
output was determined by a 2 class softmax classifier.

In experiment 26 we use a network B, identical in all
respects to the one used in the previous subsection, except that
we use the lower learning rate specified in the experiments
table and take in color images about places instead of gender.

These two experiments (25,26) involved simple classifiers
to establish a baseline against which other experiments on the
same dataset could be evaluated.

In experiments 27-28, k images were randomly selected
from the same class (abbey or airport) in the dataset. These
k samples are merged into k × 3 channels of a single sam-
ple. The values of the first three channels of image img0
are mapped to channel 0-2, and the first three channels of
the second image im1 are mapped to channels 3-5, and so
on, until we reach the number of channels specified in the
experiments table multiplied by the number of color channels
in the source images. This new k×3 channel image is used by
network A. Network A is a fully convolutional neural net-
work) which accepts images as the input, and outputs just one
image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for network A is
calculated as the mean squared error between the randomly
selected image and the output of network A. The output of
network A, and the target image is then fed into network B as
separate inputs. Network B is a typical deep neural network
with two convolutional layers followed by batch normaliza-
tion and max-pooling steps after each convolutional layer.
Two fully connected layers are placed at the end of the net-
work. The first of these layers has 1024 units and the second
dense layer is made of two units as the output of network B
using softmax. Each dense layer takes advantage of the drop-
out technique in order to avoid over-fitting. The loss function
of network B is calculated as the categorical cross-entropy
between the outputs and the targets.

The total loss of the whole model is a linear combination of
the loss functions of two networks. This approach is designed
to train a network A that generates samples that reduce
the error for network B. The validation loss was calculated
only for network B, without considering network A. This
allows us to compare validation loss with and without smart
augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.005
and momentum 0.9. The Lasagne library was used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

In experiments 29-30, k images are randomly selected
from the same class (abbey or airport) in the dataset. These
k samples are merged into k × 3 channels of a single sam-
ple. The values of the first three channels in image img0
are mapped to channel 0-2 and the first three channels of
the second image im1 are mapped to channels 3-5 and so
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on until we reach the number of channels specified in the
experiments table multiplied by the number of color channels
in the source images. This new k × 3 channel image is fed
into the network A. Network A is a fully convolutional neural
network which accepts images as the input and outputs a
single color image.

An additional image is then randomly selected from the
same class in the dataset. The loss function for each net-
work A is calculated as the mean squared error between the
randomly selected image and the output of network A. The
output of network A, and the target image is then fed into
network B as separate inputs. Network B is a typical deep
neural network with two convolutional layers followed by
batch normalization and max-pooling steps after each convo-
lutional layer. Two fully connected layers are placed at the end
of the network. The first of these layers has 1024 units, and
the second dense layer is made of two units as the output of
network B using softmax. Each dense layer takes advantage
of the drop-out technique in order to avoid over-fitting. The
loss function of network B is calculated as the categorical
cross-entropy between the outputs and the targets.

The total loss of the whole model is a linear combination
of the loss functions of the two networks. This approach is
designed to train a network A that generates samples that
reduce the error for network B. The validation loss was cal-
culated only for network B, without considering network A.
This allows us to compare validation loss with and without
smart augmentation.

Our models were trained using Stochastic Gradient
Descent with Nesterov Momentum [20], learning rate 0.005
and momentum 0.9. The lasagne library was used to train the
network in python.

In these experiments, we varied the number of input chan-
nels and datasets used. Specifically, we trained a network B
from scratch with 1-8 input channels on network A on db1,
2 channels on network A for db2 and 3, and 2 channels on
network db1a as shown in the table of experiments.

VI. RESULTS
The results of experiments 1-30 as shown in Table 1 are listed
in tables 2 and 3 and are listed in the same order as in the
corresponding experiments table. These results are explained
in detail in the subsections below.

A. SMART AUGMENTATION WITH ONE NETWORK A
ON THE GENDER CLASSIFICATION TASK
In figure 12, we show the training and validation loss for
experiments 1 and 17. As can be observed, the rate of overfit-
ting was greatly reduced when smart augmentation was used
compared to when it was not used.

Without smart augmentation, network B had an accuracy
of 88.15 for the AR faces dataset; for the rest of this subsec-
tion, this result is used as a baseline by which other results on
that dataset are evaluated.

One can see how the smart augmentation technique could
prevent network B from overfitting in the training stage.

TABLE 2. Results of experiments on face datasets.

TABLE 3. Results of experiments on place dataset.

The smaller difference between training loss and validation
loss caused by the smart augmentation technique shows how
this approach helps the network B to learn more general
features for this task. Network B also had higher accuracy
on the test set when trained with smart augmentation.

In figures 13 and 14 we show examples of the kinds
of images network A learned to generate. In these figures,
the image on the left side is the blended image of the other
two images produced by network A.

We observe an improvement in accuracy from 83.52% to
88.46% from smart augmentation on Feret with 2 inputs and
an increase from 70.02% to 76.06% on the adience dataset.

We see that there is no noticeable pattern when we vary the
number of inputs for network A. Despite the lack of a pattern,
a significant difference was observed with 8 and 3 channels
providing the best results at 95.38% and 95.09% respectively.
At the lower end, 7, 5, and 4 channels performed the worst,
with accuracies of 91.62%, 91.04%, and 91.04%.

Recall that the accuracy without network A was: 88.15%
for the AR faces dataset. We suspect that much of the varia-
tion in accuracy reported above may be due to chance. Since
in this particular experiment, images are chosen randomly
there may be times when 2 or more images with very helpful
mutual information are present by chance and the opposite
is also possible. It is interesting that when 3 and 8 channels
were used for network A, the accuracy was over 95%.
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FIGURE 12. Training and validation losses for experiments 1 and 17, showing reductions in overfitting by using Smart Augmentation.
The smaller difference between training loss and validation loss caused by the smart augmentation technique shows how this
approach helps the network B to learn more general features for this task. To avoid confusion, we remind the reader that the loss for
smart augmentation is given by f (LA, LB;α, β). This means that the loss graphs are a combination of the losses of two networks
whereas the losses without smart augmentation are only f (LB).

FIGURE 13. The image on the left is a learned combination of the two
images on the right as produced by network A.

FIGURE 14. The image on the left is a learned combination of the two
images on the right as produced by network A.

B. SMART AUGMENTATION AND TRADITIONAL
AUGMENTATION
We note that traditional augmentation improved the accuracy
from 88.15% to 89.08% without smart augmentation on the
gender classification task. When we add smart augmentation
we realize an improvement in accuracy to 95.66%.

The accuracy of the same experiment when we used 2 net-
works A’s was also 95.66% which seems to indicate that both
configurations may have found the same optima when smart
augmentation was combined with traditional augmentation.

This demonstrates that smart augmentation can be used
with traditional augmentation to further improve accuracy.
In all cases examined so far, Smart Augmentation performed
better than traditional augmentation. However, since there are
no practical limits on the types of traditional augmentation
that can be performed, there is no way to guarantee that
manual augmentation could not find a better augmentation
strategy. This is not a major concern since we do not claim
that smart augmentation should replace traditional augmen-
tation. We only claim that smart augmentation can help with
regularization.

C. SMART AUGMENTATION WITH TWO NETWORK A’s
ON THE GENDER CLASSIFICATION TASK
In this subsection, we discuss the results of our two network
architecture when trained on the gender classification set.

These experiments show that approaches which use a dis-
tinct network A for each class, tend to slightly outperform
networks with just 1 network A. This seems to provide sup-
port for our initial idea that one network A should be used for
each class so that class-specific augmentations could be more
efficiently learned. If the networks with just 1 and 0 input
channels are excluded, we see an average increase in accuracy
from 92.94% to 93.19% when smart augmentation is used,
with the median accuracy going from 92.49% to 93.35%.

There is only one experiment where smart augmentation
performedworse than not using smart augmentation. This can
be seen in the 9th row of table II where we use only one chan-
nel which caused the accuracy to dip to 86.99%, contrasted
with 88.15% when no smart augmentation is used. This is
expected because when only one channel is used, mutual
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information can not be effectively utilized. This experiment
shows the importance of always using at least 2 channels.

D. EXPERIMENTS ON THE PLACES DATASET
As with previously discussed results, when the places dataset
is used, networks with multiple network A’s performed
slightly better. We also notice that when α is higher than β
an increase in accuracy is realized.

The most significant results of this set of experiments is
the comparison between smart augmentation, VGG 16, and
network B trained alone. Note that a small network B trained
alone (no Smart Augmentation) had an accuracy of 96.5%
compared to VGG 16 (no Smart Augmentation) at 98.5%.
When the same small network B was trained with smart
augmentation we see accuracies ranging from 98.75% to 99%
which indicates that smart augmentation, in some cases, can
allow a much smaller network to replace a larger network.

VII. DISCUSSION AND CONCLUSION
Smart Augmentation has shown the potential to increase
accuracy by demonstrably significant measures on all
datasets tested. In addition, it has shown potential to achieve
similar or improved performance levels with significantly
smaller network sizes in a number of tested cases.

In this paper, we discussed a new regularization approach,
called ‘‘Smart Augmentation’’ to automatically learn suit-
able augmentations during the process of training a deep
neural network. We focus on learning augmentations that
take advantage of the mutual information within a class. The
proposed solution was tested on progressively more difficult
datasets starting with a highly constrained face database and
ending with a highly complex and unconstrained database
of places. The various experiments presented in this work
demonstrate that our method is appropriate for a wide range
of tasks and demonstrates that it is not biased to any particular
type of image data.

As a primary conclusion, these experiments demonstrate
that the augmentation process can be automated, specifically
in nontrivial cases where two or more samples of a certain
class are merged in nonlinear ways resulting in improved
generalization of a target network. The results indicate that
a deep neural network can be used to learn the augmentation
task in this way at the same time the task is being learned.
We have demonstrated that smart augmentation can be used
to reduce overfitting during the training process and reduce
the error during testing.

It is worthwhile to summarize a number of additional
observations and conclusions from the various experiments
documented in this research.

Firstly, no linear correlation between the number of sam-
ples mixed by network A and accuracy was found so long as
at least 2 samples are used.

Secondly, it was shown that Smart Augmentation is
effective at reducing error and decreasing overfitting and
that this is true regardless of how unconstrained the
database is.

Thirdly, these experiments demonstrated that better accu-
racy could be achieved with smart augmentation than with
traditional augmentation alone. It was found that altering the
α and β parameters of the loss function slightly impacts
results but more experiments are needed to identify if optimal
parameters can be found.

Finally, it was found that Smart Augmentation on a
small network achieved better results than those obtained
by a much larger network (VGG 16). This will help
enable more practical implementations of CNN networks
for use in embedded systems and consumer devices
where the large size of these networks can limit their
usefulness.

Future work may include expanding Smart Augmentation
to learn more sophisticated augmentation strategies and per-
forming experiments on larger datasets with larger numbers
of data classes. A statistical study to identify the number of
channels that give the highest probability of obtaining optimal
results could also be useful.
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