
SPECIAL SECTION ON SECURITY AND PRIVACY IN APPLICATIONS AND SERVICES FOR FUTURE
INTERNET OF THINGS

Received March 10, 2017, accepted April 11, 2017, date of publication April 24, 2017, date of current version May 17, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2696031

IoTRiskAnalyzer : A Probabilistic Model Checking
Based Framework for Formal Risk Analytics
of the Internet of Things
MUJAHID MOHSIN, MUHAMMAD USAMA SARDAR,
OSMAN HASAN (Senior Member, IEEE), AND ZAHID ANWAR
School of Electrical Engineering and Computer Science, National University of Sciences and Technology, Islamabad 44000, Pakistan

Corresponding author: Mujahid Mohsin (mujahid.mohsin@seecs.nust.edu.pk)

ABSTRACT The Internet of Things (IoT) is being deployed for a plethora of use-case scenarios. In any
deployment, a number of configuration choices are available that achieve the mission goal. However,
IoT security incidents have demonstrated that different configurations are vulnerable to varied risk levels.
We propose the IoTRiskAnalyzer framework to formally and quantitatively analyze these risks using
probabilistic model checking. IoTRiskAnalyzer takes vulnerability scores, candidate IoT configurations,
and attacker’s capabilities as inputs. It then generates the system and threat models to compute attack
likelihood and attacker cost for each configuration. Evaluation indicates that IoTRiskAnalyzer is efficient
and automatically prioritizes the input configurations on the basis of risk exposure.

INDEX TERMS IoT risk analytic, formal risk modeling, probabilistic model checking, Markov decision
process, threat assessment, secure configuration planning, PRISM model checker.

I. INTRODUCTION
The recent years have witnessed an explosive proliferation of
the Internet of Things (IoT); thanks to its ever-rising accept-
ability and express-pace advancements in its enabling tech-
nologies. The future IoT prospects are also being nurtured
by an overwhelming growth predictions, estimating more
than 50 Billion connected ‘things’ [1], [2], generating $ 7.1
Trillions of market revenues [3] and producing 44 Zettabytes
of data [4], by the year 2020.

This exponential IoT growth has also opened new
doors for the attackers to conduct malicious activities, as
unprofessionally-configured and poorly-protected IoT sys-
tems can facilitate their nefarious goals. Gartner, Inc. [5]
predicts that by the year 2020, more than 25 percent of the
cyber attacks in enterprises will involve IoT and many of
the recent security breach incidents, research studies and
practical demonstrations endorse this claim. For example,
in a proof-of-concept attack analysis of leading smart home
products [6], the cyber-security researchers demonstrated that
their framework design can be exploited to create spare door
keys, steal existing keys and force fire alarms to go off.
A number of recently unfolded Distributed Denial of Ser-
vice (DDoS) attack incidents [7] were ranked amongst the

largest known attacks till date, as they recruited millions of
connected things as ‘thing-bots’. Other studies highlighted
vulnerabilities in the Zigbee [8] and Z-Wave [9] implemen-
tations (two of the most popular IoT protocols), capable of
inducing rapidly spreading IoT worms and causing other
digital and physical security threats.

The modern day IoT systems are ‘‘riddled with vul-
nerabilities and there are no good ways to patch them’’
due to a number of practical reasons, as highlighted by
Bruce Schneier [10]. Moreover, some vulnerabilities either
cannot be completely countered (such as wireless jamming)
or require dedicated security controls with specialized man-
agement skill set and prohibitive budget overheads (such as
firewalls). These limitations have led the IoT planners and
consumers to live with such vulnerabilities for long periods,
even stretching up the useful life of these systems.

It is noteworthy that the risk of exploiting IoT vulnera-
bilities largely depends on system configurations. Thus, an
optimal configuration can be used to significantly reduce
the likelihood of system-level attacks. An IoT architect has
several configuration choices in terms of device and technol-
ogy selection, connectivity and redundancy, each serving the
same mission goal but with varied risk levels. Therefore, it is

5494
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

important to comprehend, quantify and analyze such risks
for subsequent configuration optimizations from a security
viewpoint.

System-level risk analysis mainly relies on likelihood of
exploitation of a given set of vulnerabilities, computed on
the basis of well-established risk analysis models, and is,
therefore, probabilistic in nature. Moreover, in a hostile IoT
scenario, environmental events and attacker behavior (such
as her preferences and sequence of exploiting vulnerabilities)
are mostly unpredictable, thus making pure deterministic
analysis unrealistic. On the other hand, simulation-driven IoT
risk assessment approaches [11], [12] cannot exhaustively
quantify and analyze the risk exposure scores for complex and
safety-critical IoT systems, owing to the incomplete coverage
of all possible input vectors. Citing these requirements in this
work, we present a novel probabilistic model checking [13]
based framework called IoTRiskAnalyzer, developed using
a Markov Decision Process (MDP) [14] model. A formal
model-driven verification approach, as utilized by IoTRisk-
Analyzer, offers a powerful means to verify all possible
behaviors of reference model using a finite state space and
thus, can precisely assess the cause and degree of security
risks. The MDPmodels generated by our framework are used
in the PRISM model checker [15] to automatically analyze
the system-level risk profiles. PRISM, an MDP-supported
model checker, has already been extensively employed to
verify the security and safety aspects of a wide variety of
systems, including aerodynamics [16], smart grid [17] and
secure product design [18].

Our earlier work, IoTSAT [19], utilized Satisfiability Mod-
ulo Theories (SMT) [20] to formally model and analyze
the threat resiliency and tactics for generic IoT systems.
SMT solvers primarily follow a constraint satisfaction
approach and therefore, cannot precisely capture the prob-
abilistic nature of risk-assessment and temporal behaviors
of threat verification, as demonstrated by IoTRiskAnalyzer.
On the other hand, the SMT models, being highly expressive
due to the rich set of supported theories, can be used to accu-
rately model the low-level details of complex IoT systems.
Consequently, the formalisms adopted by IoTSAT and
IoTRiskAnalyzer are complimentary in nature and both the
frameworks can be used in conjunction to plan, verify and
develop a holistic security picture for complex IoT systems.

A. PAPER CONTRIBUTIONS
The key contribution of this work is to present a framework,
i.e. IoTRiskAnalyzer, to realistically model and formally ver-
ify the risk exposure to complex IoT Systems. As explained
further in Section IV, IoTRiskAnalyzer takes as input: (1) a
set of software, hardware, data and communication vulner-
ability scores from relevant IoT security literature, (2) a set
of candidate IoT configurations for achieving a mission and
(3) the attacker behavior and capabilities. For each candidate
configuration, the framework generates the system and threat
models, which are utilized to formally compute the likelihood
and attacker cost for exploiting individual vulnerabilities to

achieve the system-level attack objectives. The framework
thus produces an ordered set of configurations, prioritized on
the basis of risk exposure probabilities to different system-
level attack scenarios.

B. PAPER ORGANIZATION
The rest of the paper is organized as follows: Section II covers
the existing work in the relevant domains. In Section III,
we present a background of probabilistic model checking
and the PRISM tool. Section IV gives an overview of
the research approach used by IoTRiskAnalyzer. Section V
presents a small-scale case study of a home security system,
which is used to explain the working of our framework.
Lastly, Section VI explains the implementation and eval-
uation aspects and Section VII concludes the paper while
identifying some directions for the future work.

II. RELATED WORK
To the best of our knowledge, this is the first formal frame-
work to probabilistically quantify the risk of exposures to
complex system-level attacks on IoT systems, as a func-
tion of individual device-level vulnerabilities and attacker
behavior. Nevertheless, our framework leverages existing
efforts towards IoT-specific risk analysis and the use of for-
mal techniques for analyzing the security and consistency of
the IoT systems. This section critically analyzes the existing
efforts in the associated fields.

A. IoT-SPECIFIC RISK ANALYSIS
With the rise in IoT-specific security breach incidents, the
field of risk assessment and management for IoT related
threats has also emerged as a dedicated research area.
Liu et al. [21] proposed a dynamic risk assessment method-
ology for the IoT, inspired by the artificial immune system.
Their approach computed the changing risk value of an IoT
system based on attack intensity as measured by different
attack detection agents. Roman et al. [22] discussed the secu-
rity risks being contributed by the ever-increasing influx of
IoT devices. The authors critically analyzed such emerging
risks, their root causes, and viable mitigation techniques.
Podgórski et al. [23], besides presenting a comprehensive
literature review of related fields, also proposed a conceptual
framework for risk management in the domain of occupa-
tion safety and health under smart working environments.
Djemame et al. [24] presented an implementation of a risk
assessment framework for cloud service eco-systems with
capabilities to identify, evaluate and mitigate the risks. Their
key contribution is the risk assessment model, comprising
of four risk categories, namely technical, policy, legal and
general. The literature, discussed above, dictates that the IoT
systems follow a dynamic and formidable risk posture, which
can be tackled using diverse approaches. However, none of
these efforts employed a formal model checking based veri-
fication approach for risk analysis.

A questionnaire-driven empirical study is another way of
quantifying the security risks. Chang et al. [25] utilized this

VOLUME 5, 2017 5495

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

approach to investigate enterprise risk factors for govern-
ing the risk of IoT environments. Other works [26], [27]
conducted empirical risk analyses for smart home automa-
tion systems. Still, other methodologies employed sce-
nario [27], [28] and product-based [29] approaches for
characterizing risks. These efforts focus on risk analysis of
individual devices or general category of devices and their
findings are based on expert opinions, experiences or domain-
specific security incidents. Use of formal methods for auto-
mated risk assessment, as presented by IoTRiskAnalyzer, can
leverage and extend such manual methods to automatically
reason about risk applicability and countermeasures, not only
on individual IoT entities but also for complex and large-scale
IoT systems.

B. FORMAL APPROACHES TOWARDS IoT SECURITY
Corno and Sanaullah [30] surveyed and critically analyzed
the research contributions towards design-time formal veri-
fication for smart environments. The authors categorized the
surveyed papers based on various factors and formalisms and
concluded that ‘‘no surveyed technique maintains a holistic
[modeling] perspective’’. Another indirect inference from
their work is that the existing efforts mostly focus on formally
verifying the correctness and stability of entity interactions
and controls and a very limited literature exists towards the
use of formal methods for security analytic and risk verifica-
tion of such systems.

Mundhenk et al. [31] proposed system-level security anal-
ysis of smart automotive architectures using a Continuous-
Time Markov Chain (CTMC) [32] model. Their approach
was focused at design-time system verification, with a
premise that specific vulnerabilities are not known a pri-
ori. Moreover, CTMC being purely stochastic, cannot model
the non-deterministic behavior of attacker, as demonstrated
by our work. A model checking approach was used by
Kang et al. [33] for performing security property verification
of a water treatment system. The scope of their research did
not cover risk verification and concentrated on exploring a
particular system, and is not generalizable. Furthermore, their
work examined malicious alteration of sensing and actuation
data only, and did not cater for the networking aspects and
associated attack patterns, as demonstrated by our frame-
work. Prior works in this area encompass static analysis of
security considerations in Computer Supported Cooperative
Work (CSCW) systems [34] and a formal analysis technique
to uncover stealthy attacks in cyber-physical systems, while
utilizing the verification engine of Matlab/Simulink [35].

C. FORMAL APPROACHES TOWARDS IoT CONSISTENCY
Use of formal techniques for proving the consistency of IoT
systems is another popular research area. Guilly et al. [36]
extended the Event Condition Action (ECA) language in
Timed Automata for isolating system anomalies and safety
hazards in smart home applications. Augusto andHornos [37]
leveraged Linear Temporal Logic (LTL) to model and verify
the behavior of smart systems. Corno and Sanaullah [38]

proposed an approach to formally verify the correctness, reli-
ability and safety of smart environments at the design stage,
using model checking. Coronato and Pietro [39] extended
Ambient Logic and Ambient Calculous to formally specify
the requirements and verify their correctness in safety-critical
ubiquitous and pervasive systems.

The research contributions discussed above aim to verify
the anticipated behavior of targeted systems under non-
malicious situations. Therefore, these efforts do not cover
the threat analytics and risk verification for active adver-
sarial attacks. Contrarily, the system model generated by
IoTRiskAnalyzer is based on an assumption that the input IoT
configurations are consistent and stable under non-malicious
scenarios and can only be compromised by an active adver-
sary through the exploitation of components’ vulnerabilities,
as formalized by the threat model.

III. BACKGROUND
A. PROBABILISTIC MODEL CHECKING
Model checking [40] is a well-recognized and widely-
adopted formal technique to verify functional, safety, secu-
rity and reliability requirements in a number of application
domains. The key idea is to model the system as a state tran-
sition and express the desired system properties as formulas
in temporal logic. The main benefit of model checking is the
automatic verification of the properties of interest. In case a
property does not hold for a given model of the system, it also
provides a counter trace for debugging.

Probabilistic model checking [13] is an advanced model
checking technique in which uncertainties and randomized
behaviors of stochastic systems are modeled by assigning
probability values to the transitions in the state transition
model of the targetted system. The behavior of proba-
bilistic systems can be modeled as discrete-time Markov
chains (DTMCs), CTMCs [32] or MDPs [14]. DTMC and
CTMC are used for modeling the systems where the events
are discrete and continuous, respectively, with respect to time.
MDP is used to model the non-deterministic behavior of the
systems.

Since the attacker behavior and the IoT environmental
events are non-deterministic in nature, we have modeled our
system as an MDP. Each transition in MDP from the current
state to the next state is probabilistic and depends on the
current state of the system. Mathematically, the probability
of the transition from a current state S to a next state S ′ is
expressed as [41]:

Pa(S, S ′) = Pr (St+1 = S ′|St = S, at = a)

where Pr represents the probability to transition from state S
to S ′ and a denotes the corresponding action, which triggered
that transition. The transition probabilities of all the state tran-
sitions is represented by a Transition Probability Matrix P.
The probability of the next state is then expressed as [41]:

Pr (S ′) = Pr (S) ∗ P

5496 VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

A variety of probabilistic model checkers, such as
MRMC [42], Vesta [43], Ymer [44], PRISM [15] and
ETMCC [45], are available to formally model and verify
those systems, which exhibit random or probabilistic behav-
iors. We choose the PRISM model checker because of its
support forMDPmodels (not all probabilistic model checkers
support MDP) and time and memory efficiency as compared
to the other available tools [46].

B. PRISM MODEL CHECKER
PRISM facilitates several categories of probabilistic
models, such as DTMCs, CTMCs [32], MDPs [14],
probabilistic automata (PAs) [47], probabilistic timed
automata (PTAs) [48] as well as extensions of these models
with rewards (or costs), referred to as continuous or discrete-
time Markov reward models and priced PTAs. The system
models are formally encoded in the PRISM language, which
is a state-driven language, founded on Alur’s Reactive Mod-
ules formalism [49]. The PRISM language primarily consists
of modules and variables. The encoded model comprises
of a concurrent composition of independent yet interacting
modules. A module consists of local variables and guarded
commands. At any given time, the values assigned to these
variables represent the state of the modules and the guarded
commands mimic the behavior of these modules. The local
state of independent modules is integrated to determine the
holistic state of the entire model. The syntax of a PRISM
command is as follows:

[act] Guard ⇒ Pr_1 : Update_1

+ . . .

+Pr_n : Update_n;

where act refers to an optional synchronization label and the
Guard represents a predicate, which can be defined using all
the variables contained in the model (inclusive of variables
from other modules). The Update expression assigns new
values to the module variables and Pr represents a proba-
bility (or rate) value assigned to the corresponding transition
taken by the module, after the Guard condition is met. Non-
determinism can be modeled by using the same Guard for
multiple PRISM commands, so that all of them are enabled
at the same time (whenever their common pre-condition is
met) and only one of them is non-deterministically selected.

In order to verify and analyze the behavior of a given
system, the desired functionality has to be expressed as
a property in a suitable probabilistic logic using property
specification language. The property specification language
used by PRISM is founded on temporal logic and subsumes
LTL, PCTL* and PCTL [50] for MDPs. The Pmin and
Pmax operators are used to reason about the minimum and
maximum probabilities over all possible resolutions of non-
determinism. They can be used to verify quantitative proper-
ties that take the form:

Pmax=? [Path-Prop]

where Path-Prop is a path property using temporal oper-
ators X (next state), U (until), F (eventually), G (globally),
W (weak-until), R (release) and their complex combinations.
The propertymentioned above represents themaximumprob-
ability that Path-Prop is satisfied by the paths from the
current state, for all possible resolutions of nondetermin-
ism [14]. The minimum probability is computed similarly, by
using the PRISM keyword Pmin.

FIGURE 1. IoTRiskAnalyzer.

IV. IoTRiskAnalyzer : RESEARCH APPROACH
The proposed approach, followed by IoTRiskAnalyzer, is
depicted in Figure 1. Firstly, a Markov model is devel-
oped based on the system and threat models. The system
model captures the behavior of: (i) A set of candidate
IoT configurations, defining IoT entities and their net-
work, functional and environmental coupling requirements.
(ii) Operational policies (user-defined), depicting the rules
based on which the sensing data is processed and actua-
tion commands are triggered. The threat model formally
defines the non-deterministic nature of attacker (i.e. attacker
behavior) while exploiting a chain of vulnerabilities to
achieve the attack objectives. This behavior is enriched by
the attacker capabilities and vulnerability exploitation scores
of individual IoT components. These vulnerability scores can
be extracted from well-established and widely accepted risk
assessment models, which quantify the exploitation probabil-
ities for such vulnerabilities.

After the generation of the Markov model in IoTRiskAn-
alyzer, the appropriate properties for risk verification are
specified. These properties are developed using Probabilistic
Computation Tree Logic (PCTL), after translating the identi-
fied system-level threats into attack objectives and punctuat-
ing them with realistic attacker capabilities. These properties
are then checked against the Markov model to extract veri-
fied risk reports using the principles of probabilistic model
checking. The reports can be analyzed to answer different
questions such as: ‘‘What is the maximum likelihood of an
attack within the defined attacker’s capabilities? Which con-
figuration offers the maximum protection against a range of
threats? or which policy suits best the input configurations
from a security viewpoint?’’

VOLUME 5, 2017 5497

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

A. SYSTEM MODEL
The proposed framework generates a dedicated systemmodel
for each IoT configuration, where every candidate configu-
ration uniquely defines the network, policy, functional and
environmental relationships of registered IoT entities.

Mathematically, an IoT system configuration is defined as
a quadruple < F,N ,L,P > where:

F Environmental Features;

N Nodes

N = {(H ∪ G) ∧ (H ∩ G = ∅)} where;

G = Network devices (gateways, routers) and

H = {S ∪ C ∪ D ∪M} are Hosts, where;

S = Sensors

C = Controllers

D = Cloud Servers (Aggregators)

M = Actors | M = {(A ∪ R) ∧ (A ∩ R = ∅)} where;

A = Controllable Actuating Devices (Actuators)

R = Response Actors

L Links | L ⊆ N × N ;

P A set of operational policies where

each policy is a set of rules;

and a set of entity mappings, including;
Network Mapping (NM): Defines the link to device map-

pings to form a connected graph, comprising of Nodes
(bi ∈ N) and connected by Links (li ∈ L) as edges.

NM (bi)
bi∈N

: bi ⇒M(L)

Policy Mapping (PM): Defines a one-to-one mapping of
Controllers (C) and Response Actors (R) to the corresponding
policy set pi ∈ P hosted by them.

PM (bi)
bi∈C∪R

: bi ⇒M(P)

Functional Mapping (FM): Defines the functional rela-
tionships among the IoT devices in accordance with the
corresponding policy defined by PM .

FM (bi)
bi∈H

: bi ⇒M(C ∪ D)

Environment Mapping (EM): Defines the relationship of
Sensors andControllable Actuating Devices (later referred as
actuators) to the corresponding environmental feature fi ∈ F ,
which they observe or impact, respectively.

EM (bi)
bi∈S∪A

: bi ⇒M(F)

B. THREAT MODEL
For a given scenario, the techniques followed by an attacker
to achieve her objectives rely on: (i) IoT vulnerabilities and
their exploitation probabilities, (ii) attacker capabilities and
priorities and (iii) the IoT system and policy configurations
defined by the system model. Our threat model is built upon

the threat classifications and relations, formally defined in our
earlier work [19]. This paper classifies IoT threats as context
(sensing), trigger (controlling) and actuation threats and then
formally relates them as an interconnected threat propagation
tree. The reference threat model [19] is based on the fact that
the attacker can meet her end objectives in multiple ways by
exploiting the vulnerable assets in conjunctionwith the intrin-
sic IoT couplings. However, for meaningful risk analysis,
IoTRiskAnalyzer extends this threat model by evaluating the
pre-defined threat relationships in the light of (i) component
vulnerabilities, (ii) their exploitation probabilities and
(iii) a non-deterministic attacker behavior with finite capa-
bilities. Our threat model is, therefore, composed of the
following building blocks.

1) VULNERABILITY SET (V) AND MAPPINGS (VM)
The threat model receives a finite set of vulnerabilities
V (|V | = Z) and a Vulnerability Mapping (VM) function,
relating the IoT entities with the corresponding vulnerabili-
ties, hosted by them.

VM (bi)
bi∈N∪L

: bi ⇒M(V)

2) VULNERABILITY EXPLOITATION SCORES (E)
Each vulnerability (vi ∈ V) is assigned a normalized value
of Vulnerability Exploitation Score (ei ∈ E | 0 < ei ≤ 1).
The data regarding these scores is obtained from the widely
acknowledged risk assessment studies, which takes into
account several metrics, such as how similar vulnerabili-
ties are exploited in the past, type and difficulty of access
required, strengths of respective security barriers (encryption,
authentication, etc.) required to be compromised and avail-
ability of attack code and tools needed for exploitation.

3) VULNERABILITY TO THREAT MAPPING (TM)
Each vulnerability induces a specific type of Threat(s) (set T).
We use the threat definitions from our previous work [19]
and align them to the corresponding set of vulnerabilities (V),
using the mapping function TM .

TM (bi)
bi∈V

: bi ⇒M(T)

4) ATTACKER CAPABILITY (Cap)
We assume a non-global adversary with finite capabilities.
The attacker is mainly interested in active attacks (such
as modification, fabrication and disruption), which she can
achieve by compromising only a limited and pre-defined set
of IoT entities, through the exploitation of their respective
vulnerabilities. The permissible threat vectors strictly follow
the vulnerability definitions and vulnerability to threat map-
pings (TM). The term ‘attacker capability (Cap)’ is defined
as the maximum number of vulnerabilities, which can be
exploited by an attacker (0 < Cap ≤ Z). Our framework
supports assigning a constant Cap value or can even evaluate
system security against a sweeping value of Cap, within the
defined limits.

5498 VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

FIGURE 2. An overview of the MDP modules.

5) ATTACKER BEHAVIOR
The generic behavior of the attacker is depicted in Figure 3 as
a finite state machine. This behavioral modeling is based on a
probabilistic nature of exploitation of individual vulnerabili-
ties and a non-deterministic approach of the attacker towards
their exploitation. We assume a reasonable threat model, in
which the attacker is aware of the system vulnerabilities.
She may attempt an exploit but fail or even choose not to
target a known vulnerability, based on her preferences, such
as conserving resources, avoiding detection or paying the
required cost.

Hence, at a given entry point, the choice of whether an
attacker attempts to exploit this vulnerability is modeled as
a non-deterministic decision. If a vulnerability (vi) is targeted
by an attacker, there is a probability ei that it will be exploited
and 1−ei that the exploit will fail. For each attempted exploit
the attacker has to pay an overhead, modeled as the Cost
variable (0 ≤ Cost ≤ Cap). It is initialized with zero and
is sequentially incremented with each exploit attempted by
the attacker.

C. MARKOV MODEL
The proposed framework models the IoT architecture, along
with the attacker components, as an MDP. We utilize a mod-
ular approach for generating the Markov model as depicted
in Figure 2.
IoTRiskAnalyzer generates dedicated modules for different

IoT entities, as defined by the systemmodel. The featuremod-
ules (one for each feature fi ∈ F) model the non-deterministic
nature of environmental features being observed or impacted
by the system. Each fi ∈ F refers to a unique and physically
non-overlapping feature such as temperature, humidity and
motion. The sensor modules (one for each sensor si ∈ S)
define the concurrent sensing behavior, where each sensor
can observe a single feature (as per environment mappings
EM), however, multiple sensors can be deployed to observe
the same feature (e.g., having multiple smoke sensors in the
same room). The sensed values are then communicated to
the respective controllers (C) and cloud modules (D) via the

link and gateway modules, in accordance with the functional
(FM) and network (NM) mappings, defined by the system
model. The controller modules also implement the respective
operational policies (P) and accordingly, issue the commands
for the actuator (A) modules, while following the functional
mappings defined among them. The actuators, in turn, change
the linked features as per their respective environment map-
pings. The response actor (R) modules represent authorized
external agencies, which can access and respond to the sens-
ing data stored in the cloud (D), through the corresponding
APIs.

FIGURE 3. Attacker FSM.

A dedicated attacker module is used to model the non-
deterministic attack behavior. It injects the threat vectors to
vulnerable system modules in accordance with the threat
definitions and mappings (TM), while following the attacker
behavior defined in Figure 3.

A typical IoT system is composed of both the sequential
and concurrent elements. Concurrency occurs due to the
parallel sensing, actuation, controlling and communication
aspects of multiple entities; whereas the sequential behavior
originates due to the inherent dependencies and interaction

VOLUME 5, 2017 5499

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

requirements (such as a controller can issue actuation com-
mands only after receiving the desired observations from
sensors). To address this aspect, we have used synchroniza-
tion labels for modeling concurrency and flags and counters
for the sequential flow.

V. CASE STUDY: A HOME SECURITY SCENARIO
In order to illustrate the verification methodology used by our
framework, we consider a typical home security automation
scenario where a tenant, who is a frequent out-of-town trav-
eler, wishes to automate his house. The tenant is especially
concerned about the physical security and safety of his prop-
erty during his absence in this scenario.

FIGURE 4. Smart home example scenario (Config-1).

Figure 4 portrays a basic system configuration of the
planned automation system, comprising of two sensors
(smoke (S1) and door (S2)) and two actuators (door
lock (A1) and fire alarm (A2)). The data from the sensors
is processed by the mobile apps, installed on the smartphone
controller (C1) of the tenant. The same information is also
accessible to the law enforcement and emergency response
agencies (response actors), through respective cloud APIs, as
shown in Figure 4. The controller (C1) is used to implement
local policies, governing the behavior of smart home services.
Similarly, emergency response policies are also established
at respective agencies as a part of a safe-city project. For this
scenario, we consider that the traveling tenant is interested
in analyzing the risks associated with two services, namely
physical security and fire-response. The initial set of service
policies is introduced below:
• Controller Policy (C1-P1): If smoke is reported by the
smoke sensor (S1) then the alarm (A2) is activated and
the door (A1) is unlocked to facilitate fire-fighting and
evacuation measures.

• Police Response Policy (R1-P1): If the door-lock is
armed (house is unoccupied) and the door sensor (S2)
reports an open door (through the cloud module D-S2),
then a signal is transmitted to the police-petrol to inves-
tigate a potential theft situation.

• Fire Response Policy (R2-P1): If smoke is reported by
S1 (through D-S1), then a fire-tender has to be sent to
tackle the situation.

The vulnerability analysis of the procured components
reveals a few weaknesses in individual modules, as labeled
in Figure 4. The selected vulnerabilities have repeatedly been
discovered in several practically deployed home automation
devices [6], [8], [27], [51], [52]. The vulnerability labels as
well as their exploitation probabilities (after normalization)
are extracted from the empirical risk analysis study of smart
home systems, presented by Jacobsson et al. [26], and are
given in Table 1. This work [26], presented a categorization
of the smart home system vulnerabilities with reference to
the attack surface (hardware, software, data, communication
and human) and entry points (device, gateway, cloud, API
and Apps) and assigned risk likelihood scores to each of the
identified vulnerabilities. Table 1 also enumerates the threats
associated with these vulnerabilities, in coherence with the
threat classifications and mappings (TM), explained in the
leveraged literature [19], [26].

TABLE 1. Vulnerabilities, their exploitation probabilities and associated
threats for the considered scenario.

TABLE 2. Identified attacks, their impacts and pre-conditions for the
considered scenario.

The IoT architect wishes to configure the system in such a
way that it offers maximum resistance to all possible attack
scenarios, in the order prioritized by the tenant. The list of
identified attacks are summarized in Table 2. It mentions
two high-impact attacks (theft and missed both alarms), one
medium-impact attack (missed either alarm) and two low-
impact attacks (false alarm and compromised evacuation),
prioritized by the tenant based on the attack consequences.
For example, in case of a fire incident, the attack where both
the actors (A2 and R2) failed to respond is graded more severe
than the ‘missed either alarm’ attack (i.e. exactly one of the
two actors respond to the fire).

A. MODEL GENERATION
The formal system and threat models of the example sce-
nario are generated by IoTRiskAnalyzer, through instantiation

5500 VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

of the generic modules, described in Section IV. We have
released the reusable and formally verifiable PRISM code
of this example as an open-source [53]. This source code
can be adapted for general understanding, training and risk
verification of similar smart home architectures through min-
imal tweaks. The model generation consumes the following
information: (i) System configurations given in Figure 4,
(ii) Operational policies of controller (C1) and response
actors (R1, R2), stated above and (iii) Component vul-
nerabilities, their exploitability scores and threat mappings,
as summarized in Table 1. The sensing elements are mod-
eled using sensor_smoke_S1 and sensor_door_S2
modules, which transmit their observations to C1 and
the respective cloud modules through gateway_G1 and
corresponding links’ modules. The actuation commands
by C1 are transmitted (using associated network com-
ponents) and acted upon (by actuator_door_A1 and
actuator_alarm_A2modules), in parallel. The response
actors of this scenario are modeled by two modules,
namely police and fire_deptt, each implementing
their respective policies.

Listing 1. Commands for L4 jamming (attacker module).

The attacker module models the non-deterministic
attacker behavior of exploiting the identified vulnerabilities
(Table 1), as described in Figure 3. For instance, the PRISM
commands to model the jamming of the link L4 are given
in Listing 1. Here, the variable link_L4_Jam represents
the status of the link L4. G1_A1A2_Tx_flag is the flag
for sequential flow, representing whether or not the Gate-
way G1 has sent the data to actuators A1 and A2. The
counter variable is used for logical ordering of the possible
attacks and cost defines the total number of vulnerabilities
attempted, which is always less than the attacker capability
(cap variable). The first command models the scenario when
an attacker attempts to jam the linkL4with the success proba-
bility of 0.4, while the second command captures the situation
when the attacker chooses not to attempt the L4 jamming.
The antecedent (left-hand side) of the implication specifies
the satisfying conditions for the activation of that command
and it is same for both the commands in Listing 1 to model
the non-determinism.

B. FORMALIZING PROPERTIES
As a next step, the scenario-specific formal model is tested
against suitable properties, developed using the PCTL logic.
We classify these properties as system and attack properties,
as defined below:

Listing 2. Sample attack properties.

1) System Properties are used to verify the soundness
of our MDP model (e.g., deadlock freeness and state
reachability).

2) Attack Properties are defined to get the maximum
likelihood of satisfying the pre-conditions (Table 2),
which can achieve the corresponding attack objectives.

Some of the attack properties are presented in Listing 2.
Property-1 verifies the likelihood of theft, where an
attacker is able to unlock the door while blocking the alarm,
even if there is no smoke. Similarly, Property-2 and
Property-3 verify the likelihood of ‘compromised evacu-
ation’ and ‘missed either alarm’ attacks, respectively.

FIGURE 5. Alternate configurations of example scenario.

VI. EVALUATION AND IMPLEMENTATION
In this section, we present and analyze the verification results
of the example scenario (Section V), with an aim to establish
that the risk exposure scores significantly depend on the
candidate system configurations as well as the operational
policies. To achieve this, we evaluated three candidate config-
urations, using our IoTRiskAnalyzer framework. We denote
the reference configuration (Figure 4) as Config-1, and
present the architecture of other two configurations in
Figure 5. In Config-2, the location of the smoke sensor (S1)
has been changed to form a mesh network over the Zigbee
technology. This configuration does not require any extra
budget as it only involves connectivity adjustments (NM)
of existing devices. Contrary to that, we have introduced a
redundancy in Config-3 by adding a new smoke sensor (S3),
which works on the Z-wave technology. The correspond-
ing policies (i.e. C1-P1 and R2-P1) for Config-3 were also
changed as; ‘‘Config-3P1: Unlock the door and send the
fire-tender only if both sensors (S1 and S3) report smoke but
trigger alarm if any of the two sensors report smoke’’. The
security of all these three configurations was tested against
attacks mentioned in Table 2, by defining suitable properties
as demonstrated in Listing 2.

VOLUME 5, 2017 5501

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

FIGURE 6. Verified risk exposure scores (Config-3 utilizes Config-3P1 policy).

A. EXPERIMENTAL RESULTS
1) RISK Vis-à-Vis SYSTEM CONFIGURATION
Based on the input MDP model and customized PCTL prop-
erties, as discussed in Section V, our framework generated
the risk exposure scores to different attacks in the form of
comparative graphs. The results are plotted in Figure 6. The
results revealed that Config-2 is more resilient to theft and
‘missed either alarm’. The main reason behind this finding
is that if the attacker chooses to jam the Link L5 to block
the fire alarm, she will not be able to modify the sensing
values at the gateway as well (because S1 values will also
fail to reach G1). Contrarily, Config-2 is more risk-prone
towards compromised evacuation and missing both alarms in
case of fire, due to the additional dependency of S1 over A2
for transmitting its observations. Config-3 is observed to be
more resilient against both the high-impact attacks due to the
introduced redundancy (Sensor S3).

2) RISK Vis-à-Vis OPERATIONAL POLICY
Next, we evaluated the impact of different C1 policies over
the threat-resiliency for Config-3. To achieve this, we evalu-
ated the following three C1 policies:

• Config-3P1: If smoke is reported by any of the two
sensors (S1 or S3) then the alarm (A2) is triggered but
the door (A1) is unlocked, only if both the sensors report
smoke.

S1 ∩ S3⇒ A1; S1 ∪ S3⇒ A2

• Config3-P2: If the smoke is reported by any of the two
sensors then the door (A1) is opened but the alarm (A2)
is activated only if both the sensors report the presence
of smoke.

S1 ∪ S3⇒ A1; S1 ∩ S3⇒ A2

• Config3-P3: If the smoke is reported by any of the two
sensors then both the door (A1) and the alarm (A2) are
actuated.

S1 ∪ S3⇒ A1 ∩ A2

Figure 7 plots the verified risk-scores of these three policies
with reference to the threats under consideration and the
changing attacker cost. The results revealed that there are
no chances of theft for policy P1 (even with a very power-
ful attacker, i.e., cost=4), through the exploitation of the
known set of vulnerabilities. Moreover, P1 poses a minimum
risk exposure to the other high-impact attack as well (i.e.,
Missed both alarms). However, this policy is relatively more
risk-prone to the medium and low-impact attacks. Contrarily,
policy P2 extends a maximum resilience against the medium
and low-impact attacks but has worst scores for both the
high-impact attacks. In the case of Policy P3, the attacker
is required to exploit at least two vulnerabilities to meet
the objectives of both the high-impact attacks and hence,
this policy offers good resistance against a weak adversary
(i.e. Cap = 1). It is also noteworthy that the risk exposure
for some attacks is independent of the attacker capabilities
(e.g., ‘compromised evacuation’ for P2 and P3).

B. DISCUSSION
The emerging IoT systems comprise of complex functional
couplings and cascaded dependencies and host several safety-
critical services. Security analysis of such critical systems
cannot rely on manual or simulation-driven approaches, due
to their incomplete coverage. IoTRiskAnalyzer offers a prov-
able risk verification framework, through exhaustive testing
of all possible behaviors of input system and threat models,
including the ‘corner-cases’, which may otherwise be over-
looked by the traditional approaches.

We utilized IoTRiskAnalyzer for verifying the risk expo-
sure of different IoT configurations while manipulating

5502 VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

FIGURE 7. Impact of policy on risk exposure.

the input parameters, such as connectivity, redundancy,
vulnerable entry points and operational policies. During our
experiments, IoTRiskAnalyzer exposed several such complex
attack vectors, which were otherwise difficult to comprehend
through traditional approaches. The key findings of these
experiments are summarized here:

1) Given a known set of vulnerabilities, the amount of
risk to system-level security threats vary significantly
with system and policy configurations (as clear from
Figures 6 and 7).

2) Introducing redundancy must equally be comple-
mented by implementing a right set of policies for
reducing risk exposure. As a counter-example, consider
that in case of theft, the risk scores for Config3-P2
were even higher than both the Configs-1 and 2,
despite the introduction of redundancy.

3) Some candidate system and policy configurations offer
a risk-tradeoff for different attack situations. These
situations can be scrutinized through attack impact
analysis, as demonstrated by our work. For example,
Config-3 is a preferred solution for the designer as
it offers less risk to both high-impact attacks, despite
being weak against the medium-impact attack (i.e.,
‘missed either alarm’). Moreover, within Config-3,
P1 is the preferred policy, owing to its minimum risk
scores for the high-impact attacks.

4) Due to the inherent functional dependencies among IoT
devices, individual vulnerabilities may be exploited to
cause a cascaded impact. For example, a secure actu-
ator can be compromised by exploiting a vulnerable
sensor, just because its controller is dependent upon the
context information produced by that sensor.

C. IMPLEMENTATION
Wehave used the Java API for implementing the IoTRiskAna-
lyzer framework. The API reads the input IoT configurations
from a text file and automatically generates the MDP model,
in compliance with the language syntax used by the PRISM

model checker. This model can then be analyzed against suit-
able system and attack properties, using the PRISM tool. Our
framework utilizes the default Hybrid engine of PRISM Ver-
sion 4.3.1 for verification of input model. It employs themod-
ule renaming feature of PRISM, where ever applicable, for
ensuring modeling scalability, as the generic system modules
can be utilized to model multiple instances of similar entities.

The performance of IoTRiskAnalyzer directly depends on
the system size, the complexity of configuration require-
ments and the number of vulnerabilities and policies. To opti-
mize the performance of IoTRiskAnalyzer, we implemented
model-abstractions and model-decompositions at different
layers, as discussed ahead.

The role of a given component in a model generated by
IoTRiskAnalyzer depends on: (a) Whether the component
contains any vulnerability or (b) Whether the component
actively transforms the state due to functional requirements.
We applied an abstraction by omitting the modules not sat-
isfying the above-stated requirements. For example, in our
reference scenario, router R1 and links L1 and L2 were
not modeled, since they were transparent for the system and
inaccessible to the attacker. Another level of abstraction was
applied over individual modules based on the policy. For
example, a realistic temperature sensor may require a range
of integers to precisely model its behavior. However, if the
policy requires the decision to be made only at a threshold
of 77◦F , then the sensor can bemodeled to observe and report
boolean values (i.e., T > 77 and T ≤ 77).

In addition to abstractions, model-decompositions were
performed by splitting large system models into multiple
independent sub-systems, based on different types of entity-
mappings, as defined in Section IV. These abstractions and
decompositions considerably reduced the state space and
significantly improved the performance. As an example, the
framework, while running on a Core-i7 machine with 8 GB of
RAM, consumed small fractions of seconds, both for model
construction and property verification, for all configurations
of our case study.

VOLUME 5, 2017 5503

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

VII. CONCLUSION
In this paper, we presented IoTRiskAnalyzer, which is a novel
framework for automated verification and probabilistic quan-
tification of attack likelihoods against generic IoT system
configurations. The reports delivered by IoTRiskAnalyzer can
help IoT engineers to select the best possible system and
policy configurations from a security standpoint. The frame-
work can also assist in analyzing the impact of component-
level vulnerabilities over system-level threats. In the future,
we plan to integrate and extend the contributions made by
the IoTSAT [19] and IoTRiskAnalyzer frameworks, towards
budget constrained security planning of IoT systems. This
envisaged tool-chain will assist non-expert IoT designers to
plan, verify and optimize the security of their configurations,
within the affordable budget, after putting minimal technical
efforts.

REFERENCES
[1] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, Eds., Vision and

Challenges for Realising the Internet of Things. rue Mercier, Luxembourg:
Publications Office of the European Union, 2010. [Online]. Available:
http://www.eurolibnet.eu/3/72/&for=show&tid=7944

[2] D. Evans. The Internet of Things—How the next evolution of the Internet
is changing everything. Cisco, Inc., accessed on Mar. 9, 2017. [Online].
Available: http://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_
0411FINAL.pdf

[3] D. Lund, C. MacGillivray, V. Turner, and M. Morales, ‘‘Worldwide and
regional Internet of Things (IoT) 2014–2020 forecast: A virtuous circle
of proven value and demand,’’ Int. Data Corp., Framingham, MA, USA,
Tech. Rep. IDC#248451, Dec. 2014, doi: 10.2824/33134.

[4] V. Turner, J. F. Gantz, D. Reinsel, and S. Minton, ‘‘The digital universe of
opportunities: Rich data and the increasing value of the Internet of Things,’’
IDC Anal. Future, Framingham, MA, USA, Tech. Rep., 2014.

[5] Gartner, Inc. (2016). Gartner Says Worldwide IoT Security Spending to
Reach $ 348 Million in 2016, accessed no Mar. 9, 2017. [Online]. Avail-
able: http://www.gartner.com/newsroom/id/3291817

[6] E. Fernandes, J. Jung, and A. Prakash, ‘‘Security analysis of emerging
smart home applications,’’ in Proc. IEEE Symp. Secur. Privacy, May 2016,
pp. 636–654.

[7] K. Angrishi. (Feb. 2017). ‘‘Turning Internet of Things (IoT) into
Internet of Vulnerabilities (IoV): IoT Botnets.’’ [Online]. Available:
https://arxiv.org/abs/1702.03681

[8] E. Ronen, C. O’Flynn, A. Shamir, and A.-O. Weingarten. (Nov. 2016).
IoT Goes Nuclear: Creating a ZigBee Chain Reaction, accessed on
Mar. 9, 2017. [Online]. Available: https://eprint.iacr.org/2016/1047

[9] B. Fouladi and S. Ghanoun, ‘‘Security evaluation of the Z-wave wireless
protocol,’’ Black Hat USA, vol. 1, pp. 1–6, Aug. 2013.

[10] B. Schneier. The Internet of Things is Wildly Insecure-and Often
Unpatchable, accessed on Mar. 9, 2017. [Online]. Available: https://
www.schneier.com/essays/archives/2014/01/the_internet_of_thin.html

[11] M. Hamdi and H. Abie, ‘‘Game-based adaptive security in the Internet
of Things for eHealth,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2014,
pp. 920–925.

[12] R. Zheng et al., ‘‘An IoT security risk autonomic assessment algorithm,’’
Indonesian J. Electr. Eng. Comput. Sci., vol. 11, no. 2, pp. 819–826, 2013.

[13] T. Nipkow, ‘‘Advances in probabilistic model checking,’’ in Software
Safety and Security: Tools for Analysis and Verification, vol. 33.
Amsterdam, The Netherlands: IOS Press, 2012, pp. 126–151.

[14] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 1994

[15] M. Kwiatkowska, G. Norman, and D. Parker, ‘‘PRISM 4.0: Verification of
probabilistic real-time systems,’’ in Computer Aided Verification (Lecture
Notes in Computer Science), vol. 6806. Berlin, Germany: Springer, 2011,
pp. 585–591.

[16] M. U. Sardar, N. Afaq, K. A. Hoque, T. T. Johnson, and O. Hasan,
‘‘Probabilistic formal verification of the SATS concept of operation,’’ in
NASA Formal Methods, vol. 9690. New York, NY, USA: Springer, 2016,
pp. 191–205.

[17] M. Q. Ali and E. Al-Shaer, ‘‘Probabilistic model checking for AMI
intrusion detection,’’ in Proc. IEEE SmartGridComm, Oct. 2013,
pp. 468–473.

[18] S. Ouchani, O. A. Mohamed, andM. Debbabi, ‘‘A security risk assessment
framework for SysML activity diagrams,’’ in Proc. IEEE 7th Int. Conf.
Softw. Secur. Rel., Jun. 2013, pp. 227–236.

[19] M. Mohsin, Z. Anwar, G. Husari, E. Al-Shaer, and M. A. Rahman,
‘‘IoTSAT: A formal framework for security analysis of the Internet
of Things (IoT),’’ in Proc. IEEE Conf. Commun. Netw. Secur. (CNS),
Oct. 2016, pp. 180–188.

[20] L. de Moura and N. Bjørner, ‘‘Satisfiability modulo theories: Introduction
and applications,’’ Commun. ACM, vol. 54, no. 9, pp. 69–77, Sep. 2011.

[21] C. Liu, Y. Zhang, J. Zeng, L. Peng, and R. Chen, ‘‘Research on dynamical
security risk assessment for the Internet of Things inspired by immunol-
ogy,’’ in Proc. IEEE 8th Int. Conf. Natural Comput. (ICNC), May 2012,
pp. 874–878.

[22] R. Roman, P. Najera, and J. Lopez, ‘‘Securing the Internet of Things,’’
Computer, vol. 44, no. 9, pp. 51–58, Sep. 2011.

[23] D. Podgórski, K. Majchrzycka, A. Dabrowska, G. Gralewicz, and
M. Okrasa, ‘‘Towards a conceptual framework of OSH risk management
in smart working environments based on smart PPE, ambient intelligence
and the Internet of Things technologies,’’ Int. J. Occupat. Safety Ergon.,
vol. 23, no. 1, pp. 1–20, 2016.

[24] K. Djemame, D. Armstrong, M. Kiran, and M. Jiang, ‘‘A risk assessment
framework and software toolkit for cloud service ecosystems,’’ in Cloud
Computing. Wilmington, DE, USA: Xpert Publishing Services, 2011,
pp. 119–126.

[25] S.-I. Chang, A. Huang, L.-M. Chang, and J.-C. Liao, ‘‘Risk factors of
enterprise internal control: Governance refers to Internet of Things (IoT)
environment,’’ in Proc. RISK, 2016, pp. 1–11.

[26] A. Jacobsson, M. Boldt, and B. Carlsson, ‘‘A risk analysis of a smart home
automation system,’’ Future Generat. Comput. Syst., vol. 56, pp. 719–733,
Mar. 2016.

[27] D. Barnard-Wills, L. Marinos, and S. Portesi, ‘‘Threat landscape and good
practice guide for smart home and converged media,’’ Eur. Union Agency
Netw. Inf. Secur., Heraklion, Greece, Tech. Rep., Dec. 2014.

[28] T. Denning, T. Kohno, andH.M. Levy, ‘‘Computer security and themodern
home,’’ Commun. ACM, vol. 56, no. 1, pp. 94–103, 2013.

[29] D. Pishva and K. Takeda, ‘‘Product-based security model for smart
home appliances,’’ IEEE Aerosp. Electron. Syst. Mag., vol. 23, no. 10,
pp. 32–41, Oct. 2008.

[30] F. Corno and M. Sanaullah, ‘‘Design-time formal verification for smart
environments: An exploratory perspective,’’ J. Ambient Intell. Humanized
Comput., vol. 5, no. 4, pp. 581–599, 2014.

[31] P. Mundhenk, S. Steinhorst, M. Lukasiewycz, S. A. Fahmy, and
S. Chakraborty, ‘‘Security analysis of automotive architectures using prob-
abilistic model checking,’’ in Proc. ACM/EDAC/IEEE Design Autom.
Conf., Jun. 2015, pp. 1–6.

[32] V. Kulkarni, Modeling and Analysis of Stochastic Systems. London, U.K.:
Chapman & Hall, 1995

[33] E. Kang, S. Adepu, D. Jackson, and A. P. Mathur, ‘‘Model-based security
analysis of a water treatment system,’’ in Proc. 2nd Int. Workshop Softw.
Eng. Smart Cyber-Phys. Syst., 2016, pp. 22–28.

[34] T. Ahmed and A. R. Tripathi, ‘‘Static verification of security require-
ments in role based CSCW systems,’’ in Proc. 8th ACM Symp. Access
Control Models Technol. (SACMAT), New York, NY, USA, 2003,
pp. 196–203. [Online]. Available: http://doi.acm.org/10.1145/775412.
775438

[35] N. Trcka, M. Moulin, S. Bopardikar, and A. Speranzon, ‘‘A formal
verification approach to revealing stealth attacks on networked control
systems,’’ in Proc. 3rd Int. Conf. High Conf. Netw. Syst. (HiCoNS),
New York, NY, USA, 2014, pp. 67–76. [Online]. Available: http://doi.
acm.org/10.1145/2566468.2566484

[36] T. L. Guilly, J. H. Smedegard, T. Pedersen, and A. Skou, ‘‘To do and not to
do: Constrained scenarios for safe smart house,’’ in Proc. IEEE Int. Conf.
Intell. Environ. (IE), Jul. 2015, pp. 17–24.

[37] J. C. Augusto and M. J. Hornos, ‘‘Software simulation and verifica-
tion to increase the reliability of Intelligent Environments,’’ Adv. Eng.
Softw., vol. 58, pp. 18–34, Apr. 2013. [Online]. Available: http://dblp.uni-
trier.de/db/journals/aes/aes58.html#AugustoH13

[38] F. Corno and M. Sanaullah, ‘‘Modeling and formal verification of smart
environments,’’ Secur. Commun. Netw., vol. 7, no. 10, pp. 1582–1598,
2014. [Online]. Available: http://dx.doi.org/10.1002/sec.794

5504 VOLUME 5, 2017

M. Mohsin et al.: IoTRiskAnalyzer : Probabilistic Model Checking-Based Framework for Formal Risk Analytics of the IoT

[39] A. Coronato and G. D. Pietro, ‘‘Formal specification and verification
of ubiquitous and pervasive systems,’’ ACM Trans. Auto. Adapt. Syst.,
vol. 6, no. 1, p. 9, 2011. [Online]. Available: http://dblp.uni-trier.de/db/
journals/taas/taas6.html#CoronatoP11

[40] C. Baier, J.-P. Katoen, and K. G. Larsen, Principles of Model Checking.
Cambridge, MA, USA: MIT Press, 2008

[41] U. Pervez, A. Mahmood, O. Hasan, K. Latif, and A. Gawanmeh,
‘‘Improvement strategies for device interoperability middleware using for-
mal reliability analysis,’’ Scalable Comput., Pract. Exper., vol. 17, no. 3,
pp. 150–170, 2016.

[42] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen,
‘‘The ins and outs of the probabilistic model checker MRMC,’’ Perform.
Eval., vol. 68, no. 2, pp. 90–104, 2011.

[43] K. Sen, M. Viswanathan, and G. Agha, ‘‘VESTA: A statistical model-
checker and analyzer for probabilistic systems,’’ in Proc. 2nd Int. Conf.
Quant. Eval. Syst., vol. 5. Sep. 2005, pp. 251–252.

[44] H. L. Younes, ‘‘Ymer: A statistical model checker,’’ in Computer Aided
Verification, vol. 3576. Berlin, Germany: Springer, 2005, pp. 429–433.

[45] H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle, ‘‘ETMCC:
Model checking performability properties of Markov chains,’’ in Proc.
DSN, 2003, p. 673.

[46] D. N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and I. Zapreev,
‘‘How fast and fat is your probabilistic model checker? An experimental
performance comparison,’’ in Hardware and Software: Verification and
Testing, vol. 4899. Berlin, Germany: Springer, 2008, pp. 69–85.

[47] R. Segala and N. Lynch, ‘‘Probabilistic simulations for probabilistic pro-
cesses,’’ Nordic J. Comput., vol. 2, no. 2, pp. 250–273, 1995.

[48] D. Beauquier, ‘‘On probabilistic timed automata,’’ Theor. Comput. Sci.,
vol. 292, no. 1, pp. 65–84, 2003.

[49] R. Alur and T. A. Henzinger, ‘‘Reactive modules,’’ Formal Methods Syst.
Design, vol. 15, no. 1, pp. 7–48, 1999.

[50] A. Bianco and L. de Alfaro, ‘‘Model checking of probabilistic and non-
deterministic systems,’’ in Foundations of Software Technology and The-
oretical Computer Science, vol. 1026. Berlin, Germany: Springer, 1995,
pp. 499–513.

[51] S. Curtis. Home Invasion 2.0: How Criminals Could Hack Your House,
accessed on Mar. 9, 2017. [Online]. Available: http://www.telegraph.
co.uk/technology/internet-security/10218824/Home-invasion-2.0-how-
criminals-could-hack-your-house.html

[52] C. B. Review. Veracode Warns IoT a Pathway for Cybercrime, accessed
on Mar. 9, 2017. [Online]. Available: http://www.cbronline.com/
news/internet-of-things/consumer/veracode-warns-iot-a-pathway-for-
cybercrime-4548343

[53] M. Mohsin, M. U. Sardar, O. Hasan, and Z. Anwar. IoTRiskAna-
lyzer, accessed on Mar. 9, 2017. [Online]. Available: https://github.com/
mujahidmohsin/IoTRiskAnalyzer

MUJAHID MOHSIN received the M.S. degree
(Hons.) in information security from the National
University of Sciences and Technology (NUST),
Pakistan, in 2010, where he is currently pursuing
the Ph.D. degree in computer and communication
security, under the supervision of Dr. Z. Anwar.
He was a Researcher with CERN and the Cyber
Defense and Network Assurability Center, Univer-
sity of North Carolina at Charlotte, USA.He is also
a Research Assistant with the Systems Research

Group, NUST. His current research interests include automated security
analytics, the Internet of Things security, formal methods, and actionable
cyber threat intelligence. He was a recipient of the Ph.D. Scholarship from
the Higher Education Commission, Pakistan, and the Rector’s NUST High
Achiever Certificate in 2015.

MUHAMMAD USAMA SARDAR received the
B.Sc. degree in electronics engineering from the
Ghulam Ishaq Khan Institute of Engineering Sci-
ences and Technology, Pakistan, in 2009, and
the M.S. degree (Hons.) in electrical engineer-
ing from the National University of Sciences and
Technology (NUST), Pakistan, in 2015. He was a
Researcher with the Chair of Embedded Systems,
Karlsruhe Institute of Technology, Germany. He is
currently a Research Assistant with the System

Analysis and Verification Laboratory, NUST. His main research interests
include probabilistic model checking-based formal verification of safety-
critical systems. His research work has resulted in publications at top inter-
national forums, such as the Journal of Parallel and Distributed Computing
and the NASA Formal Methods Symposium.

OSMAN HASAN (S’07–M’11–SM’14) received
the B.Eng. degree (Hons.) from the University of
Engineering and Technology, Pakistan, in 1997,
and the M.Eng. and Ph.D. degrees from Concor-
dia University, Montreal, Canada, in 2001 and
2008, respectively. He was an ASIC Design Engi-
neer with LSI Logic Corporation, Ottawa, Canada,
from 2001 to 2003, and a Research Associate with
Concordia University, Montreal, Canada, from
2008 to 2009. He is currently an Assistant Pro-

fessor with the School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST), Islamabad, Pak-
istan. He is the Founder and Director of the SystemAnalysis and Verification
Laboratory, NUST, which mainly focuses on the design and formal verifi-
cation of safety-critical systems, including e-health and digital systems. He
is a member of the ACM, the Association for Automated Reasoning, and
the Pakistan Engineering Council. He was a recipient of several awards and
distinctions, including the Pakistan’s Higher Education Commission’s Best
University Teacher in 2010 and the Best Young Researcher Award in 2011,
and the President’s Gold Medal for the best teacher of the University from
NUST in 2015.

ZAHID ANWAR received the Ph.D. and M.S.
degrees in computer sciences from the University
of Illinois at Urbana–Champaign, USA, in 2008
and 2005, respectively. He was a Software Engi-
neer and a Researcher with IBM, Intel, Motorola,
the National Center for Supercomputing Appli-
cations, xFlow Research, and CERN on projects
related to information security and data analytics.
He was a Post-Doctoral Fellow with Concordia
University, Canada, and a Faculty Member with

the University of North Carolina at Charlotte, USA, Fontbonne University,
USA, and the National University of Sciences and Technology (NUST),
Pakistan. He is currently the Laboratory Director of the Systems Research
Group, NUST.

VOLUME 5, 2017 5505

