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ABSTRACT The whale optimization algorithm (WOA) has been shown to be powerful in searching for an
optimal solution. This paper proposes an improvement to the whale optimization algorithm that is based on a
Lévy flight trajectory and called the Lévy flight trajectory-based whale optimization algorithm (LWOA). The
LWOA makes the WOA faster and more robust and avoids premature convergence. The Lévy flight trajectory
is helpful for increasing the diversity of the population against premature convergence and enhancing the
capability of jumping out of local optimal optima. This method helps obtaining a better tradeoff between the
exploration and exploitation of the WOA. The proposed algorithm is characterized by quick convergence
and high precision, and it can effectively get rid of a local optimum. The LWOA is further compared with
other well-known nature-inspired algorithms on 23 benchmarks and solving infinite impulse response model
identification. The statistical results on the benchmark functions show that the LWOA can significantly
outperform others on a majority of the benchmark functions, especially in solving an optimization problem
that has high dimensionality. Additionally, the superior identification capability of the proposed algorithm
is evident from the results obtained through the simulation study compared with other algorithms. All the

results prove the superiority of the LWOA.

INDEX TERMS Lévy flight trajectory, whale optimization algorithm, global optimization, IIR system.

I. INTRODUCTION

Currently, it is apparent that traditional methods find it
difficult to solve engineering problems well. However,
researchers have found meta-heuristic optimization tech-
niques to be effective in providing optimal or near-optimal
answers for engineering problems, and these techniques have
become very popular and attracted the attention of many
practitioners and researchers. Most of these algorithms orig-
inate from various natural phenomena, and two of the most
popular and representative algorithms are particle swarm
optimization (PSO) [1], which mimics the social behavior
of flocking birds, and ant colony optimization (ACO) [2],
which is inspired by the pheromones of ants. In addition to
these two algorithms, some of the latest effective algorithms
are the bat algorithm (BA) [3], which simulates the echolo-
cation behavior of bats, grey wolf optimization (GWO) [4],
which mimics the behavior of wolves, flower pollination
algorithm (FPA) [5], which simulates flower pollination
behavior, firefly algorithm (FA) [6], which mimics the behav-
ior of fireflies as a result of their flashing characteristics, and

cuckoo search (CS) [7], which is based on the reproduction
strategy of cuckoos.

The whale optimization algorithm (proposed by
Mirjalili.et al. [8]) is a newly proposed meta-heuristic that is
inspired from the bubble-net hunting technique of humpback
whales. It has been proven that the WOA can provide very
competitive results, and when it is compared to other well-
known metaheuristics, this algorithm has not only attracted
the attention of many researchers but also been increasingly
applied in many applications studies. Bhesdadiya, R. H. et al.
have applied the WOA to train a multi-layer perceptron in
a neural network [9]. A Kaveh has applied an enhanced
WOA for the sizing optimization of a skeletal structure [10].
Haider J. Touma has used the WOA algorithm to solve the
30-bus problem of the economic dispatch problem [11].
Bhesdadiya, R. H. et al. proposed a novel adaptive WOA
for global optimization [12]. D.B. Prakash and C. Lakshmi-
narayana have used WOA algorithm to find optimal sizing
and placement of capacitors for a typical radial distribu-
tion system [13]. Ibrahim Aljarah.et al. have applied WOA
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algorithm to optimize connection weights in neural net-
works [14]. Although the basic WOA has shown good per-
formance compared with some traditional methods, it still has
demerits with regard to slow convergence, low precision and
easily trapped into local optimum due to a lack of population
diversity. Lévy flight is a special class of random walk in
which the step lengths are distributed according to a heavy
power law tails. The large steps occasionally taken helps
an algorithm to conduct a global search. Using the Lévy
flight trajectory [7], [15] is helpful in obtaining a better
trade-off between the exploration and exploitation of the
algorithm, and it has merit in terms of the avoidance of local
optimal optima. Therefore, this paper proposes an improved
version of the WOA that is based on a Lévy flight trajectory
and is called the LWOA, whose purpose is to improve the
convergence rate and the precision of the basic WOA. The
LWOA is tested with 23 benchmark functions and infinite
impulse response (IIR) model identification. The simulation
results show that the LWOA is feasible and effective and,
most notably, has superior approximation capabilities in
high-dimensional space.

The remainder of this paper is organized as follows:
Section 2 briefly introduces the original WOA and the Lévy
flight trajectory. The detailed description of the LWOA is pre-
sented in Section 3. To demonstrate the superior performance
of the LWOA, a variety of experimental results and analysis
that compares the LWOA with the other five well-known
nature-inspired algorithms (including the original WOA) for
23 benchmark functions and infinite impulse response (IIR)
system identification problem are presented, respectively, in
Sections 4 and 5. Section 6 provides a discussion and analysis
of the results. The last section shows the final conclusions.

Il. WHALE OPTIMIZATION ALGORITHM (WOA) AND

THE Lévy FLIGHT TRAJECTORY

A. WHALE OPTIMIZATION ALGORITHM

The Whale optimization algorithm [8] is a newly proposed
meta-heuristic that is inspired from the bubble-net hunting
technique of humpback whales. The WOA describes the
special pursuing behavior of humpback whales, in which the
whales attempt to encircle the prey (fish herds) near the sur-
face of the water while creating bubbles that are in the shape
of acircle. In the bubble-net hunting technique, the humpback
whales dive approximately 12 meters down and then begin
to make bubbles in a spiral shape around the prey and swim
toward the surface.

B. MATHEMATICAL MODEL DESCRIPTION/EXPLANATION
1) ENCIRCLING THE PREY

Humpback whales first observe the locations of the prey
(fish herds) and then encircle them. The WOA algorithm
presumes that the objective prey that is closest to the perfect
answer is the best candidate solution. After the best hunting
agent is defined, the other whales’ search operators will
accordingly attempt to update their positions toward the best
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hunting agent. During the optimization, to mathematically
model the encircling mechanism, the following equations are
proposed [8].

— = 2 —
D=|C -X*t)— X() (D
— == —
X(t+1)—X*(t)—A 2)

where X, Z? are coefficient vectors, ¢ denotes the current
iteration, X* is the position vector of the optimum solution
acquired thus far, and X (¢) is the position vector. Here, |e|
is the absolute value, and - is the constituent-by-constituent
multiplication. It must be mentioned here that X* should be
updated in each 1te_r§1t10n if there is a better solution. The
coefficient vectors A, C are calculated as follows:

A=27-7-7 3)
C=2.7 (4)

where the components of @ are linearly decreased from 2 to 0
over the course of the iterations (in both the exploration and
exploitation stages), and r is a random vector in [0,1]. Eq. (2)
permits any search agent to update its position in the area of
the current best solution and encircle the prey.

2) BUBBLE-NET ATTACKING STRATEGY

(EXPLOITATION PERIOD)

To express a mathematical equation for the bubble-net attack-
ing behavior of the humpback whales, two strategies are
modeled, as follows:

a: SHRINKING ENCIRCLING SYSTEM

This technique is achieved by decreasing linearly the value
of a from 2 to 0 via Eq. (3). Note that the fluctuation scope
of A is additionally decreased by @. In other words,
Vector A is a random number in the range [—a, a], where
a is decreased from 2 to O throughout the course of the
iterations. Setting A randomly in [—1, 1], the new position
of a search agent can be characterized anywhere from the
original position to the present best agent.

b: LOGARITHMIC SPIRAL UPDATING POSITION

First, the humpback whales search the prey and then calculate
the distance from themselves to the prey. Then, the humpback
whales move with a conical logarithmic spiral motion to prey
on the fish herds. Each humpback whale is proposed to update
its position according to the spiral flight path. This behavior
is mathematically expressed as follows:

‘X ) —X (z)‘ )

X t+1)= -cos(2ml) +X*(t) 6)

where D’ = ‘X @) — X (1)| indicates the distance from the
ith whale to the prey (the best solution acquired thus far), [ is
a random value in [—1, 1], b is a constant for defining the
logarithmic spiral shapes, and - is a constituent-by-constituent
multiplication.
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It should be noted that humpback whales swim around
the prey in a circle and, at the same time, move with a
conical logarithmic spiral motion to prey on the fish herds.
For simplicity, we assume that the positions of the humpback
whales will be updated by Eq. (2) or Eq. (6), each with the
possibility of 50%, which can be mathematically expressed
as follows:

- - = .
- X*t)— A - D ifp < 0.5
Xt+1)=1~> —
D el cos@nl) + X*(t) ifp > 0.5
(7

where p is a random number in the range [0, 1]. In addition to
the bubble-net strategy, humpback whales have the additional
interesting behavior of searching for prey randomly. The
following is a mathematical model for the search behavior
of the whales.

3) SEARCH FOR PREY (EXPLORATION PERIOD)

In fact, humpback whales scan for prey randomly when their
positions are in a line with one other. In this phase, we want
to focus on promising areas in the search space and force
the search agent to_) swim far away from a reference whale.
Therefore, vector A is used for exploration to scan for prey,
and its value is greater than 1 or less than —1. It is different
from the exploitation period in that the position of a search
agent in the exploration period will update in line with a
randomly picked search agent rather than the best agent that
has been discovered thus far. We use ‘X > 1 to enforce
exploration in the WOA algorithm to determine the global
optimum and avoid local optima optimal. The mathematical
model can be formulated as follows:

— - — =

B =[C X~ X| @®)
— —_— > =
X@t+1)=Xua—A-D 9)

where m is chosen from the current generation and indi-
cates a random position vector (a random whale). The gen-
eral steps of the Whale optimization algorithm (WOA) can
be summarized in the pseudo code shown in Algorithm 1
below [8].

C. Lévy FLIGHT

The Lévy Flight trajectory was originally introduced by Lévy,
and then Benoit Mandelbrot described it in detail. In general,
Lévy flight is a type of random walk in which the steps are
drawn from a Lévy distribution. A variety of studies have
demonstrated that the behavior of flight for many animals
and insects demonstrates the typical characteristics of Lévy
flight [16]-[19]. From [19], we could learn that Reynolds and
Frye have studied that fruits flies or Drosophila melanogaster
search their landscape by using a set of straight flight paths
punctuated by a sudden 90° turn(see Fig.1), which cause
a Lévy-flight-style intermittent scale-free search pattern.
P. Barthelemy et al. have concluded that even light is related
to Lévy flight [20]. Subsequently, Lévy flight behavior has

6170

Algorithm 1 WOA Algorithm
Initialize the whales population X;(i=1,2,...n)
Calculate the fitness of each search agent
X* = the best search agent
while (t < max; tearation)
Jor each search agent
Update a, A, C, |, and p
ifl (p < 0.5)]
if2 (1Al < 1)
Update the position of the current search agent by Eq. (2)
else if2 (1A = 1)
Select a random search agent (X,qnd)
Update the position of the current search agent by Eq. (9)
end if2
else ifl (p > 0.5)
Update the position of the current search by Eq. (6)
end ifl
end for
Check if any search agent goes beyond the search space and
amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
t=t+1
end while
return X*

been used for optimization and optimal search, and prelimi-
nary results show that it has promising capability [17], [19],
[21], [22].

Ill. OUR APPROACH (LWOA)

The Whale Optimization algorithm (proposed by
Mirjalili et al. [8]) can solve low-dimensional unimodal
optimization problems easily. However, when handling high-
dimensional and multi-modal optimization problems, we can
clearly discover that the solutions obtained by the WOA
are not very good. To enhance the exploration, local opti-
mal optima avoidance, exploitation and convergence of the
WOA, this paper proposes an improved Lévy flight whale
optimization (LWOA) algorithm. Lévy flight can maximize
the diversification of search agents, which guarantees that the
algorithm can explore the search place efficiently and accom-
plish local minima avoidance. This finding implies that the
Lévy flight trajectory is helpful in obtaining a better trade-off
between exploration and exploitation in the WOA. Therefore,
the Lévy flight trajectory is used to update the humpback
whales’ positions after the position updating, which can be
mathematically expressed as follows:

X (t +1) = X (1) + psign[rand — 1/2] @ Levy  (10)

where Y(t) indicates the ith whale or the position vector 7
at iteration ¢, u is a random number that is consistent with a
uniform distribution, the product & means entrywise multi-
plication, and rand is a random number in the range of [0, 1].
It should be mentioned here that sign [rand — 1/2] has only
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Lévy flight

FIGURE 1. Simulations tracks of Lévy flights.

three values: 1, 0 and —1. Eq. (10) is essentially the stochastic
equation for a random walk, and it helps the basic WOA to
remove local minima and ensure that the search agent could
explore the search place efficiently because its step length is
much longer in the long run. The Lévy flight offers a random
walk with the following distribution [7]:

Levy~u=1t"1<xr<3 (11)

The Lévy flight is a special random walk in which the step-
lengths have a probability distribution that is heavy-tailed.
According to Fig.1, it is a figure about the simulations tracks
of Lévy flights and it is typical that the steps are always small
but occasionally have a large step. Mantegna’s algorithm [23]
is used to mimic a A-stable distribution by generating random
step lengths s that have the same behavior of the Lévy-flights,
as follows:

"

where s is the step length of the Lévy flight, which is Levy(d),
and A in Eq. (11) obeys the formulation that A = 1+ 8, where
B =15 pu=N|0, crl%) and v = N (0, 0.2) are both normal
stochastic distributions with

[ T(+p) xsin@xp/2) 17 do 1
“_[F (11 B/2) x B x 203—”/2} o=

(13)

Lévy flight can significantly improve the search ability
of the WOA, and then the results avoid local minima. This
approach improves not only the intensification of the WOA
but also its diversification. Intensification attempts to search
around the present best objective solution and chooses the
best objective solution, while diversification guarantees that
the algorithm improves the global ability. Furthermore, it is
observed to provide more significant and successful results,
especially for unimodal and multimodal benchmark func-
tions. Due to these distinguishing features, the proposed
LWOA potentially outperforms the WOA. In the next section,
several benchmark functions are employed to confirm the per-
formance of the proposed algorithm in solving optimization
problems. The main steps of the LWOA can be summarized
in the pseudo code shown in Algorithm 2 below, and the
flowchart of the LWOA is presented in Fig. 2.
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Algorithm 2 LWOA
Initialize the whales population X;(i = 1,2, ...n)
Calculate the fitness of each search agent
X* =the best search agent
while (t < max; tearation)
for each search agent
Update a, A, C, I, and p
ifl (p <0.5)
if2 (1Al < 1)
Update the position of the current search agent by Eq. (2)
else if2 (|A] = 1)
Select a random search agent (X qnq)
Update the position of the current search agent by Eq. (9)
end if2
else ifl (p > 0.5)
Update the position of the current search by Eq. (6)
end if1
end for
For each search agent
Update the position of the current search agent using the
Lévy flight
end
Check if any search agent goes beyond the search space, and
amend it
Calculate the fitness of each search agent
Update X* if there is a better solution
t=t+1
end while
return X*

Initialize the population of whiales, a, 4, C, l and p ‘

i
- Yes
Iteration=Max itearion

No

Calculate the Fitness of each search agent,
[Evaluate X*, a, A, C, | and p

Choose a random

search a;

ent

Update the position of
the search agent
Update the position of the
search agent using Lévy flight

Check if any search agent goes beyond the
lsearch space and amend it

‘Updute X* if there is a better solution

Iteration=lIteration+1

FIGURE 2. The flowchart for the LWOA algorithm.

IV. SIMULATION EXPERIMENTS

There are various benchmark functions in the liter-
ature [24]-[27] that are designed to benchmark the
performance of metaheuristic methods. In this section,
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TABLE 1. The parameter settings for six algorithms.

Algorithms

Parameter values

MFO [28]

r is linearly decreased from -1 to -2 over the course of iteration, the population size is

20, and the maximum iteration number is 1000.

PSOGSA [29]
iteration number is 1000.
BA [3]
is 1000.
ABC [30]
WOA [8]

Gy=1,¢=20,C,=05,C,=15,mw¢e [0,1] the population size is 20, the maximum
A=09,r=05,f € [— 1,1] the population size is 20, the maximum iteration number

limit=50, the population size is 20, and the maximum iteration number is 1000.

a linear decrease from 2 to 0 was used, as recommended in [8], and the population

size 1s 20. The maximum iteration number is 1000.

LWOA

a linear decrease from 2 to 0 was used, as recommended in [8], and the population

size is 20. The maximum iteration number is 1000.

TABLE 2. Unimodal benchmark functions.

Name Benchmark function Dim Range frin
Sphere L) =) x 50 x, €[-100,100] 0
i=1
Schwefel222  fo(0) =D |x |+] JI=| 50  x €[-10,10] 0
i=1 i=1
n i
Schwefell.2  f3(0)=> . x,) 50 x, €[~100,100] 0
=l j=l
Schwefel2.21  fa(x) =max;{| x; [1<i< D} 50 x; €[-100,100] 0
D-1
Resonbrock — f5(x) = X [100(x;,; = x7)* +(x; = 1)’ 50 x, €[-30,30] 0
i=1
Step J6() =" (% +05]} 50  x,€[-100,100] 0
i=1
n
Quartic fr(x)= fo + random(0,1) 50 x; =[-1.28,1.28] 0

i=1

23 benchmark functions are selected to exploit various
characteristics to test the performance of the LWOA from
different perspectives. In general, the benchmark functions
can be divided into three groups: high-dimension unimodal
test functions (Table II), high-dimension multimodal test
functions (Table III), and fixed-dimensional multimodal test
functions (Table IV). Whereas dim represents the dimen-
sion of the function, range indicates the boundary of the
function’s search space, and fpin is the minimum value
of the functions. As the names of the functions indicate,
high-dimension unimodal test functions(f; ~ f7) that have
only a unique global optimum can test the exploitation and
convergence of an algorithm. In contrast, high-dimension
multimodal test functions (fg ~ f13) have a variety of
local optimal optima, which helps to benchmark exploration
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and local optimal optima avoidance of the algorithms, and
this characteristic makes them more difficult to optimize.
Eventually, the same as for the high-dimension multimodal
test functions, fixed-dimensional multimodal test functions
(fia ~ f23) also have various local optimal optima, but
with some differences; the dimensionality of the fixed-
dimensional multimodal test functions are low, and thus, they
have a smaller number of local optimal optima. When we
optimize the multimodal test functions, the algorithms are
challenged to remove the local minima and are easily trapped
into a nearby global optimum. Therefore, exploration and
local minima can be tested by the multi-modal benchmark
functions.

To verify the results of the LWOA, the other five
state-of-the-art meta-heuristic algorithms are employed:
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TABLE 3. Multimodal benchmark functions.

Name Benchmark function Dim Range Jimin
: S x; €[~10,10]
Alpine fulx)= in sin(x; )+ 0.1x; 50
i=1
Rastrigin fo(x) =[x} ~10cos(27x;) +10] 5o mels12512)
i=1
I IR
Ackley J10(x) =—20exp| —0.2 ;;xi —exp - 2 cos2mx; | [+20+e 50 X, €e[-32,32] 0
, 1 < . X; x; € [-600,600

Griewank i) = 2000 ;(xlz )— | cos(ﬁJ +1 50 [ 1 0

. n—1 .

o) =Z{10sin(an )+ 3, -1F 1050 s 0, -1

Penalized1 * Ziﬂﬂ(xi 10, 00’4) 50 x; €[-50,50] 0

k(x, —a)" >a

x; +1
yi=1+= ,u(xi,a,k,m)z 0O-a<x;<a
k(~x;,—a)"x; <—a
n n 2 n 4
Zakharov f13(x) = Zx,z + [Z 0.5ixl-] + (Z O.Sixl-J 50 x; €[-5,10] 0
i=1 i=1 i=1

moth-flame optimization algorithm (MFO) [28], a hybrid
population-based algorithm with the combination of parti-
cle swarm optimization and gravitational search algorithm
PSOGSA [29], bat algorithm (BA) [3], artificial bee colony
algorithm (ABC) [30], and the whale optimization algo-
rithm (WOA) [8]. To make a fair comparison, each algorithm
is run on the benchmark functions 30 times, and the standard
deviation of the best approximated solution in the final gen-
eration is provided. This feature shows us which algorithm
behaves in a much more stable way. For all of the algorithms,
the main parameters are set as shown in Table I. Such values
represent the best parameter sets for these algorithms accord-
ing to the original paper of MFO [28], PSOGSA [29], BA [3],
ABC [30], and WOA [8].

The statistical results contain Best, Worst, Mean and Std of
the objective function value, obtained by 30 independent runs
for the 23 functions; these are listed in Tables V, VII and IX.
All the algorithms are ranked according to the value of std.
Moreover, in this paper, we also conduct Wilcoxon’s non-
parametric statistical test [31], [32] over these 30 runs to have
a statistically meaningful conclusion. Such a statistical test
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should be performed to confirm the significance of the results
due to the stochastic nature of the meta-heuristics [33]. The
Wilcoxon’s nonparametric statistical test returns a parameter
called p—values, which can be used to verify whether two sets
of solutions are different to a statistically significant extent
or not. Only if p < 0.5 can we demonstrate a statistically
significant superiority of the results. The p — values cal-
culated in Wilcoxon’s rank-sum test comparing WOA and
other algorithms over all the benchmark functions are listed in
Tables VI, VIII and X.

A. EXPERIMENTAL SETUP

All the algorithms are performed on a computer with an
AMD Athlont (tm) I1*4640 processor and 4GB of RAM using
MATLAB R2012a.

B. RESULTS OF THE ALGORITHMS ON UNIMODAL
BENCHMARK FUNCTIONS

The functions f; ~ f7 are high-dimension unimodal because
they have only one global optimum and there is no local
solution for them. Therefore, they are very suitable for
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TABLE 4. Fixed-dimension multimodal Benchmark functions.

Name Benchmark function Dim Scope Sonin
25
1 -1
Shekcls fiu9 =, 0 Z:, —2 K 2 x, e[-6565] 1
Foxholes J J+Z(xi_%)
x b +bx
Kowalk  fis(x)= Z[ B +bi)p 4 xel-551 0.0003075
b7 +bxsy+xy
5.1 5 ’ 1
Rastrigin =~ f;4(x) :[x2 -+ +6j +10[1——jcos x +10 2 x e[55] 0.398
4z V3 87
GoldStein ~ /17(¥) =[1+(x +x, + 1)2(19 —14x, +3x] —14x, +6x,x, + 3x§)] [=5.5] ;
. X; €179,
Price x[30 + (2x, —3x,)* (18 = 32x; + 12x7 + 48x, —36x,x, +27x3)] ’
5
Shekel 1 fig(¥) ==Y [(x—a)(x—a)" +¢,]" 4 x,€[0,10] -10.1532
i=1
7
Shekel2  fio(x) == [(x—a)x—a)" +c,T" 4 x €[0,10] -10.4029
i=1
10
Shekel 3 foo(x) = —Z[(x —a)x—a) +¢ ] 4 x;€[0,10] -10.5364
i=1
Drop P cos(12y/x7 +x3 ) ,  wels1si)
X)=— -
wave 2 0.5(x2 +x2)+2
sinz(,/xf +x3 j -0.5 x; €[~100,100]
Schaffer For(x)=0.5+ 2 -1
(1+0.001(x{ +x3))*
. €[—100,100
Easom  fy5(x) = —cos(x,)cos(x,) exp(—(x, — ) — (x, — 7)°) o N elHI00100T
examining algorithms in terms of the convergence rate. The 510% F1
results of Table V show that the LWOA can provide very S
competitive results on unimodal functions. This algorithm 3
outperforms other algorithms on the majority of the test cases. 8
Table V shows that the LWOA outperforms all the others in g
f1. /2, /3, fa, and f7, which are five benchmark functions. For %
the six functions (f1, f2, f3, fa, fs, and f7) on unimodal func- H
tions, the standard deviation of LWOA is also less than that

of the other algorithms. ABC has promising performance for
optimizing fs, and LWOA exhibits the third best performance
on this function when compared using the standard deviation.
All the statistical results show the superior performance of
the LWOA in terms of solving high-dimension unimodal
functions. The p — values in Table VI additionally present
the superiority of the LWOA because most of the p — values
are much smaller than 0.05.

The averaged convergence curves of the LWOA, MFO,
PSOGSA, BA, ABC, and WOA when addressing all the
unimodal functions over 30 independent runs are shown in
Figs. 3-9. It must be mentioned here that all the convergence
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FIGURE 3. D = 50, evolution curves of the fitness values for f;.

curves in the following subsections are averaged curves.
From Figs. 3-7 and 9, we can see clearly that the LWOA
has the fastest convergence rate when finding the global
optimum, and thus we can conclude that the LWOA is
superior to the basic WOA during the process of optimiza-
tion and, at the same time, outperformed all of the other
four algorithms in these six high-dimensional unimodal test
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TABLE 5. Results of the unimodal benchmark functions.

Algorithm
Bfi ?lcclzﬁ,ligk Result Rank
MFO PSOGSA BA ABC WOA LWOA
Best 6.15000 1.80000 58700.00  0.0066133  1.93E-146 0
Worst 20000.0 40000.0 93300.00  0.8727587 9.53E-129 0
11 (D=50) 1
Mean 6656.14 7680.00 76649.85  0.1613981  3.48E-130 0
Std 7500.00 10100.0 8760.00 0.2239980  1.73E-129 0
Best 0.71800 0.0799229  2.32E+11  0.0404188 5.06E-106 6.17E-302
Worst 120.034 218.73276  4.75E+21  0.1881228 8.551E-95 2.83E-251
£ (D=50) 1
Mean 63.6000 109.00000  1.70E+20  0.0905261 3.811E-96 9.45E-253
Std 32.6000 74.420650  8.66E+20  0.0380328 1.593E-95 0
Best 25488.4152  17205.387 48187.346  39802.975 100980.48 0
£(D=50) Worst  119231.193  65464.000 271913.27 71824.640 235329.02 0 1
(D=
Mean  52969.0978  37602.818 129706.97 54842.006 154977.26 0
Std 23032.2545  14127.625 49529.680 8250.2000 33434.339 0
Best 77.5100663  43.845901 69.714887 72.037700 13.714634  6.85E-239
£:(D=50) Worst  92.3926922  96.120853  83.529828  86.990567 95.806734 9.33E-188 !
(D=
Mean 87.49358 76.242645 77.2798 81.701450 71.377289  3.11E-189
Std 4.090000 15.956892 3.40000 3.320172  24.067995 0
Best 5270.0000 113.52911 262000 171.41463  47.087093  47.414227
£(D=50) Worst 241459526 15988931  5384803.4 2579.3251 48.633277 48.697729 )
(D=
’ Mean 270163189 21186373 2538617.0 738.48054 48.003822 48.216133
Std 64227209.8 46205843  1240403.9 523.85824 0.4507025 0.3731767
Best 2.47997406  0.2597229 63858.780 0.0105582 0.4747958 0.6383553
i (D=50) Worst  31900.000 29700.000 98100.000 1.2641610 2.5885035 3.8896131 3
~ (D=
Mean 8330.0000 6330.9504  78500.00  0.1287937 1.3526089 1.9607244
Std 8168.76401  7630.1711 8131.8392 0.2384516 0.5448619 0.8057334
Best 1.31221649  0.2094768 0.0695411 1.0206927 2.087E-05  7.096E-08
£(D=50) Worst  97.7272991  0.7020370  0.1551359 2.3016816 0.0155463  0.0002797 !
(D=
Mean  26.8406399  0.4122066 0.0944619 1.5742526 0.0026835 7.075E-05
Std 28.2000000  0.1138668 0.0231043 0.3308606 0.0033584  7.439E-05
TABLE 6. Results of the p-value for the Wilcoxon rank-sum test on unimodal benchmark functions.
Functions
MFO vs LWOA PSOGSAvs LWOA  BAvsLWOA ABCvsLWOA  WOA vs LWOA
fl 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
5 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f3 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.21E-12
f4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11
f5 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.92E-02
f6 6.7E-11 1.69E-09 3.02E-11 5.49E-11 3.34E-03
f7 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.07E-10

functions. Fig. 8 illustrates that ABC eventually finds a better
best-approximated solution than the LWOA; however, the
LWOA is much more stable than ABC. Figs. 10-16 depict
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the Anova test of the global minimum of all the algorithms
for the benchmark functions from fi to f7. From Table V
and Figs. 10-16, it is obvious that the LWOA’s standard
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TABLE 7. Results of multimodal benchmark functions.

Benchmark Result Algorithm Rank
functions MFO PSOGSA BA ABC WOA LWOA
Best 0.4957572  3.4273133  9.0027522 0.0715158 8.6E-109  9.87E-296
£ (D=50) Worst  32.0813744  22.389674 44.380242  0.6720755 1.82E-82  7.95E-241 1
Mean 12.3003329  11.239291 20.171644  0.3005940 6.07E-84  2.65E-242
Std 8.67722171  5.5162568  8.0592873  0.1476362 3.33E-83 0
Best 268.831115  175.11227 288.38874  11.12615 0 0
D=50 Worst  450.00000  381.06687 466.00000 24.27988 0 0
J (D=30) Mean 334.00000  279.11064 371.00000  17.00000 0 0 !
Std 52.5572791  54.156122  41.240335  2.891041 0 0
Best 18.4375531  16.061921 18.860989  0.1793727 8.88E-16  8.881E-16
D=50 Worst  20.000000 20.00000  19.900000 1.3257102 7.99E-15 8.881E-16
Jio (D=30) Mean  19.5586102 18.510762 19.391349 0.8037350 4.09E-15 8.881E-16 !
Std 0.46043749  0.8579219 0.3195088  0.3440640 2.35E-15 0
Best 1.08783843  1.2700000  817.0000  0.0101887 0 0
fir (D=50) Worst  271.309496  183.75765 1202.7643  0.5818773  0.2305737 0 1
Mean 44.0597501 80.711588 1061.1506 0.1491764 0.0076857 0
Std 65.6000000  72.756241 87.370446  0.1182633  0.0420968 0

Best 7.72233888  13.774878 8861228  0.0003427 0.0065225 0.0034478
fi (D=50) Worst 512025046 51200006 48304869  0.0497181 0.3509396  0.0895898 2
" Mean 172000000 59700000 25300000 0.0099176  0.0407327  0.0379750

Std 93455862.3 12902576 11358203  0.0133278 0.0660877 0.0219968

Best 428.529327  249.31637 32.194495 918.48678 1305.1430 0
fis(D=50) Worst  2107.76072  988.12786  442.13725 1312.8759 1987.3408 0 1

Mean 1258.84177  522.62671 78.612517 1166.1103  1632.0301 0

Std 465.87576  210.10237  80.290840  93.132404  195.39490 0

TABLE 8. Results of the p-value Wilcoxon rank-sum test on multimodal benchmark functions.

Functions 0 WOA  PSOGSAvsLWOA  BAvsLWOA  ABC vs LWOA WOA vs LWOA
fs 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.73E-06

fo 1.21E-12 1.21E-12 1.21E-12 1.21E-12 N/A

fio 1.21E-12 1.21E-12 1.21E-12 1.21E-12 1.01E-08
i 1.21E-12 1.21E-12 1.21E-12 1.21E-12 3.34E-01
fis 3.02E-11 3.02E-11 3.02E-11 2.03E-07 7.98E-02
fi3 1.21E-12 1.21E-12 1.21E-12 4.98E-11 2.71E-01

10100 F2

g g

e T

2 3

; g

£ £

& P

g g

s ]

o
s
10.3000 o 460“eraﬁ°ﬁ60 860 1000 0 260 460 te at'oe{)o 8[)0 1000
ration
FIGURE 4. D = 50, evolution curves of the fitness value f,. FIGURE 5. D = 50, evolution curves of the fitness value for f5.

deviation is less than that of the other five algorithms. These C. RESULTS OF THE ALGORITHMS ON HIGH-DIMENSION
experimental results show that the LWOA has an excel- MULTIMODAL BENCHMARK FUNCTIONS

lent exploitation ability for solving high-dimension unimodal The statistical results of the algorithms on high-dimension
benchmark functions. multimodal benchmark functions are shown in Table VII.
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TABLE 9. Results of fixed-dimension multimodal benchmark functions.

Benchmark

Algorithms

functions Result MFO PSOGSA BA ABC WOA LWOA Rank

Best  0.9980038  0.9980038  0.9980038 0.9980038  0.9980038  0.9980038

B Worst  12.670505  22.900634  23.809434 1.0261512  10.763180  12.670505
fi(D=2)  Mean 44359917  6.8192764 12687439 1.0003048 17534642 45602442

Std 3.4900000  6.5005841 62782878  0.0059034  1.8831842  3.9392103

Best  0.0005096  0.0003074  0.0005192 0.0008085 _ 0.0003076 __ 0.0003129
oo Worst 00203633 00225533 0.1188170 00025527 00023703 00007729

fis(D=4) " Mean 00039700 00035837 00075723 00016161 00007381  0.0004278

Std 0.0067092  0.0069304  0.024602 0.0004673  0.0004953  0.0001286

Best 03978873 0.3978873 03978873 03978959 03978873 0.3979886

B Worst 03978873 0.3978873  0.3978874 03992973 03978963  0.3981430
fis(D=2)  Mean 03978873 03978873 03978873 03982247 03978895 03979272 O

Std 0 0 2.15E-08  3.20E-04  2.864E-06 6.34E-05

Best 3 3 3 3.0038025 3 3

oo Worst 3 3 84.000000 3.1018659  3.0069421  3.0036112
Jir(D=2) Mean 3 3 15600005 3.0393556  3.0003568  3.0003497 >

Std 2502E-15  2.161E-15  22.121299  0.0277987  0.0012937  0.0007191

Best 10.1532 7101532 -10.15316  -10.00838 _ -10.15273 _ -10.152506

. Worst  -2.630471  -2.630471  -2.630450 -7.335544  -2.629024  -0.8927282
fis(D=4) Mean  -6.465878  -5.879811  -5.641223 -9.097271  -7.944815 -9.8191905 2

Std 32040479  3.0224983  3.3740154 0.6832191  2.8033057  1.6861028

Best  -1040294  -1040294  -1040284 -1031932  -10.40263  -10.402239

oo Worst  -1.837593  -2.751933  -2.751913  -6.265706  -2.611919  -10.156297
fir(D=4) " Mean 6880537  -5.623942  -4710459 -9.059769  -8.633117  -10370955 |

Std 3.6527812 32661134 27564982  0.9634577 27374898  0.0453235

Best  -10.53641  -10.53641  -10.53636  -1034275  -10.53489  -10.535140

Worst  -1.859480  -1.859480  -1.676550 -6.297999  -1.675821  -1.6460791
So(D=4)  Mean  -6830401  -4.602916  -4.675314 -8.824212  -6928500 -10.208377 2

Std 3.6343660  3.1362511  3.1017606 1.1373033  3.3262606  1.6174411

B Best 1 1 -0.936245  -0.999895 a1 a1
Lr(D=2)  Worst 0936245  -0.936245  -0.369127 -0.979408  -0.936245 a1

Mean  -0.968122  -0.980873  -0.622707 -0.993835  -0.976623 -1

Std 00324222 0.0297155  0.1815385 0.0058563  0.0312482 0

Best 21 0990284  -0.921810  -0.999929 a1 1

B Worst  -0.962775  -0.873009  -0.520430 -0.988677  -0.990284 1
£2D=2)  Mean 0990338  -0.982707  -0.648434 -0.990734  -0.995465 a1

Std 0.0059879  0.0227867  0.1155438 0.0022144  0.0049300 0

Best 1 1 1 -0.999997 a a

B Worst -1 21 -0.0000811  -0.999671  -0.999995  -0.9999425
F3(D=2)  \ean -1 1 -0.633363  -0.999916  -0.999999  -0.9999923  °

Std 0 0 04900927  8.86E-05 1.08E-06  1.201E-05

Count of Std 2 2 0 4 2 14

average fitness value(log)

1
200

. .
400 600
Iteration

1
800 1000

FIGURE 6. D = 50, evolution curves of the fitness value for f;.

Table VII shows that the LWOA outperforms all the others
on five of the benchmark functions. For f3, fo, fi0, f11 and fi3,
it can be seen that the best fitness value, worst fitness
value, mean fitness value and standard deviation produced by

VOLUME 5, 2017
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FIGURE 7. D = 50, evolution curves of the fitness value for fs.

the LWOA are much better than those of other algorithms.

Moreover, for fo, fijandfiz, the LWOA can achieve the
theoretical global optimum of these three functions. The
remaining results, which belong to fj»>, show that the ABC
algorithm can perform better than the LWOA, while LWOA
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TABLE 10. Results of the p-value Wilcoxon rank-sum test on multimodal benchmark functions.

Functions - o0 I WOA PSOGSA vs LWOA  BAvsLWOA  ABC vs LWOA WOA vs LWOA
fia 0.283155 0.482084 8.29E-06 6.77E-05 1.75E-05
fis 1.46E-10 5.09E-08 3.82E-10 3.02E-11 6.10E-03
fi6 1.21E-12 1.21E-12 3.02E-11 2.02E-08 1.73E-07
fi7 2.81E-11 2.68E-11 1.52E-03 3.02E-11 1.50E-02
fis 2.89E-01 1.89E-02 9.33E-02 5.57E-10 9.82E-01
fio 1.00E+00 7.85E-03 9.51E-06 4.5E-11 1.00E+00
0 8.41E-01 2.79E-04 2.84E-04 5.57E-10 1.50E-02
fo1 1.1E-05 1.31E-03 1.21E-12 1.21E-12 3.12E-04
fan 5.42E-12 1.2E-13 1.21E-12 1.21E-12 2.85E-05
3 1.21E-12 1.21E-12 1.12E-01 9.83E-08 1.73E-06
X Fé x 10" F2

gwo . T

gwo“ 4

% _______ :iDGSA 0

£ ABC § 3

@ 0

g g2

810° = £

© i-l-.

2 L
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FIGURE 8. D = 50, evolution curves of the fitness value for fg. Algorithms
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FIGURE 9. D = 50, evolution curves of the fitness value for f;.

=

LWOA WOA  MFO PSOGSA BA ABC
Algorithms

x10* F1

®

=

IS

+

Fitness Value

[N}

FIGURE 10. D = 50, anova test of the global minimum for fg.

is the second most effective, performing better than the other
algorithms. The p — values reported in Table VIII show that
the results of the LWOA in fi1, fi» and fi3 are not signifi-
cantly better than those for the basic WOA (5% significance
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FIGURE 11. D = 50, anova test of the global minimum for fg.
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FIGURE 12. D = 50, anova test of the global minimum for f5.

level); however, in f3, fo and f19, the LWOA is significantly
better than the WOA. When compared with remaining algo-
rithms, all of the p — values are much less than 0.05, which
indicates that the LWOA shows significantly better results
compared to the other algorithms. Because the multimodal
functions have a variety of local optimal optima, these results
show that the LWOA can explore the search space extensively
and find promising regions of the search place, and it is
evident that the LWOA has a strong ability to accomplish
local minimum avoidance.

Figs. 17-22 illustrate the averaged convergence curves of
all the algorithms that address all the high-dimension mul-
timodal test functions over 30 independent runs. Fig. 21
depicts that ABC can finally find a better solution than the
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FIGURE 16. D = 50, anova test of the global minimum for f;.

LWOA gain; however, the LWOA has the fastest conver-
gence rate at the beginning and becomes much more stable
than ABC. As can be seen from the remaining curves in
the figures, the LWOA has the fastest convergence rate and
reaches the approximate best solutions. Figs. 23-28 show
the anova tests of the global minima for all the algorithms
in f3 ~ f13. According to Table VII and Figs. 23-28, the
standard deviations of the LWOA are smaller than those of
the other algorithms. From all these findings, we can draw
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FIGURE 19. D = 50, evolution curves of the fitness value for f;,.
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FIGURE 20. D = 50, evolution curves of the fitness value for f;;.

the conclusion that the LWOA is capable of avoiding local
minima with a good convergence rate for high-dimension
multimodal benchmark functions, and the LWOA has merit
among the other algorithms, including the original WOA.

D. RESULTS OF THE ALGORITHMS ON FIXED-DIMENSION
MULTIMODAL BENCHMARK FUNCTIONS

Similar to high-dimension multimodal benchmark functions,
fixed-dimension multimodal benchmark functions also have

6179



IEEE Access

Y. Ling et al.: Lévy Flight Trajectory-Based Whale Optimization Algorithm for Global Optimization

F12

o_n
3

LWOA
---= WOA
.......... MFO
PSOGSA |1

o
cl

©
/

o
%
i
i
i
i
i
i
]
i
i
1
i
i
i
.

average fitness value(log)

&

o,

. . . .
200 400 600 800 1000
Iteration

o

FIGURE 21. D = 50, evolution curves of the fitness value for f;,.

F13

avgerage fitness value(log)

e e

400 . 600 800 1000
Iteration

FIGURE 22. D = 50, evolution curves of the fitness value for f,5.

F8
T

40
[
3 30
©
>
@ 20
]
j=
=
('8

10

LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 23. D = 50, anova test of the global minimum for fg.

F9

400 -
]
= 300 -
>
@
8 200 -
j=
=
'S

100 -

0 -

LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 24. D = 50, anova test of the global minimum for fg.

more than one local minimum. The main difference between
the two is that while the dimensions of the fixed-dimension
multimodal benchmark functions are lower than the high-
dimension multimodal functions, the number of local min-
ima in the fixed-dimension multimodal benchmark functions
is less than that for the high-dimension multimodal bench-
mark functions. Table IX includes the results on the
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FIGURE 28. D = 50, anova test of the global minimum for f;3.

fixed-dimension multimodal benchmark functions. The
results of the best values presented in Table VIII highlight
the LWOA, and we can see clearly that the LWOA per-
forms better than the others in six of the fixed-dimension
multimodal benchmark functions. The LWOA failed to show
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FIGURE 31. D = 50, evolution curves of the fitness value for f;¢.

the best results on fis, fis, fi9 and fr9, while at the same
time, the LWOA can find the theoretic global optimum of
f17, 21, /22, f23 for these four test functions. In addition, for
fi5, f19, f21 and f>2, the standard deviations of the LWOA are
smaller than those of the other algorithms. In fact, the LWOA
is the most efficient or the second-best algorithm in the major-
ity of test functions. The p—values in Table X also support the
better results of the LWOA statistically. Inspecting the results
of Table X, the LWOA is significantly better in six out of
ten of the fixed-dimension benchmark functions. Thus, it can
be claimed that the results of the LWOA in these benchmark
functions are better than those for the other algorithms.

Figs. 29-38 depict the convergence curves of all the algo-
rithms on fixed-dimension multimodal benchmark functions.
As can be observed in Fig. 29, the ABC algorithm and the
WOA are superior to the LWOA and the other algorithms,
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FIGURE 35. D = 50, evolution curves of the fitness value for f,,.

while the LWOA also performs well compared with the other
algorithms. For Fig. 31, the PSOGSA and MFO are slightly
superior to the LWOA and the other algorithms, while the
LWOA is the third best and obtains the same final optimum
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FIGURE 38. D = 50, evolution curves of the fitness value for f,3.

with the PSOGSA and MFO algorithm. For the remaining
figures, it is obvious that the LWOA outperforms all the
other algorithms during the progress of the optimization.
Statistically speaking, the figures concerning convergence
curves show the superiority and high performance of the
LWOA. Figs. 39-48 provide the anova test of the global
minimum for all the algorithms in fi4 ~ f>3. According to
Table IX and Figs. 39-48, we can conclude that the stan-
dard deviations of the LWOA are smaller than those for the
other algorithms for the majority of the test cases. These
results show that the LWOA is potentially able to solve fixed-
dimension multimodal test functions, and in addition, the
results provide strong evidence for the superior ability of
the LWOA.

In summary, the results of this section experimentally
prove that the LWOA shows very competitive results and
outperforms other well-known algorithms on the three types

6182

F14
20 4
©
E]
© 15 B
>
3 +
+
2 10 B
=
('S
5 -
== |
LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 39. D = 50, anova test of the global minimum for f,,.

F15
042 : : : : 3 ]
0.1 J
[
3 008 J
S N
S +
» 0.06 J
7]
Q
£ 004 4
w
0.02 + + 4
+ +
ok —— e —_— —_— —_— =_—
LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 40. D = 50, anova test of the global minimum for f;5.

F16
+
0.3992 -
0.399 g
S
< 0.3988 -
> +
» 0.3986 -
3
£ 0.3984 -
=
" 03082
. - B
03| F i
== e e e
LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 41. D = 50, anova test of the global minimum for f;g.

F17
8o} N 1
o 60 J
2
©
>
»n 40 -
n
Q
f=
=
i 20 J
ok —+ —— — —_— —
LWOA  WOA MFO PSOGSA  BA ABC
Algorithms

FIGURE 42. D = 50, anova test of the global minimum for f,5.

of benchmark functions, and we state that the LWOA has
merit among the other five algorithms. The next section
inspects the performance of the LWOA in solving the IIR
model identification problem.

V. 1IR MODEL IDENTIFICATION
In this section, infinite systems identification is solved to
further investigate the performance of proposed LWOA.
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Infinite system identification is an effective method to acquire
the mathematics model of an unknown system by ana-
lyzing it’s input and output values. System identification
based on infinite impulse response (IIR) models are prefer-
ably utilized in real world application than equivalent FIR
(finite impulse response) since the former model physics
plants more accurately. In addition, they are typically capa-
ble of meeting performance specifications using fewer filter
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FIGURE 49. Block diagram of IIR system identification.

coefficients [34]. In a system identification configura-
tion which is shown in Fig. 49, the optimization algo-
rithm searches for the adaptive filter parameters until its
input/output relationship matches closely to that of the
unknown plant. The fitness function, which is used in the
article could be defined as the following [35].

The transfer function of the IIR system can be written in
the following general form:

Y(z)  bo+ bz~ '+ bz 2 e

= 14
X(2) l4+aiz +az 24 ... +a,z ™" (14

where m and n are the number of of numerator and denomi-
nator coefficients of the transfer function, respectively.

a; i€[l,...,n])and b;(j € [1, ..., m]) are filter coeffi-
cients that define its poles and zeros respectively. The Eq.(14)
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can also be written in another general form as follows:
n m
YO =) ai-yt—i+ Y bi-xt—j)  (15)
i=1 j=0

where y(¢) denotes the fth output of the system. u(#) denotes
the tth input of the system (see Fig.49), Consequently, the
IIR system can be model by the series of unknown param-
eters which represents by 6 = {ai,...,an, bo, ..., bn}.
Considering that the number of unknown parameters of 9 is
(n + m + 1), the search space of IIR feasible values for 0 is
Rntm+1)

From the block of diagram of Fig. 48, the output of the
unknown plant is d(¢) while y(¢) is the output of the IIR filter.
The error function between the output of the adaptive filter
and the output of the plant is e(t) = d(t) — y(z). Hence,
the design of this filter can be considered as a minimization
problem of the function f (6) defined as follows:

_ 1y o2
HOESDNUCESIO) (16)

=1

where w denotes the amount of the samples used for the
calculation of the function f (). The main objective of the
IIR system is to minimize the function f (9) by adjusting 6.
The optimal 6* or solution will be acquired as soon as the
error function f (0) acquire its minimum value which could
be stated as follows:

0* = argmin(f(9)), 0 ¢€S a7

The Results of the IIR Model Identification

The result is reported considering a superior-order plant
through a high-order IIR model. The transfer functions of
both

the unknown plant /), and the IIR model Hy, are defined
asfollows [33]:

1 —0.4772—0.657%4+0.267°
1 —0.77772 — 0.8498z—4 + 0.64867~°
-1 bo 4+ b1z~ + brz? + b3z 4 bzt
Hy (z ) =
l+aiz ' +az 2+ a3z 3 +agz ™

Hp(z_l) =

(18)

From Eq. (18), the plant is a sixth-order system and the
IIR model a fourth-order system, the error surface f (9) is not
unimodal but multimodal. The system input has used a white
sequence with 100 samples in this case.

The results of the LWOA to solve IIR system iden-
tification and compare to others algorithms are reported
in Table XI and Table XII. In this experiment, to make a
fair comparison, each algorithm is run on this case 30 times.
Table XI presents the best parameter values (ABP) and
Table XII presents both the average f (6) value (AVE) and
the standard deviation (STD). Fig. 50 depicts the aver-
age optimization convergence curves of the LWOA and
other algorithms to in optimizing IIR system identification
problem.
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According to the Table XII, it is obvious that the LWOA
provides the best average results and the best standard devi-
ation compare with FPA, GSA, BA, ABC, MFO, PSOGSA
and WOA in terms of IIR system identification. The results
show that LWOA provides better precision (AVE value) and
robustness (STD). As can be observed in Fig. 50 that the
LWOA has very high convergence speed in comparison to the
other 6 algorithms except for the PSOGSA, though PSOGSA
performs better than the LWOA in the convergence rate, how-
ever, the average value and standard deviation in Table XII
shows LWOA is much more stable than PSOGSA. Therefore,
we could draw a conclusion that LWOA could solve the IR
system identification very well.

To summarize, the LWOA algorithm shows desirable per-
formance for this IIR system identification problem. By com-
bining suitable IIR model, it will play an important role in IIR
system identification .Thus in general the LWOA is a

potential candidate for identification of IIR plant compared
to other evolutionary computing based approaches.

VI. DISCUSSION AND ANALYSIS OF THE RESULTS

Statistically speaking, the LWOA provides superior local
avoidance and an optimum or near optimum in most of
the datasets. In the majority of situations, the performance
of the LWOA is superior to or at least highly competitive
with the standard WOA, while given the same amount of
time, the LWOA outperforms the other algorithms. There
reasons that the LWOA performs excellently and efficiently
are described next. First of all, using the Lévy flight tra-
jectory helps to significantly improve the diversification of
the algorithm to ensure its global search ability and to avoid
local minima. In LWOA, the Lévy flight was introduced
in to the basic WOA, that is, when each whale update the
position by the original equations from the basic WOA, the
objective function is not directly calculated, but it further
updates individuals positions via Lévy flight as Eq. (10) and
then calculated the value of objective function. Lévy flight
strategy is an efficient way to carry out the exploration step
and it could helps search more efficiently. This strategy makes
the LWOA has a better local search ability which can helps the
LWOA perform faster and more robustly than the WOA.
In addition, according to the update mechanism of the hump-
back whales, whale search operators accordingly attempt to
update their position towards the best hunting agent; this
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TABLE 11. Results of the best parameter values (ABP).

Algorithms ABP
ap ay as Ay b() bl b2 b3 b4

FPA 0.068473 -0.24828 -0.0679 -0.63647 0.833805 0.082938 0.378238 0.06502 -0.52026
GSA -0.24287 0.22186 0.037434 0.075601 0.411713 0.008314 0.136863 -0.07522 0.470426
BA -0.09373 0.738731 -0.1249 0.293633 0.806225 -0.30992 0.825842 -0.60627 0.571276
ABC 0.547192 0.169075 0.825132 0.274598 -1.13193 0.732465 0.919517 -0.88647 0.05727
MFO 0.00990 -0.05390 -0.01050 -0.81220 0.998600 0.007200 0.295900 0.002400 -0.36060
PSOGSA -0.1537 -0.10860 0.11140 -0.75200 0.866900 -0.17060 0.259700 0.028800 -0.20670
WOA 0.014386 -0.90321 0.031866 0.116009 0.880918 -0.06604 -0.57527 0.10358 0.287061
LWOA 0.135365 0.007952 0.04691 -0.49333 0.819424 0.211917 0.290214 0.129851 0.071382

TABLE 12. The average f (6) value (ave) and the standard deviration (std).

Algorithms AVE STD

FPA 0.027896 9.20E-03
GSA 0.057665 1.65E-02
BA 0.268377 1.74E-01
ABC 0.046431 1.92E-02
MFO 0.032100 1.35E-02
PSOGSA 0.025100 2.58E-02
WOA 0.030306 2.09E-02
LWOA 0.021095 9.06E-03

mechanism promotes exploration of the search place and
results in finding diverse search spaces .Third, due to the
parameter (when ‘X > 1), almost half of the iterations
are used for exploration of the search space while in the
same time the rest iterations are devoted to exploitation
(‘X‘ < 1) which helps to conduct a local search and in the
same time as performing a global search. This mechanism
is very helpful for the LWOA algorithm shows high local
optimal optima avoidance and it’s the main reason of the
superiority of the LWOA algorithm. Finally, the advantage of
the LWOA includes performing much more simply and easily
and only having a few parameters to use.

Another finding in the results is the poor performance of
the ABC, BA, MFO and PSOGSA. ABC, BA and MFO
these three algorithms belong to the class of swarmed-based
algorithms while PSOGSA is a hybrid algorithm combine
with PSO and GSA these two algorithms. In contrary to evo-
lutionary algorithms, there is no mechanism for significant
abrupt movements in the search space and this is likely to be
the reasons for the poor performance of ABC, BA, MFO and
PSOGSA. The other reason is these four algorithms do not
have operators to devote specific iteration to exploration or
exploitation. In another words, these four algorithms use one
formula to update the position of search agents, which may
be the reason of increasing the likeness of stagnation in local
minima. Although the LWOA algorithm is also a swarmed-
based algorithm, its mechanisms described in the preceding
are the reasons why it is advantageous in benchmark func-
tions. From Section 4, it is clear that the LWOA performs
better than the other algorithms on most of the benchmark
functions because the Lévy flight trajectory provides the
ability to smoothly balance exploration and exploitation.

The findings in Section 5 prove that the LWOA is very
effective in solving IIR system identification system because
the results on this problem show that the LWOA outperforms
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the other methods. The main reason that the LWOA can
perform well in this type of problem is that this algorithm
is equipped with adaptive parameters to smoothly balance
exploration and exploitation. Half of the iteration is devoted
to exploration and the rest to exploitation. In addition, Lévy
flight trajectory can increase the diversity of the population
and make the algorithm jump out of local optimum more
effectively. Therefore, combine with these two mechanism
can let LWOA performs so well in the IIR system identifi-
cation.

The comprehensive study conducted here showed that the
LWOA has a stronger ability to find a global optimum and is
more stable than other algorithms while at the same time effi-
ciently solves the IIR system identification. All the statistical
results prove the superiority of the LWOA.

VII. CONCLUSION
This paper proposed an improved version of the WOA

called the LWOA for optimization problems. To evaluate the
performance of the LWOA, 23 benchmark functions were
employed, and then we compared the LWOA with five other
state-of-the-art meta-heuristic algorithms. Moreover, we use
Wilcoxon’s rank-sum nonparametric statistical test to judge
whether the results of the LWOA differ from the best results
of the other algorithms to a statistically significant extent. The
results shown in Section 4 prove that the LWOA outperforms
all the other algorithms in a majority of the test cases, and
these results also demonstrate that the LWOA is a feasible
and quite effective approach to solving global optimization
problems. Furthermore, the results show the superior approx-
imation capabilities of the LWOA in high-dimensional space.

We also applied our proposed approach of the LWOA
to solve IIR system identification problem, as shown in
Section 5.

Comparison of simulation results with other meta-heuristic
clearly exhibits superior identification performance of the
LWOA.

Our future work will focus on the following two issues:
first, we would like to apply our proposed approach of the
LWOA to solving more practical engineering optimization
problems. Second, we would like to develop new meta-hybrid
versions of the WOA.
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