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ABSTRACT Logical Petri nets (LPNs) canwell describe and analyze batch processing functions and pass the
value indeterminacy in cooperative systems. Their structure is simpler than their equivalent inhibition PNs.
To analyze them, a vector matching method was given previously. We present interactive LPNs (ILPNs)
in this paper. Their liveness and boundedness are analyzed for the first time. Compatibility is analyzed
for a composed system and reflects the possibility of correct/proper interactions among its subsystems. To
characterize different cooperative abilities in practice, compatibility is defined for ILPNs. Some relationships
among compatibility, liveness, boundedness, and conservativeness are revealed. An example is presented to
discuss the effectiveness of the proposed method.

INDEX TERMS Petri nets, interactive logical Petri net, Petri net composition, compatibility analysis,
cooperative systems.

I. INTRODUCTION
In cooperative systems such as e-commerce systems, a mer-
chant needs to interact, exchange messages, and thus make a
deal with several different customers at a same time interval.
This requires such systems to have a capacity of simultane-
ously processing a batch of data, called a batch processing
function in the following discussion. During batch process-
ing, both merchant and customer show indeterminacy. For
example, a merchant may experience a shortage of products,
while customers spend different time on each stage of the
dealing process, and some even abruptly change or cancel
their process at any trading progress. These are called passing
value indeterminacy that appear in such interaction systems.
The analysis of a batch processing function and passing value
indeterminacy in such cooperative systems is very important
theoretically and practically.

Petri nets (PNs) [1] are a well-founded model applied
to the simulation and analysis of cooperative systems espe-
cially the concurrent ones. Based on its solid mathematical
definition and graphical expression, PNs have been used
to effectively model and analyze concurrent, asynchronous,

distributed, parallel, and uncertain information processing
systems [2]–[4] before they are put into operation, since any
errors in the system may lead to a great loss of value. There
are some extensions to PNs, such as time PNs [5], colored
PNs [6], [7], and stochastic PNs [8]. They have been applied
to many fields such as process control, communications pro-
tocols, production systems, hardware, embedded systems,
and transportation systems [9]–[13]. Among these, PNs with
arc weights may offer a batch processing function, but cannot
address the passing value indeterminacy.

Logical Petri Nets (LPNs) are defined in [14] and [15] as a
high-level PN. It can describe batch processing functions and
passing value indeterminacy in cooperative systems and ver-
ify the correctness of such systems. The passing value inde-
terminacy is sorted into input and output indeterminacy, and
described by logical input and output transitions, respectively.
These logic transitions are attached with logical expressions
that are defined and divided into input and output ones.
A logical expression attached to a transition is a function of its
input or output places. It fires while its corresponding logical
expression is true, meaning that the marking of the places

9152
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 5, 2017



W. Luan et al.: Composition of LPNs and Compatibility Analysis

satisfies the requirement described by the expression.
In detail, a logical input transition fires when its logical
input expression is true; and a logical output fires only if
its firing leads to a marking that makes its logical output
expression true. In fact, the indeterminacy is implied by
the logical expressions attached to the corresponding logical
transitions. Due to such restriction of logical expressions
labeled on transitions, LPNs can describe and analyze conve-
niently batch processing functions and passing value indeter-
minacy in cooperative systems. Obviously, LPNs enhance the
expression ability of PNs and can cater to more application
requirements. They have been applied to model and analyze
a stock trading system [15] and e-commerce systems [16].
The equivalence between LPNs and the safe inhibition Petri
nets (IPNs) [17] is proved in [14]. Although IPNs model
batch processing functions and data arrival indeterminacy,
they are complex. There lack any practical modeling tool
and efficient analysis methods. The net structure of an LPN
is much simpler than that of its equivalent IPN. A concept
named Gate in a PN model named Stochastic Activity Net-
works [18] contain predicates and functions whose terms
are markings of places. It can rule the firing of transitions.
Such networks also have the batch processing functions and
data arrival indeterminacy modeling function, but their sin-
gle transition connect with more than one gate with several
predicates and functions, thereby making the analysis very
challenging. To analyze LPNs, our prior work proposed a
vector matching method [19]. Some mathematical methods
for analyzing an LPN are presented in [20]. Its properties
such as the conservativeness, reachability and reversibility
are also analyzed based on our proposed equations. How-
ever the construction complexity of a reachability tree and
state equation solution is high and till now we have not
revealed sufficient and necessary conditions for a live LPN.
Du and Jiang [15] analyze e-commerce systems by using a
subclass of LPNs in which the special structures of these sys-
tems are expressed by logical expressions; and relationships
among logical transitions can be used to derive the otherwise-
difficult-to-analyze fundamental properties of LPNs. In this
paper, we present an interactive logical Petri nets, and their
liveness and boundedness analysis are discussed. Compatibil-
ity is proposed as an important concept to decide if its subsys-
tems own correct/proper interactions. Different cooperative
abilities are thus characterized in practice. Some relationships
among compatibility, liveness, and boundedness are revealed.
An example is used to illustrate them.

The rest of this paper is organized as follows. Section II
reviews the concepts of PNs, LPNs and IPNs. Section III
gives an interactive logical Petri net, and discusses its live-
ness and boundedness analysis. Compatibility is defined and
some relationships among compatibility, liveness, and bound-
edness are revealed. Section IV describes an e-commerce
system and its LPN. The compatibility analysis is illus-
trated through a case study. Concluding remarks are made in
Section V.

II. LPNs
This section first briefly reviews some notions of
PNs [9]–[11], IPNs [17] and LPNs [14]–[16], [19], [20].
A simple comparison such as the net structure between an
LPN and its equivalent IPN is presented. Then the capacity of
an LPN in modeling batch processing functions and passing
value indeterminacy in an e-commerce system is discussed.
In the rest of paper, we use R0 to denote the real number set,
N to denote the natural number set, i.e., N = {0, 1, 2, · · · }.
Let N+ = N/{0}, Nk = {0, 1, 2, · · · , k}, and N+k =
{1, 2, · · · , k}, k ∈ N+.

A. PNs AND LPNs
Definition 1: N = (P, T , F) is a net where
1) P is a finite set of places;
2) T is a finite set of transitions with P∪T 6= ∅ and P∩T =
∅; and

3) F ⊆ (P×T )∪ (T ×P) is a set of directed arcs with each
one from a place to a transition or from a transition to a
place.

Definition 2: Given a net N = (P,T ,F). x ∈ P ∪ T is
a node in N . •x = {y|(y, x) ∈ F} and x• = {y|(x, y) ∈ F}
are its pre-set and post-set, respectively. If X ⊆ P ∪ T ,
its pre-set and post-set are respectively •X = ∪x∈X •x and
X• = ∪x∈X x•.
Definition 3: PN = (N ,M ,W ) is a Petri net where
1) N = (P, T , F) is a net;
2) M : P→ N is a marking defining the number of tokens

in each place p ∈ P, indicated by M (p) with M0 being
the initial marking;

3) W : F → N+ is a weight function where W (x, y) = 0 if
(x, y) /∈ F, x, y ∈ P ∪ T ; and

4) It has the following transition firing rules:
(a) A transition t ∈ T is enabled atM if ∀p∈•t:M (p) ≥

W (p, t), represented by M [t〉;
(b) If t is enabled, it can fire, generating a new marking

M ′ from M , represented by M [t〉M ′, where

M ′(p) =


M (p)+W (t, p) if p ∈ t• − •t
M (p)−W (p, t) if p ∈ •t − t•

M (p) else

(1)

(c) If there exist a sequence of transitions t1,
t2, . . . , tk , and markings M1, M2, . . . ,Mk such that
M [t1〉M1[t2〉M2 . . .Mk−1[tk 〉Mk , then Mk is called
to be reachable fromM , and all markings reachable
fromM are denoted by R(PN,M ) (or R(M ) shortly)
and M ∈ R(M ). Let σ = t1, t2, . . . , tk . We denote
M [σ 〉Mk and ti ∈ σ , i ∈ N+k .

For simplicity, a marking M is denoted as M =∑
p∈PM (p) • p. For example, (2, 1, 0, 0, 0)T can be written

as 2p1 + p2. In the following, P = {p1, p2, · · · , pn} is a set
of places in a PN, and we denote that f = f (p1, p2, · · · , pn)
is a logical expression [21], [22] on P and the operators in
f only consist of logic disjunction ‘‘∨’’, conjunction ‘‘∧’’
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and negation operators ‘‘¬’’, i.e., f is an expression with
places of first-order logic as atomic expressions. •T•/•F•
denotes the logic value ‘‘true’’/‘‘false’’ with ¬•T• = •F• and
¬•F• = •T•, where ¬ is a logical negation operator. When
p1 is used as a logical expression in f , the logic value of p1 is
•T• only if m(p1) ≥ 1.
Definition 4 [19]: Let PN = (P,T ,F,W ,M ) be a PN.

For pi ∈ P, i ∈ N+n , pi|M denotes the logical value of pi at M
where

pi |M =

{
•T•, if M (pi) ≥ 1

•F•, if M (pi) = 0

and f |M denotes the logical value of f at M where

f |M = f (p1, p2, · · · , pn)|M = f (p1|M , p2|M , · · · , pn|M )

In the following discussion, we call a logical expression is
satisfied at M if f |M = •T•.
The following definition of LPNs is owing to [19].
Definition 5: L=(P,T ,F,M ,W , I ,O, τ ) is an LPNwhere

1) P = PD ∪ PC is a finite set of places with P 6= ∅ and
PD ∩ PC = ∅ where

(a) PD denotes a set of data places; and
(b) PC denotes a set of control places;

2) T = TD ∪ TI ∪ TO is a finite set of transitions with
T 6= ∅, given any i, j ∈ {D, I ,O}, if i 6= j, Ti ∩ Tj = ∅,
and ∀t ∈ TI ∪ TO: •t ∩ t• = ∅, where

(a) TD denotes a set of transitions as defined in
Definition 1;

(b) TI is called a set of logical input transitions, where
∀t ∈ TI , the markings of input places for t to be
enabled are restricted by a logical expression fI (•t);

(c) TO denotes a set of logical output transitions, where
∀t ∈ TO, the markings of output places after t fires
are restricted by a logical expression fO(t•) on t•;

3) F ⊆ (P× T ) ∪ (T × P) is a finite set of directed arcs;
4) M : P→ N is a marking;
5) W : F → N is a weight function where W (x, y) = 0 if

(x, y) /∈ F, x, y ∈ P ∪ T ;
6) I is a mapping from a logical input transition to a logical

input expression, i.e., ∀t ∈ TI , we denote I (t) = fI (•t);
7) O is a mapping from a logical output transition to a

logical output expression, i.e., ∀t ∈ TO, we denote
O(t) = fO(t•);

8) τ : T → R+ associates transitions with a time delay, i.e.,
if t ∈ T is enabled, it fires after time τ (t); and

9) It has the following transition firing rules:

(a) ∀t ∈ TD, its firing rules are the same as those in
PNs;

(b) ∀t ∈ TI , t is enabled only if I (t)|M = •T•.M [t〉M ′,
where for ∀p∈•t , if M (p) = 0, M ′(p) = 0, else,
M ′(p) = M (p) − W (p, t); for ∀p ∈ t•, M ′(p) =
M (p) + W (t, p); and ∀p/∈•t ∪ t•, M ′ (p) = M (p);
and

FIGURE 1. Graphical representation of elements in LPNs: (a) a token,
(b) a data place, (c) a control place, (d) a logical transition, (e) an ordinary
transition, and (f) a directed arc.

FIGURE 2. Two LPNs.

(c) ∀t ∈ TO, t is enabled only if ∀p∈•t: M (p) = 1.
M [t〉M ′, where ∀p∈•t: M ′ (p) = M (p)-W (p,t);
∀p /∈ t•∪•t: M ′(p) = M (p); and ∀p ∈ t• must
satisfy O(t)|M ′−M = •T•, i.e., t• must satisfy the
logical output expression O(t) at M ′.

Notice that in the marking function in the above definition,
we have an assumption that the maximum capacity of each
control place is exactly 1 while that of data place is greater
than 0.

An LPN is a high-level PN. The input/output places of
a logical input/output transition are restricted by a logical
input/output expression I (t)/O(t), and logical input and out-
put transitions are called logical transitions. Hence, the inde-
terminacy of values in input and output places is described by
logical expressions. They are graphically described in Fig. 1,
where (a)-(f) respectively describe a token, data place, control
place, logical transition, ordinary transition, and directed arc.
Two simple LPNs are presented in Fig. 2 where (a) only
contains a logical input transition t1 and (b) contains a logical
output one. They are restrained by a logical input/output
expression I (t1)/O(t2) where I (t1) = p1 ∧ (p2 ∨ p3) and
O(t2) = p8 ∧ (p9 ∨ p10).
Note that each place of a logical expression has a logical

value at marking M in an LPN, and by substituting the
values of all places into the logical expression, the expres-
sion corresponds to a logical value. In Fig. 2, for example,
if M0 = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0), I = {p1, p2, p3}, and
fI (•t1) = p1 ∧ (p2 ∨ p3), then from Definition 5, we have
p1|M0 = •T•, p2|M0 = •F•, p3|M0 = •T•, and fI (

•t1)|M0 =

•T• ∧ (•F• ∨• T•) = •T•.

B. EQUIVALENCE BETWEEN LPN AND IPN
Inhibition Petri nets (IPNs) [17] are an extension to PNs as
defined next.
Definition 6: IPN = (PN ,H ) is a PN with inhibitor

arcs (IPN) where
1) PN = (P,T ,F,W ,M ) is a PN;
2) H ⊂ P × T is the inhibitor arc set, H ∩ F = ∅, and

(p, t) ∈ H is represented as a non-directed arc with a
small circle at t ′s side; and
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FIGURE 3. Equivalent IPNs of the LPNs in Fig. 2.

3) It has the following transition firing rules: ∀t ∈ T , t is
enabled at M if ∀p ∈ P: (p, t) ∈ F ⇒ M (p) ≥ 1,
and (p,t) ∈ H ⇒ M (p) = 0. Firing t results in a new
marking M ′ computed by (1) in Definition 3.

The equivalence between LPNs and IPNs has been proved
in [14]. An IPN model that is equivalent to the LPN model
in Fig. 2 is shown in Fig. 3.

For example, in Fig. 1, there exists a marking M0 =

(1, 0, 1, 0, 0, 1, 0, 0, 0) such that the logical expression of the
input transition t1 is true at M0. Thus t1 can fire such that
p4 can obtain a token and the process goes on. Given other
markings, t1 may also be enabled. Though the inputs of t1 are
different, they do not affect the execution process and result
that enables p4 to obtain a token. In the corresponding IPN,
no matter which transitions t11, t12 or t13 fires, p4 can obtain
a token, meaning that a system could accept the inputs and
proceed with its execution. In Fig. 2, if t2 fires, the output
is indeterminate, and t21, t22, and t23 are all enabled in the
corresponding IPN such that the firing choice of these tran-
sitions represents the output indeterminacy. In another word,
that markings enable t11, t12 or t13 in Fig. 3 is equivalent to
that they enable t1 in Fig. 2, implying the input indeterminacy;
the marking after choosing t31, t32, and t33 to enable in Fig. 3
is equivalent to that enabling t1 in Fig. 2, implying the output
indeterminacy.We propose LPNs to model the indeterminacy
of the systems. An LPN has its corresponding equivalent IPN.

From Figs. 2 and 3, the IPN model consists of 6 tran-
sitions while its corresponding LPN has only 2 transitions.
IPN requires more arcs and two inhibitor arcs. Its structure is
clearly much more complex than LPN. Besides till now there
is no good property analysis tool or method for IPNs.

C. LPNs OF E-COMMERCE SUB-SYSTEMS
We now discuss an e-commerce system where a seller may
trade with several buyers at the same time. We use LPN
to describe a batch processing function and passing value
indeterminacy that exist in such a system. For an illustra-
tion purpose, we consider only a three e-commerce sub-
systems modeled by LPNs as shown in Fig. 4, i.e., a seller
S and two buyers B1 and B2. Firstly B1 and B2 deliver
orders to S if they need to buy any products from S.
In one circulation, S receives the orders from B1 and B2,
and check if they can satisfy the buyers’ order requests
such as the order quantity. At the same time it decides
whether to accept or refuse the latter’s orders. If it accepts
an order, the corresponding buyer needs to pay for it.

After receiving the payment, the S sends the product to the
buyer, and the deal finishes. The tasks of a seller subsystem S
include receiving order (r_order), checking order (c_ order),
receiving payment (r_payment), and sending products
(s_ product). iS is an original place and oS is a terminal place.
Transitions r_ order, c_ order, r_ payment, and s_ products
have logic expressions: iS ∧ (B1_order∨B2_ order), ps2 ∧
(B1_refuse∨B1_accept)∨(B2_ refuse∨B2_ accept), ps2 ∧
(•T•∨B1_ payment∨B2_ payment) and ps4 ∧ (•T•∨
B1_ product∨B2_ product). The tasks of a buyer subsys-
tem include, sending order (s_ B_order), sending payment
(s_ B_ payment), and receiving the product (r_B_ product).
iB is an original place and oB a terminal place. In order to
ensure the correctness of the composition of the subsystems
and that of the whole e-commerce system, we present some
theoretical methodologies next. Note that the fundamental
properties [19] of LPNs such as liveness, reachability conser-
vativeness and reversibility, are analyzed based on a vector
matching method in our previous work. This work discusses
the properties of the composition of sub-nets. We suppose
that each unit of resources sent or received by a buyer at each
deal can be described by a token. In the model in Fig. 4, each
arc except (s_deal, Product), (Product, s_deal), (r_payment,
Payment), and (Product, s_product) has a weight of 1, while
n1 and n2 are two variables of the weights and n1, n2 ≤ 2.

III. COMPATIBILITY
To directly analyze LPNs, we can find their enabled transi-
tions based on a vector matching method [19]. In the fol-
lowing discussion, we present an interactive logical Petri
net (ILPN) which is a sub-class of LPNs, and discuss their
liveness and boundedness for the first time. Compatibility
is an important concept to reflect the possibility of cor-
rect/proper interaction among its subsystems in a composed
system. In order to characterize different cooperative abil-
ities in practice, we define compatibility for ILPNs and
reveal the relationships among compatibility, liveness, and
boundedness.

A. FIRING RULES OF LOGICAL TRANSITIONS IN AN LPN
In LPNs, passing value indeterminacies is divided into input
and output indeterminacy that are respectively described via
logical input and output transitions. The logic transitions are
restricted by their corresponding logical input and output
expressions. They fire only if their related logical expressions
are true at a right marking. Normally each logical expres-
sion is transformed into a disjunctive normal form, and it is
unique [22]. Each disjunctive clause in the disjunctive normal
form is a conjunct consisting of all places related to a logical
transition. I (t) of a logic input transition t is true only if
one of disjunctive clauses of I (t) holds, and t is enabled.
The output places of a logic output transition t depends on
the disjunctive clauses of O(t). If f (x1, x2, · · · , xk ) is logical
expression in an LPN containing variables x1-xk , then it can
be transformed into a unique disjunctive normal form denoted
by f (x1, x2, · · · , xk ) = f1∨f2∨ . . .∨fm, where f1 − fm are the
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FIGURE 4. Three LPN sub-models in an e-commerce system: (a) the seller model, (b) the model of buyer 1, (c) the model of buyer 2.

corresponding conjuncts. To make sure the correct operation
of a system model, these logical expressions should satisfy
some restrictions.
Definition 7: Let L = (P,T ,F,M ,W , I ,O, τ ) be an LPN,

f (x1, x2, · · · , xk ) = f1∨f2∨ . . .∨fm, be a logical expression
attached to a logical output transition, M be a marking, and
f |M = •T•. The output result is restricted by M such that
fi|M = •T• and fj|M = •F• where j = N+m /{i}.

Note that Definition 7 gives a restriction, i.e., there is
only one output determined by the current marking. Some
transitions may have common structures. We present their
following formal definition.
Definition 8: Let x1-xk ∈ P be k places in an LPN.

We define f (x1, x2, · · · , xk ) = x1∧(x2∨· · ·∨xk ) as a template
logical expression in an LPN with x1 ∈ PC .

Some determinacy relationship among the input or output
expressions of logical transitions are defined next. For exam-
ple, in an e-commerce LPN, if a logical transition t fires, then
the input conditions or output results of other transitions have
the corresponding relationships with those of t . There are
mainly two kinds of relationships between each pair of logical
transitions. Their definitions are shown as follows where
f (x1, x2, · · · , xk ) = x1∧(x2∨ · · · ∨xk ) is a template logical
expression of an LPN. ∀ti, tj ∈ TI ∪TO, if ti ∈ TI , let P =• ti;
else P = t•i and if tj ∈ TI , Q =• tj, else Q = t•j .

Definition 9: Let TC ⊆ TI ∪ TO be a set of logical
transitions in an LPN, TC1 ∪ TC2 = TC and TC1 ∩ TC2 = ∅.
∀ti, tj ∈ TC1 or ti, tj ∈ TC2:

1) ti and tj are isomorphic and denoted by ti ∼ tj where
if M∗ ∈R(M0), M∗ [ti〉 or M0[σ ,ti〉M∗, then ∀M ′ ∈
R(M∗), M ′ [tj〉 or M0[σ ′, tj〉M ′ such that M∗

|P = M ′
|Q,

whereM|U denotes the projection of M : P → N on U :
M|U (u) = M (u) if u ∈ U ∩ P and m|U (u) = 0 if
u ∈ U\P; and

2) ti and tj are dual as denoted by ti ⇔ tj where if
M∗ ∈R(M0),M∗[ti〉 orM0[σ , ti〉M∗, then ∀M ′′ ∈R(M0),
M ′′[tj〉 or M0[σ ′′, tj〉M ′′ such that M∗

|P(1)= M
′′

|Q(1) = 1,
and M∗

|P(x)+M
′′

|Q(x) = 1, k ≥ x > 1.

In this definition, M∗ is denoted as the marking we
choose on which a logical transition will fire or has fired.
It is a marking that affects the indeterminacy conditions
or results when another logical transition fires. From the
above definition, we can derive the properties of these two
relations.
Property 1 [19]:

1) ∼ is reflexive, symmetric and transitive; and
2) ⇔ is symmetric;

According to the structure and relationship among logical
expressions, a reachability tree can be constructed.
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Definition 10:Let x1 and x2 be variables in a logical expres-
sion. They are called converse if only one of them can contain
a token, i.e., ∀M : (x1∨x2)|M = •T•, and if x1|M = •T•,
x2|M = •F•; else, x2|M = •T•.
Let f (x1, x2, · · · , xk ) = x1∧(x2∨x3∨x4∨ · · · ∨xk ) be a

template logical expression of an LPN. Then we describe the
template as f (x1, x2, · · · , xk ) = x1∧(x2∨x3)∨(x4∨ · · · ∨xk )
and ∀M : f |M = x1∧(x4∨ · · · ∨xk )|M .

B. INTERACTIVE LOGICAL PETRI NETS (ILPNs)
We cite the concept of a logic process as follows
from [23].
Definition 11: A logic process is a net N = (P,T ,F)

satisfying that:

1) N has two special places i and o, where i ∈ P is
called a source place, o ∈ P is called a sink place with
•i = o• = ∅, and

2) Let N ∗ = (P,T∪ {b}, F∪{(b, i), (o, b)}) be the trivial
extension of N and M0 = i be its initial marking,
i.e., N has only one token in i. Then, N ∗ is strongly
connected, and (N ∗, M0) is live and safe.

Following [23], we define a logic process with channels as
follows.

Let L = (P,T ,F,M ,W , I ,O, τ ), P1 ⊆ P, and
T1 ⊆ T . The subnet of L generated by P1 and T1 are
respectively written as

L|P1 = (P1,• P1 ∪ P•1,F
′,M ,W , I ′,O′, τ ) and

L|T1 = (•T1 ∪ T •1 ,T1,F
′′,M ,W , I ,O, τ )

where

(1) F ′ = F ∩ {P1 × (•P1 ∪ P•1), (
•P1 ∪ P•1)× P1};

(2) F ′′ = F ∩ {T1 × (•T1 ∪ T •1 ), (
•T1 ∪ T •1 )× T1};

(3) I ′(t) = I (t) and O′(t) = O(t); and
(4) ∀p ∈ P1,∀M ∈ R(M0) : p|M = •T•.

Note that a logic expression attached to a logical transition
only contains the variables of places in P1. It is denoted
by f |P1 and other variables are replaced with the logical
value •T•.
Definition 12: A logic process with channels (LPC) is

a logical Petri net L = (PC ∪ PI ∪ PO, TD ∪ TI ∪
TO,F,M ,W , I ,O, τ ) where

1) The subnet generated by PC 6= ∅ is a logic process
denoted by L∗, wherePC is the set of control places of L;
and

2) PI is a set of input channel places, PO is a set of output
channel places, PI ∩ PO = ∅ and PC ∩ (PI ∪ PO) = ∅.

Definition 13: Interactive Logical Petri Nets (ILPNs) are
defined recursively as follows.

1) An L = (PIC ∪ PC ∪ PI ∪ PO, TD ∪ TI ∪
TO,F, I ,O) is an ILPN where it is an LPC with
PIC = ∅.

2) Let Li = (PICi ∪ PCi ∪ PIi ∪ POi, TDi ∪ TIi ∪ TOi, Fi, Di,
Ii, Oi), i ∈ N+2 , be two ILPNs such that

(PIC1 ∪ PC1) ∩ (PIC2 ∪ PC2) = ∅,

PI1 ∩ PI2 = PO1 ∩ PO2 = ∅,

(PO1 ∩ PI2) ∪ (PO2 ∩ PI1) = PS 6= ∅, and

(TDi1 ∪ TIi1 ∪ TOi1) ∩ (TDi2 ∪ TIi2 ∪ TOi2) = ∅.

Then, L is an ILPN where

PIC = PIC1 ∪ PIC2,

PC = PC1 ∪ PC2 ∪ PS ,

PI = (PI1 ∩ PI2)\PS ,

PO = (PO1 ∩ PO2)\PS ,

TD = TD1 ∪ TD2,TI = TI1 ∪ TI2,

TO = TO1 ∪ TO2,

F = F1 ∪ F2,

D(t) = Di(t) if t ∈ TDi ∪ TIi ∪ TOi, and

I (t) = Ii(t) if t ∈ TIi,O(t) = Oi(t) if t ∈ TOi.

Clearly, an ILPN is the union of m LPC L1-Lm, m ≥ 1, via
a set of common places (i.e., PS ). To facilitate its description,
an ILPN is denoted by

L = L1 ⊕ L2 ⊕ . . .⊕ Lm = ⊕mi=1Li.

In Definition 13, PIC , PI , PO, PI ∪ PO are called a set of
internal channel, input channel, output channel, and external
channel places of L, respectively. All the channel places
are data places. Input channel places can only be combined
with output ones. After two LPCs are composed via a set
of common channel places, these common places become
internal ones and cannot take part in other combinations
any more. Additionally, external channel places represent
interfaces used to interact with the environment. Note that the
external condition needs to be fulfilled for any meaningful
design analysis. Therefore, it is assumed that all ILPNs have
no external channel places. It is also assumed that every
IPN is connected since, otherwise, they should be separately
analyzed. Here, liveness and reversibility are used to study
the compatibility. Thus a net can be live and reversible if it is
closed, i.e., there is no place that has no input transition in the
net. Thus the trivial extension of an ILPN is defined next.
Definition 14: Let L = ⊕mi=1Li be an ILPN. L∗ = (PIC ∪

PC ∪ PI ∪ PO, TD ∪ TI ∪ TO ∪ {b}, ∪mj=1{(oj, b)(b, ij)} ∪
F,M ,W , I ,O, τ ) is called the trivial extension of LIPN
where b is a bridge transition.

C. LIVENESS AND BOUNDEDNESS ANALYSIS
Definition 15: L is an ILPN. C is called a path from node n1
to nk if there exists a sequence of nodes < n1, n2, . . . , nk >
such that (ni, ni+1) ∈ F , i ∈ N+k−1. &(C) denotes the alphabet
of C , i.e., &(C) = {n1, n2, . . . , nk}. C is called a basic path
where ∀ni, nj ∈&(C), if i 6= j: ni 6= nj. nj is the subsequent
node of ni, denoted by ni ≺C nj if ∃ni, ni+1, . . . , nj ∈&(C)
and (ni, ni+1), (ni+1, ni+2), . . . , (nj−1, nj) ∈ F .
Note that a path C =< n1, n2, . . . , nk > is called a circle

if < n1, n2, . . . , nk−1 > is a basic path and n1 = nk .
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FIGURE 5. ILPN composed of two LPCs.

Let Lj, j ∈ N+2 be two LPCs where PO1 ∩ PI2 = {pa},
and PO2 ∩ PI1 = {pb}; ∀p′′ ∈{pa, pb}: |•p′′| = |p′′•| = 1;
and TI1 ∪ TO1 ∪ TI2 ∪ TO2 ⊆ ∪p"∈{pa,pb} (

•p′′ ∪ p′′•); Nj be
the logic process generated by PCj where ∀p ∈ Pj\{ij, oj}:
|
•p| = |p•| = 1, and ∀t ∈ Tj: |•t| = |t•| = 1; L = L1 ⊕ L2;
and L∗ be the trivial extension of L, as shown in Fig. 5. Then
we have the following conclusions.
Theorem 1: L∗ is live and bounded iff in L, either of the

following conditions hold:
1) ∪p"∈{pa,pb} (

•p′′∪p′′•) = TI∪TO, f = p′∧(•T•∨p′′) is the
template logical expression, M∗ ∈R(M0), M∗(p′′ = 0,
and •pa ∼ p•a ∼

• pb ∼ p•b;
2) a) there exist no circle; and b) ∃p′′ ∈{pa, pb}: •p′′ ∈ TD

and p′′• ∈ TI ∪ TO (or p′′• ∈ TD and •p′′ ∈ TI ∪ TO),
M∗ ∈R(M0): M∗ (p′′) = 1 and f |∗M = •T•.

3) a) there is a circle; b) condition (1) is not satisfied; and
c) ∃p′′ ∈{pa, pb}: •p′′ ∪ p′′• ∈ TI ∪TO andM∗ ∈R(M0):
M∗(p′′) = 0 while p′ ∈{pa,pb}\p′′: •p′ ∈ TD and p′• ∈
TI ∪ TO (or p′• ∈ TD and •p′ ∈ TI ∪ TO), M∗′ ∈R(M0):
M∗′ (p′) = 1.

From Theorem 1 we have that an ILPN composed by two
LPCs is live and bound if the logical transitions respectively
from the two LPCs are isomorphic; and there is no circular
wait for any resources.

For the above Lj, j ∈ N+2 , let TI1 = TO1 = ∅, TI2 = {tI2}
and TO2 = {tO2}; f (p′, p′′) = p′∧(•T•∨p′′) be the template
logical expression in L2, where p′ ∈ Pi and p′′ ∈{pa, pb}; Nj
be the logic process generated by PAj = {ij, pj, oj}, where
∀p ∈ Pj\{ij, oj}: |•p| = |p•| = 1, and ∀t ∈ Tj: |•t| = |t•| =
1; and L = L1 ⊕ L2. Suppose that •pa = {t11}, p•a = {tI2},
•pb = {tO2}, p•b = {t12}. Given this situation, we can get the
result in the corollary below.
Corollary 1: L∗ is live and bounded iff there exist no circle

and M∗ ∈ R(M0): M∗(p′′) = 1 and f |∗M = •T•.

FIGURE 6. Four LPCs.

We illustrate the aforementioned corollary through some
examples. There are four LPCs denoted by Lj, j ∈ N+4 as
shown in Fig. 6, where

PAj = {ij, pj, oj}, PICj = ∅, PI1 = PI2 = PO3
= PO4 = {pb}, and PO1 = PO2 = PI3 = PI4 = {pa},

TD1 = {t11, t12},TD2 = {t21, t22},

TI3 = {t31} with fI (•t31) = i3∧(•T•∨pa),

TO3 = {t32} with fO(t•32) = o3∧(•T•∨pb),

TI4 = {t42} with fI (•t42) = p4∧(•T•∨pa),

TO4 = {t41} with fO(t•41) = p4∧(•T•∨pb),

TD3 = TD4 = TI1 = TI2 = TO1 = TO2 = ∅,

F1 = {(i1, t11), (t11, pa), (t11, p1),

(p1, t12), (pb, t12), (t12, o1)},

F2 = {(i2, t21), (pb, t21), (t21, p2),

(p2, t22), (t22, pa), (t22, o1)},

F3 = {(i3, t31), (pa, t31), (t31, p1),

(p3, t32), (t32, pb), (t32, o3)}, and

F4 = {(i4, t41), (t41, pb), (t41, p4),

(p4, t42), (pa, t42), (t42, o4)}.

According to Theorem 1 and Corollary 1, the ILPN
in Fig. 7 (c) is not live and bounded. The ILPNs in
Figs. 7 (a), (b), and (d) are live and bounded if and only if both
pa and pb have tokens that satisfy all the logical transitions.

D. CONSERVATIVENESS
In an e-commerce LPN, output results of a logical transition
are not only determined by the transitions that are isomorphic
or dual with them, but also are related with the input places
which are data places. We now give the definition of its
conservativeness. First we give some concepts in order to
discuss the transition firing rules in LPNs.

∀ti, tj ∈ TI ∪ TO, if ti ∈ TI , let P =• ti; else P = t•i
and if tj ∈ TO,Q =• tj, else Q = t•j .

Definition 16: Let L be an ILPN. If there exists an
m-dimension vector Y = [yk ]m×1, yk > 0, k ∈ N+m , M0 is
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FIGURE 7. Four ILPNs composed by the LPCs in Fig. 6.

an arbitrary initial marking, and ∀M ∈ R(M0),
m∑
k=1

M (pk )yk =
m∑
j=1

M0(pj)yj,

then L is conservative. In particular, L is conservative on
P′ ∈ P if ∀M ∈ R(M0),∑

pi∈P′
M (pi)yi =

∑
pj∈P′

M0(pi)yj

From Definitions 5 and 13, we have PD ⊆ PI ∪ PO. In a
system, the data places should preserve the resource quantity
modeled by token count. Thus we have

∀M ∈ R(L,M0) :
∑

p∈PD
M (p) = c,

where c is a constant describing the total number of resources.
Now we discuss the conservativeness of an LPN by using

matrix calculation.
Theorem 2: Let L be an LPN. L is conservative on PD iff
1) ∀t ∈ TD,∑

pi∈PD
W (pi, t) =

∑
pj∈PD

W (t, pj);

2) ∀t ∈ TI ,∑
pi∈PD

W (pi, t)ρ(pi) =
∑

pj∈PD
W (t, pj),

where if M (pi) > 0, ρ(pi) = 1; else, ρ(pi) = 0; and
3) ∀t ∈ TO,∑

pi∈PD
W (pi, t) =

∑
pj∈PD

W (t, pj)ρ(pj),

where if M [t〉M ′ and M -M ′(pi) > 0, then ρ(pj) = 1, else,
ρ(pj) = 0.

We suppose that all data places must deposit and withdraw
tokens in a system. Otherwise, the data places is meaningless.

Corollary 2: If L is conservative and n1 ∈ PD, then there
exists a path C =< n1, n2, . . . , nk > where n3, n5, . . . ∈ PD,
nk ∈ PD and n•k = ∅.

Proof: If L has n1 only, i.e., the net contains a place only,
C =< n1 >, and the result holds.
If there is a transition n2 such that (n1, n2) ∈ F , because

L is conservative, there must be a data place n3 according to
Theorem 2. Similarly, suppose that n2i−1 is a data place. If
there is a transition n2i such that (n2i−1, n2i) ∈ F , then there
must be a data place n2i+1 according to Theorem 2. If nk /∈
PD, then nk ∈ T , it contradicts the above discussion. Thus,
nk ∈ PD and n•k = ∅.

E. COMPATIBILITY ANALYSIS
According to the definition of liveness, boundedness, and
conservativeness, we define the compatibility as follows.
Definition 17: Let L = ⊕mi=1Li be an ILPN composed of

m LPCs Li, M0 = i1 + . . .+ im, and Md = o1 + . . .+ om. L
is compatible if:

1) LPN is conservative on PD;
2) ∀M ∈ R(L|PIC∪PC ,M0): Md ∈ R(L|PIC∪PC ,M ); and
3) ∀t ∈ T , ∃M ∈ R(L|PIC∪PC , M0): M [t〉.

In a sense, the compatibility means that a system always
reaches the final state and each transition has the opportunity
to fire. It also ensure that the data places preserve the resource
quantity. This property is useful. When we assemble some
components that are from different producers, perhaps some
execution sequences cannot ensure a correct end.
Theorem 3: Let L = ⊕mi=1Li be an ILPN composed of

m LPCs L1-Lm, M0 = i1 + . . . + im. L is compatible iff
(L∗, M0) is live and bounded and L1-Lm are conservative on
their respective data place set PDk ⊆ PD, k ∈ N+m .

Proof:We can derive conditions 2 and 3 hold iff (L∗,M0)
is live and bounded similarly with [23, Th. 1]. According to
the definition of conservativeness, we can easily derive that
L∗ is conservative iff L1-Lm are conservative.

IV. CASE STUDY
Now we construct the e-commerce system as shown in Fig.
8 by composing three e-commerce sub-systems modeled by
LPNs as shown in Fig. 4. It is a trivial extension of LIPN
where b is a bridge transition. Transitions r_order, c_order,
r_payment, and s_products respectively have logic expres-
sions:

iS ∧ (B1_order ∨ B2_order),

ps2 ∧ (B1_refuse ∨ B1_accept)∨(B2_refuse∨B2_accept),

ps2 ∧ (B1_payment ∨ B2_payment), and

ps4 ∧ (B1_product ∨ B2_product).

We suppose that in each transaction, the number of
resources sent or received by a buyer is represented by a
token. Note that (s_deal, Product), (Product, s_deal), and
(Product, s_product) has a weight n1, and (r_payment, Pay-
ment) has a weight n2. We have the following results:
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FIGURE 8. E-commerce system model.

IfM (Product)≥2, n1 = 2, andM [s_deal>M ′ such thatM ′

(B1_accept)= M ′ (B2_accept)=1;
ifM (Product)=1, n1 = 1, andM [s_deal>M ′ such thatM ′

(B1_accept)= M ′ (B2_rufuse)=1 or M ′ (B2_accept) = M ′

(B1_rufuse)=1;
if M (Product)=0, n1= 0, and M [s_deal>M ′ such

that M ′(B1_refuse)=M ′(B2_refuse)=1. We also have
r_payment∼s_product.
If M (B1_payment) + M (B2_payment)≥1, n1=M

(B1_payment)+M (B2_payment).
According to Theorems 1-3, we can conclude that the LPN

model in Fig. 8 is live, bounded, conservative on data places
and thus compatible.

V. CONCLUSION
As an effective formal model and extension of the tradi-
tional Petri nets, logical Petri net (LPN) has the capac-
ity to describe and analyze batch processing functions and
passing value indeterminacy in cooperative systems. In this
paper we discuss the properties of composition of LPNs. We
present an interactive logical Petri nets (ILPNs) and analyze
their liveness, boundedness and conservativeness. In order to

characterize different cooperative abilities for composed sys-
tems, compatibility is defined for ILPNs. It reflects the
possibility of correct/proper interaction among subsystems.
Some relationships among compatibility, liveness, bounded-
ness, and conservativeness are revealed. There are several
future works: the compatibility analysis results can be used
in other cooperative systems such as those regarding sensor
networks [24]; we will explore some net-structure-based or
partial-order-based methods [25] to analyze the properties
such as the compatibility, soundness, and deadlock of LPN.

APPENDIX
PROOF FOR THEOREM 1

Proof (Sufficiency):We discuss two cases in the follow-
ing, respectively:

1) Because ∪p"∈{pa,pb} (
•p′′ ∪ p′′•) = TI ∪ TO, i.e.,

(•pa ∪ p•a ∪
• pb ∪ p•b) ⊆ TI ∪ TO, the input and output

transitions of the internal channel places are logical
transitions. Given M∗(p′′) = 0, if a logical transition
fires, the logical expression f = p′ ∧ (•T• ∨ p′′) is
satisfied, and ∃p′′ ∈{pa,pb} contains no token. Given
•pa ∼ p•a ∼

• pb ∼ p•b, each logical transition will
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fire under the restriction of the logical transitions f =
p′ ∧ (•T• ∨ p′′) and ∀p′′ ∈{pa,pb} contains no token.
Because Nj = (Pj, Tj, Fj) is a logic process with
∀p ∈ Pj\{ij, oj}: |•p| = |p•| = 1, and ∀t ∈ Tj:
|
•t| = |t•| = 1, and (NE

j , Mj0) is live and safe, that is
Mj0 = ij andMj0[σj〉M ′j , whereM

′
j = oj. let σ=σ1σ2 be

a connection of σ1 and σ2. We have in L∗,Mj = i1+ i2,
Mj[σj〉M ′ with M ′ = o1 + o2. Also, Thus L∗ is live.
Similarly, we can prove it is bounded.

2) If condition 1 is not satisfied, suppose that ∃p′′ ∈
{pa,pb}: •p′′ ∈ TD and p′′• ∈ TI ∪ TO (respectively,
p′′• ∈ TD and •p′′ ∈ TI ∪ TO),M∗ ∈R(M0):M∗(p′′)=1
and f |∗M = •T•. Obviously firing p

′′• (respectively, •p′′)
removes (respectively, deposits) a token from (respec-
tively, in) p′′. ∀t ∈ ∪p′′∈{pa,pb}(

•p′′ ∪ p′′•): |•t| =
|t•| = 1. Nj is an logic process with ∀p ∈ Pj\{ij, oj}:
|
•p| = |p•| = 1, and ∀t ∈ Tj: |•t| = |t•| =1. (N ∗j ,
Mj0) is live and safe, that is Mj0 = ij and Mj0[σj〉M :
M (••p′′)=1. Thus t is enabled.
Also, ∀t ∈ T\ ∪p′′∈{pa,pb} (

•p′′ ∪ p′′•): |•t| = |t•| = 1.
Nj is an logic process and (N ∗j ,Mj0) is live and safe, and
t is enabled. Thus, L∗ is live and bounded.

3) If there exists a circle and condition 1 is not satisfied.
There must be a transition t ∈ •pa ∪ p•a ∪

• pb ∪ p•b:
t ∈ TD. We have that a transition connecting p′ ∈
{pa, pb} is a logical transition such that M∗′ ∈R(M0):
M∗′ (p′) = 1. On the other hand, in order to exclude
circular wait, there exists another place p′′ ∈{pa,pb}\p′

satisfying that •p′′ ∪ p′′• ∈ TI ∪ TO and M∗ ∈ R(M0):
M∗ (p′′) = 0. Thus, the condition holds.

(Necessity) L∗ is live and bounded. We verify the three
conditions by dividing them into two parts: there is a circle
or no circle in L∗. Suppose there exists a circle C =< n1,
n2, . . . , nk >. we use the contradiction method. If conditions
1 and 3 do not hold, i.e., (a) no p′′ ∈{pa,pb}: •p′′ ∪ p′′• ∈
TI ∪ TO and M∗ ∈R(M0): M∗ (p′′) = 0, so there must be
a circular wait or a token left in p′′, and L∗ is not live; (b)
∃p′ ∈{pa, pb}: •p′ ∈ TD and p′• ∈ TI ∪ TO (or p′• ∈ TD and
•p′ ∈ TI ∪ TO), M∗′ ∈R(M0): M∗′(p′) = 1. There must be
a token left in p′′, and L∗ is not live. These contradict with
the liveness of L∗. Thus, if there exists a circle, conditions
1 or 3 hold. If there exists no circle, we have ∃p′′ ∈{pa,pb}:
•p′′ ∈ TD and p′′• ∈ TI ∪TO (or p′′• ∈ TD and •p′′ ∈ TI ∪TO),
M∗ ∈R(M0): M∗ (p′′) = 1 and f |∗M =• T•, or condition 2
holds. �

PROOF FOR THEOREM 2
Proof (Necessity):According to Definition 16, L is conser-

vative on PD. We have ∀M ∈ R(M0),∑
pi∈PD

M (pi) =
∑

pj∈PD
M0(pj)

We now discuss how to preserve the above formula after a
transition t fires, i.e., M [t > M ′. Tokens in input and output
places change while those in others remain unchanged.

(1) If t ∈ TD: let P′D = (•t ∪ t•) ∩ PD, and we have∑
pk∈p′D

M ′(pk ) =
∑

pi∈P′D
M (pk )

According to the firing rules in Definition 5,∑
pk∈p′D

M ′(pk ) =
∑

pk∈P′D
M (pk )−

∑
pi∈P′D∩

•t
W (pi, t)

+

∑
pj∈P′D∩t

•
W (t, pj)

Thus, ∑
pi∈P′D∩

•t
W (pi, t) =

∑
pj∈P′D∩t

•
W (t, pj)

Because W (p, t) = 0 if p /∈ •t and W (t, p) = 0 if p /∈ t•, we
have ∑

pi∈PD
W (pi, t) =

∑
pj∈PD

W (t, pj)

(2) If t ∈ TI :
if pi ∈ PD, pi ∈ •t , and M (pi) > 0, according to the firing

rule of a logical input transition as shown in Definition 5,

M ′(pi) = M (pi)−W (pi, t);

if M (pi) =0 and M ′ (pi) = 0; and
if pj ∈ PD and pj ∈ t•,

M ′(pj) = M (pj)+W (t, pj)

Hence we have∑
pk∈pD

M ′(pk )

=

∑
pk∈PD,M (pk )>0

M (pk )

−

∑
pi∈PD∩•t,M (pk )>0

W (pi, t)+
∑

pj∈PD∩t•
W (t, pj)

Thus, ∑
pi∈PD

W (pi, t)ρ(pi) =
∑

pj∈PD
W (t, pj),

where if M (pi) > 0, ρ(pi) = 1, else, ρ(pi) = 0.
(3) If t ∈ TO:
if pi ∈ PD, pi ∈ •t , according to the firing rule of a logical

input transition as shown in Definition 5,

M ′(pi) = M (pi)−W (pi, t);

if pj ∈ PD and pj ∈ t•, because ∀p ∈ t• satisfy O(t)|M ′−M =
•T•, we have that if M > M ′ (pj), then M ′ (pj) = M (pj)-
W (t ,pj)
Then,∑
pk∈pD

M ′(pk ) =
∑

pk∈PD
M (pk )−

∑
pi∈PD∩•t

W (pi, t)

+

∑
pj∈PD∩t•,M ′(pj)−M (pj)>0

W (t, pj)

Thus, ∑
pi∈PD

W (pi, t) =
∑

pj∈PD
W (t, pj)ρ(pj),

where if M [t〉M ′ and M > M ′ (pi), then ρ(pj) = 1; else,
ρ(pj) = 0.
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Sufficiency proof can be obtained by following the tran-
sition firing rules. For simplicity, if each transition satisfies
conditions 1-3, their firing preserves the token counts in input
and output data places. As a result, the number of tokens in
data places remains unchanged in the whole net, i.e., L is
conservative.
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