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ABSTRACT Dose-volume (DV)-based objectives are widely used in most intensity-modulated radiation
therapy treatment planning, because numerous DV endpoints have been utilized. In clinical practice,
DV-based optimization (DVO) with uniform or random initial intensity distributions is utilized, but without
considering the non-convexity of the DV objectives. To improve the quality of DVO radiotherapy plan and
reduce the local minimum error generated by non-convexity of the DV objective, we proposed an efficient
method (an organ-model-based optimization guiding DVO) to determine the initial intensity distributions for
DVO. The new approach includes two steps. First, fluence map optimization, based on the organ model that
adopts our proposed increasing objective function, to assure organ evaluation criteria Pareto surface, was
performed. Second, DVO procedure was performed by using the initial intensity distributions determined
in the first step. We demonstrated this technique in two kinds of clinical cases. DV histogram metrics were
adopted as the criterion to evaluate the treatment plans. Compared with the conventional DVO plan with
uniform initial intensity distributions, the improved DVO plan provided better protection of organ at risk
(OAR); the planning target volume coverage was similar. Moreover, the improved DVO plan was better than
the plan generated in the first step. The proposed method, with advantages in determining the initial intensity
distributions, was highly efficient to improve DVO plans.

INDEX TERMS Dose-volume-based optimization (DVO), intensity-modulated radiation therapy (IMRT),
generalized equivalent uniform dose (gEUD), gradient optimization algorithm, organ-model-based
optimization.

I. INTRODUCTION
Intensity-modulated radiotherapy (IMRT) can achieve a good
balance between the coverage and homogeneity of the
planning target volume (PTV) while sparing the organs
at risk (OARs) by modulating the intensity of beams [1].
Conventionally, the dose distribution in patients is mainly
controlled by optimized physical and biological criteria.

Moreover, the biological criteria that consider both
tissue structure and radiation response information were
sometimes incorporated into the inverse planning process for
IMRT [2], [3]. The practical use of optimized plans that are
only based on radiobiological information should be carried

out carefully, due to the uncertainties associated with the
models and clinical experiences in adopting physical crite-
ria, such as dose and dose-volume constraints [2]. Addition-
ally, physical objectives are used to perform clinical inverse
treatment planning, which is a current standard practice
that evaluates treatment plans according to clinically accept-
able dose and dose-volume indices. Among those physical-
criteria-based radiotherapy optimization techniques, the most
clinically relevant technique would be the one based on
partial dose-volume constraints [4]. The maximal and min-
imal dose constraints can be treated as special forms of
dose-volume constraints. Optimization methods based on
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dose-volume (DV) are unlikely to change substantially in the
near future, since abundant clinical experiences that utilize
DV endpoints (i.e., above specific dose thresholds) have
been accumulated, which can be directly incorporated into
the optimization process [2]. For example, radiation-induced
pneumonitis has been associated with the average dose of the
lung, and the volume V20 [5]–[8], the latter of which can be
considered to be a constraint in optimization model.

In commercial inverse planning systems, such as HELIOS
(Varian Associates, Palo Alto, CA, USA) and Pinnacle
(Philips, Milpitas, CA, USA), gradient-based optimization
algorithms are used to solve the optimization problems,
because those algorithms require fewer iterations to obtain a
reasonable solution [9]. The major concern when using those
algorithms is that the optimization iterations may get trapped
in a local minimum. Deasy [10] reported that local minima
did exist in dose-volume objective. Their observations sug-
gested that the gradient-based optimization algorithms should
be performed in a manner that avoids getting trapped in
local minima. However, Wu and Mohan [11] reported that
the local minima problem is not easily resolved, based on
the results from several clinically relevant plans with random
initial intensity distributions. Llacer et al. [12] confirmed
Wu’s conclusions via the same approach. They also claimed,
however, that multiple local minima problem should not pre-
clude the researchers from searching a clinically acceptable
treatment plan based on gradient-based optimization algo-
rithms. Rowbottom andWebb [13] reported that local minima
were widely found and closely clustered together based on
their approach of ‘‘configuration space analyses’’ for beamlet
weights optimization. Jeraj et al. [14] reported that the local
minimum errors were relatively small when using random or
uniform initial intensity distributions. The above summary
indicates that the DVO, which is solved by a gradient-based
algorithm, can generate a clinically acceptable radiotherapy
plan, although this plan may not be global optimal. The key
solution when using DVO is to propose approaches to avoid
(or at least reduce) local minimum error, and to improve the
quality of the DVO plan, both of which are the purpose of this
work.

Lacer et al. [12] reported that the probability of reaching
the global minimum was determined by the initial intensity
distributions. Zhang et al. [9] also reported that arbitrary
selection of the initial value might lead to inferior solutions.
In clinical practice, however, uniform or random intensity
distributions are chosen as initial solutions in the radiotherapy
optimization process [9], [11], [14]. With aim to improve the
DVO plan quality, our study mainly focused on the selection
of the initial intensity distributions.

Through introducing the concepts of dose-volume his-
togram (DVH) and dose distributions, Zarepisheh et al. [15]
found that the organ evaluation criteria (OEC) Pareto sur-
face(i.e., XOEC) belonged to the DVH Pareto surface (i.e.,
XDVH), if the sub-objective functions for each OAR and each
target were the increasing function for OEC. The relationship
can be mathematically expressed as XOEC ⊂ XDVH . Based on

FIGURE 1. Outline of the new DVO method.

this theorem, we proposed a new approach to select the initial
intensity distributions for DVO. In this approach, the initial
intensity distributions are obtained by fluence map optimiza-
tion (FMO) based on our improved organ-evaluation-criteria-
based increasing optimization model. In the model, all voxels
within a specific organ are tied together and treated equally.

As for optimization, according to XOEC ⊂ XDVH , we first
optimized with the organ model, then proceeded with normal
DVO optimization by using the fluence distributions from the
first step as the initial intensity distributions.

The efficiency of the improved increasing functions was
verified on a testing phantom TG119 and compared to that
of the unimproved functions. The new DVO method was
verified on two kinds of clinical cases, through compari-
son with the traditional DVO method and the organ-model-
based optimization method used in the first step. The quality
assessments of DVHmetrics demonstrated that the new DVO
method could potentially improve the commonly used tech-
nique of DVO.

In the following sections, we describe in details the
materials and methods contained in the proposed method
in Section II. We then show our experimental results in
Section III, and finally discuss the results and future direction
of research in Section IV.

II. MATERIALS AND METHODS
A. OVERALL OPTIMIZATION SCHEME
In this study, we assessed the sequential use of an organ-
model-based optimization and the DVO to improve the DVO
plan quality. As shown in Fig. 1, initial intensity distributions
are first calculated in the search space XOEC based on organ-
model-based optimization with our proposed organ-based
increasing objective function, which is shown in step1. Uni-
form initial intensity distributions were used for the organ-
model-based optimization. In step 2, the DVO is carried
out by using the initial intensity distributions obtained from
step 1.

Two kinds of organ models, based on physical dose and
gEUD, were adopted. The DVO, guided by the optimization
with the organ model based on physical dose, was denoted
as DBO+DVO. The DVO, guided by the optimization based
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TABLE 1. Prescribed dose for the organ model based on physical dose.

on gEUD was denoted as gEUDBO+DVO. All of the DBO,
gEUDBO, and DVO belong to the fluence map optimiza-
tion (FMO). In FMO, the weighted sum was used to build
optimization model. Moreover, all of optimization problems
were solved using gradient-based optimization algorithm
(namely, L-BFGS) [16]. To avoid nonphysical solutions, the
square roots of the beamlet weights were used as the opti-
mized variables [17], and the maximum intensity limit was
used to increase delivery efficiency [18].

B. IMPROVED ORGAN MODELS
In this section, we illustrate the original organ model based
on physical dose sub-score or gEUD sub-score, and their
improved organ-based increasing optimization models.

1) ORGAN MODEL BASED ON PHYSICAL DOSE
Three kinds of dose criteria can be adopted in FMO of IMRT:
maximal dose criterion, minimal dose criterion, and mean
dose criterion. In our organ model based on physical dose,
the maximal dose sub-score was adopted to minimize the
dose delivered to OAR, mean dose sub-score was adopted to
guarantee the dose delivered to the PTV. A typical quadratic
organ model based on physical dose for IMRT is illustrated
as [15]

minx≥0
∑
σ∈C

ωσ
1
Nσ

∑
j∈υσ

(wjx − Dσmax)
2
+

+

∑
σ∈T

ωσ
1
Nσ

∑
j∈υσ

(wjx − Dσmean)
2
. (1)

Here the function of (·)+ is equivalent to a step function,
which produces a positive value if the actual dose, wjx,
exceeds the prescription dose Dmax . Otherwise, there is no
penalty. C and T are the set of tissues. Here C is the critical
structures and T represents targets. The set of the voxels of the
structures σ is denoted by υσ , and Nσ is the number of voxels
belonging to the structure σ . ωσ is the weight corresponding
to the structure σ in the organ model. Dmax and Dmean are
the prescribed dose for critical structures and the prescription

mean dose for the target, respectively. wj corresponding to
voxel j, is the jth row of the dose deposition matrix, which
is computed using the CERR pencil beam algorithm (QIB)
with corrections for heterogeneities. x is the vector of beamlet
weights (i.e., intensity distributions).

In problem (1), the semi-deviation penalty function for crit-
ical structure is not an increasing function for it does not dif-
ferentiate the dose that is lower than the prescribed doseDmax .
The theorem described in detail by Zarepisheh et al. [15]
states that if objective function used to control C is an
increasing function, and that controlling T is an increas-
ing function of deviation to the prescribed dose in organ-
model-based optimization, then we reach XOEC ⊂ XDVH .
To guarantee Pareto optimality according to this theorem, the
equation (2) was introduced to overcome this problem [15].
In equation (2), all doses lower than the prescribed dose are
given a linear penalty function, and the doses higher than the
prescription dose are given an extra quadratic dose penalty
function, illustrated as follows:

minx≥0
∑
σ∈C

ωσ
1
Nσ

∑
j∈υσ

(wjx + (wjx − Dσmax)
2
+
)

+

∑
σ∈T

ωσ
1
Nσ

∑
j∈υσ

(wjx − Dσmean)
2 (2)

2) ORGAN MODEL BASED ON gEUD
The advantages of incorporating the gEUD concept into an
optimization model have been widely verified by several
researchers [2], [19]–[28]. Additionally, gEUD-based opti-
mization has been incorporated into the Pinnacle system [29].
Previouswork [23], [26] demonstrated the advantages of opti-
mization based on a gEUD-based hybrid physical-biological
model. A typical gEUD-based hybrid physical-biological
optimization model can be described as:

minx≥0
∑
σ∈C

ωσ (gEUD(D)− gEUD0)+

+

∑
σ∈T

ωσ
1
Nσ

∑
j∈υσ

(wjx − Dσmean)
2
. (3)

The gEUD-based sub-score also has the problem of semi-
deviation penalty. In our experiments, according to the same
method of constructing formula (2) to guarantee OEC Pareto,
improved gEUD-based hybrid physical-biological model is

minx≥0
∑
σ∈C

ωσ (gEUD(D)+ (gEUD(D)− gEUD0)+)

+

∑
σ∈T

ωσ
1
Nσ

∑
j∈υσ

(wjx − Dσmean)
2
. (4)

Where gEUD is given by equation (5) [30] and gEUD0 is
the prescription dose.

gEUD(D) = (
1
N

N∑
j=1

(Dj)a)1/a (5)
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FIGURE 2. An illustration of (a) maximum and (b) minimum DV
constraints. The dashed line is the current DVH, and the solid line is the
objective DVH. The shaded parts denote the area in which the current
DVH dissatisfies the DV constraint.

N is the number of voxels in the optimized structure,
a is the tissue-specific parameter describing the dose-volume
effect, andDj is the dose to voxel j. For normal tissue and crit-
ical structures, a is defined as more than one, and function (5)
is a convex function [19].

C. DOSE-VOLUME-BASED MODEL
Dose-volume constraints include both maximum and mini-
mum dose-volume constraints. The maximum dose-volume
constraint, which is representative of the volume receiving
dose higher than D1, in the case that V must be less than
V1 (mathematically expressed as V (D > D1) < V1). This
constraint is usually used to control OAR and tissue structure,
as well as PTV (Fig. 2.a). As for the minimum dose-volume
constraint, which is specified as the volume receiving dose
higher than D1, in the case V that must be higher than
V1 (mathematically represented as V (D > D1) > V1),
is applied to control low dose region of PTV (Fig. 2.b). The
dose-volume-based sub-score has been described in detail
by Wu et al. [31]. The sub-scores based on maximum and
minimum dose-volume constraints are written as equation (6)
and equation (7), respectively. Here N is the number of voxels
in the optimized organ controlled by dose-volume constraints,
D2 is the dose received by volume V1, and H is a step
function. It is clear that the doses between D1 and D2, the
shaded part in Fig. 2.a, are penalized in the equation (6) and
the doses between D2 and D1, the shaded part in Fig. 2.b, are
penalized in equation (7).

fmaxdv =
1
N

∑
i

H (Di − D1)H (D2 − Di)(Di − D1)2 (6)

fmindv =
1
N

∑
i

H (Di − D2)H (D1 − Di)(Di − D1)2 (7)

The does-volume-based optimization model is

min
x≥0

∑
n∈T

n∑
j=1

(ωj1f
j
min dv + ω

j
2f
j
max dv)

+

∑
m∈C

m∑
i=1

k∑
l=1

ωil f
i
max dv (8)

Where n is the number of targets, m is the number of
OAR, and k is the number of dose-volume constraints for
organ i.

It should be pointed out that, according to the theory of
Pareto Optimality, we adjusted the weighting factors ω in all
the optimization models by trial and error to ensure that the
obtained solutions were on the PS (Pareto Surface). That is,
for our optimized plans, if improvement in some evaluation
criteria is only possible at the cost of another evaluation
criterion.

D. TEST CASES
1) TG119 DATASET
TG119 [32] testing phantom that includes a C-shaped target
(called ‘‘OuterTarget’’) and an OAR (‘‘Core’’) that the target
wraps around. The prescription dose for Core and OuterTar-
get were 0.4 Gy, and 1 Gy, respectively. Additionally, a = 3
was used for gEUD. Five equally spaced coplanar 6-MV
photon beams were used for planning.

2) CLINICAL CASE
For prostate cancer cases, a PTV and two OARs (rectum and
bladder) were considered in the optimization model. Table 1
lists the dose objectives for the optimization based on organ
model based on physical dose. It required at least 99% of the
PTV volume to receive 95% of the prescribed mean dose in
the dose-based optimization model, and the Dmax in rectum
and bladder did not exceed their tolerance dose of 80Gy.
Table 2 lists the radiobiological parameters of gEUD sub-
score, which were part derived from the literature [20], [33],
[34]. In the DVO, the dose distributions for the rectum and
bladder were controlled by three maximum DV sub-scores,
and PTV was controlled by a maximum DV sub-score and a
minimum DV sub-score. Table 3 lists the DV objectives for
the DVO. Five coplanar beams of 6-MV photons were used
for all planning, with the gantry placed at 36◦, 100◦, 180◦,
260◦, and 324◦.
For head and neck cancer (HN) cases, three PTVs

(PTV70Gy, PTV63Gy, and PTV56Gy) and four critical struc-
tures (spinal cord, brainstem, L-Parotid, and R-Parotid) were
incorporated into the optimization model. These PTVs were
treated simultaneously with 70 Gy, 63 Gy, and 56 Gy, respec-
tively. The prescribed doses for spinal cord and brainstem
were 30 Gy and 40 Gy, respectively [31], while that for
Parotids was 35 Gy [35]. In clinical practice, the tolerance
dose for cord and brainstem should be less than 45Gy and
50Gy respectively, and mean dose for the Parotids should
be less than 26Gy. The gEUD-based optimization param-
eters for head and neck cancer are also listed in Table 2.
In the DVO, the dose distribution for each OAR was con-
trolled by one maximum DV sub-score, and each PTV
was controlled in the same manner as that for PTV in
prostate cancer. DV objectives are listed in Table 3. Seven
equally spaced coplanar 6-MV photons beams were used for
planning.
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TABLE 2. gEUD-based optimization parameters for prostate cancer and head and neck cancer.

TABLE 3. DV objectives for the DVO.

E. EXPERIMENTAL ENVIRONMENT
The computational environment for Radiotherapy
Research (CERR) version 4.0 [36] was used as our radiother-
apy planning platform. The software provides a clinical data
interface, dose calculation, and visualization function [37].
The dose deposited matrix was calculated by applying the
standard pencil beam algorithm [38], and it is implemented
by the CERR package. All experiments were performed by
using an instrument equipped with a 32-bit OS, Windows 7,
and an Intel (R) Core (TM) i3-4150 CPU with 4G RAM.

We used a Wilcoxon matched pairs signed ranks test with
significant level of 5% to analyze the significant differences
between the improved DVO plan and other plans.

III. RESULTS
Fig. 3.a and Fig. 3.b show the comparison results on the
TG119 phantom from the improved increasing physical
model (2) compared to the original non-increasing physical
model (1), as well as the improved increasing gEUD-based
hybrid model (4) compared to the original non-increasing
hybrid model (3), respectively. From the comparative results
of DVH metrics, the improved plan clearly shows better
OAR sparing without reducing the PTV coverage and uni-
formity. In other words, better solutions, belonging to both
XOEC and XDVH, can be gained when using increasing opti-
mization model to perform organ-model-based radiotherapy
optimization.

Next, we performed DVO guided by organ-model-based
optimization by applying an increasing optimization model.

FIGURE 3. DVH comparison of treatment plans using different
optimization models for optimization on TG119.

The physical dose sub-score weights and the gEUD sub-
score weights for the prostate cases and the HN cases are
listed in Table 4, Table 5, Table 6, and Table 7, respec-
tively. Table 8 and Table 9 list the DV sub-score weights for
prostate cancer cases and HN cancer cases, respectively. The
optimized results, in terms of DVH metrics, were first com-
pared with the results of the traditional DVO plan. To make
a fair comparison, all the DVO plans (DVO, DBO+DVO,
gEUDBO+DVO) for a specific cancer case use the same
objective function and parameters (e.g., prescribed dose and
weighting factors).

Fig. 4 shows the average DVH comparison between the tra-
ditional DVO plan (indicated by solid lines) and the improved
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TABLE 4. Physical dose sub-score weights for five prostate cases.

TABLE 5. gEUD sub-score weights for five prostate cases.

TABLE 6. Physical dose sub-score weights for five HN cases.

TABLE 7. gEUD sub-score weights for five HN cases.

DVO plan (indicated by dotted lines). The dotted lines in
Fig. 4.a–4.b respectively show the average DVH resulting
from DBO+DVO and gEUDBO+DVO for five prostate can-
cer cases. The dotted lines in Fig. 4.c–4.d show the average
results based on DBO+DVO and gEUDBO+DVO for five
HN cases, respectively. To make clear and detail compar-
isons, Table 10 and Table 11 show some average clinical
metrics for the two types of cancer cases corresponding to
the DVH endpoint values in Fig. 4, The DVH endpoint value
with significant difference (DVO vs. DBO+DVO, DVO vs.
gEUDBO+DVO) is shown in bold.

TABLE 8. DV sub-score weights for five prostate cases.

Fig. 4.a shows the average results of plans based on DVO
and DBO+DVO for five cases of prostate cancer. Table 10
clearly shows that the PTV coverage is similar when com-
paring the DVH. The homogeneity (HI: p > 0.05), which is
defined as the ratio of the minimum dose delivered to the
volume 5% of the PTV to the minimum dose delivered to
the volume 95% of the PTV [39], remains the same. In the
DBO+DVO plan, the clinically relevant DV constraints in
Table 12 [40] for the rectum are obviously reduced with sig-
nificant differences except V75 (p> 0.05). The improvement
percentages are V50 (11.32%), V60 (8.59%), V65 (6.52%),
V70 (3.9%), and V75 (1.19%), respectively. The bladder V65,
V70 and V75 are improved by 5.74%, 2.88%, and 2.11%,
respectively. In the DVO plan and the DBO+DVO plan,
the maximum dose, not only to rectum but also to blad-
der, remains comparable. Fig.4.b illustrates the compari-
son between the DVO plan and gEUD+DVO plan for the
prostate cancer cases. The PTV improvement is similar to
that in Fig.4a. Rectal V50, V60, V65, V70, and V75 as well
as bladder V65, V70, and V75 were improved by 7.64%,
5.87%, 3.31%, 3.01%, 2.08%, 6.47%, 3.78%, and 2.02%,
respectively.

Similarly, the same comparisons were performed in five
HN cancer cases. Fig. 4.c compares the average DVHs for the
DVO plan and the DBO+DVO plan. It clearly demonstrates
significant improvement for both all OARs and PTV high
doses, whereas slightly under-dosing of PTV70. According to
Table 11, the PTV63V (67.4 Gy), PTV56V (56 Gy), cord and
brainstem maximum doses, and the L-Parotid and R-Parotid
mean doses were improved by 20.97%, 0.88%, 12.93%,
7.33%, 8.61%, and 8.92%, respectively. The improvements in
cord and brainstem maximum doses are of great significance
to clinical practice, because of their serial nature, despite
the fact that the doses delivered to them are already below
the tolerance values. However, there is no reason why such
a plan, which reduces the dose to OARs at no or less cost
to the target coverage, should not be implemented. Addi-
tionally, reductions in the mean dose for the L-Parotid and
R-Parotid are valuable for protecting them since they are
parallel organs, indicating that their probability of tissue com-
plications is determined by the mean dose. Fig. 4.d illustrates
the average optimization results of plans based on DVO and
gEUD+DVO. The PTV63V (67.4 Gy), PTV56V (59.9 Gy),
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FIGURE 4. Average DVH comparisons of treatment plans. Dotted line: traditional DVO; Solid
line: improved DVO.
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TABLE 9. DV sub-score weights for five HN cases.

FIGURE 5. Comparative results of the OARs sparing. (a) rectum mean dose; (b) bladder mean dose;
(c)cord maximum dose; (d) brainstem maximum dose; (e) L-Parotid mean dose; (f) R-Parotid mean dose.
X- axis is the serial number for each cancer case.

cord and brainstem maximum doses, and the L-Parotid and
R-Parotid mean doses were improved by 10.98%, 12.03%,
17.3%, 15.3%, 4.18%, and 3.06%, respectively. From the
statistical analysis in Table 11, coverage and HI of all PTVs

in Fig. 4c and 4d appear to remain comparable in different
plans.

From the above analyses, we conclude that the improved
DVO plans yield better OAR-sparing achievement with
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FIGURE 6. DVH comparison of one head and neck case. Solid line: DBO plan; Dotted line: DBO+DVO plan.

TABLE 10. Mean dose values of the plans in Fig. 4a and 4b using clinical
metrics for prostate cancer.

similar dose coverage for each target. The results of OARs
sparing are presented in Fig. 5.a-Fig. 5.f for each cancer case.
Those results are used to compare the DVO plan, DBO+DVO
plan, and gEUDBO+DVO plan. It is obvious that solu-
tions, calculated by the proposed DBO+DVO method
and gEUDBO+DVO method, remarkably improved organ
sparing.

The new DVO method was implemented in two steps.
Next, we also investigated the difference between the plans
obtained in the first step and the second step on all cases.
Fig. 6 compares the DVHs of the DBO plan and the
DBO+DVO plan on one head and neck cancer case and
shows that the DVHs for critical structures in the DBO+DVO

TABLE 11. Mean dose values of the plans in Fig. 4c and 4d using clinical
metrics for head-neck cancer.

TABLE 12. DV constraints of OARs for prostate cancer.

plan have been improved, while the enhancements on all
PTVs remain the same. Fig. 7 shows the differences between
the gEUDBO plan and the gEUDBO+DVO plan on one
prostate cancer case. It demonstrates better trade-off between
the PTV coverage and the OARs sparing.
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FIGURE 7. DVH comparison of one prostate case. Solid line: gEUDBO plan; Dotted line: gEUDBO+DVO plan.

TABLE 13. Number of iterations, computation times for the traditional
DVO plan and the improved DVO plans.

IV. DISCUSSIONS AND CONCLUSIONS
An efficient method to improve the quality of DVO treatment
plan was successfully developed. Promising results were
obtained in five prostate cases and five HN cases in terms of
PTV coverage and OAR protection. Statistical data from our
study demonstrated that our proposed DVO method yielded
more satisfactory treatment plans than the plans generated by
conventional DVO and the plans generated by optimization
based on only organ model.

The improvements derived by using proposed increasing
objective functions, may be attributed to the fact that the
optimization algorithm has the capability to reduce doses
either higher or lower than the prescribed doses to OARs,
without sacrificing other optimization objectives. Thus, the
search space is expanded. It should be noted that, in addition
to linear term, we added other terms in the original physical-
dose-based model and gEUD-based model to solve the prob-
lem of semi-deviation. For example, a quadratic term was
added in the original organ-based-models. Through a series
of experiments, we observed that the performance obtained
by adding linear term is better than that by adding other term.
The reason behind it needs to be further investigated.

Although our proposed DVO method, which needs the
guide from organ-model-based optimization, appears to have
increased complexity of DVO, the number of iterations and
optimization time of DVO were actually reduced, as seen in

Table 13. The overall quality of improved DVO plans was
improved. These improvements can be attributed to the initial
intensity distributions for DVO.

In our study, we used the pencil beam dose calculation in
CERR, but with different dose calculation methods such as
modern superposition/convolution dose calculations. In most
of the commercial planning systems, the AAA dose calcu-
lation was performed in Eclipse. However, this difference
would not affect our conclusions drawn from the present
study, because our study aimed to investigate the impact of
optimized objective function on the search ability of opti-
mization algorithm, which was not affected by dose calcu-
lation methods.

There are substantial differences between the method pro-
posed by Wu et al [31] and our method. In Wu’s method, the
aim was to exploit the advantages of both systems by com-
bining the gEUD-based and DV-based optimization meth-
ods together. Our aim was to develop an efficient method
to determine more effective initial intensity distributions in
XDVH for DVO, in order to improve the quality of the DVO
plan. Meanwhile, the minimum local error introduced by the
non-convexity of dose-volume objective was simultaneously
reduced.

For most testing cases, we found that the DBO+DVO plan
was slightly better than the gEUD+DVO plan in terms of
OARs sparing, with similar PTV coverage. The improvement
may result from the fact that the improved physical-dosed-
based increasing model directly gives the linear or quadratic
penalty to each voxel in the optimized organ, according to
the difference between actual dose and prescribed dose to
each voxel. By contrast, the improved gEUD-based model,
through comparing the calculated gEUD with prescribed
gEUD0, gives different degrees of linear penalty to the cal-
culated gEUD. When gEUD < gEUD0 or gEUD > gEUD0,
the voxels with higher dose or lower dose in optimized organ
are given the same degree of penalty, which is not beneficial
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to OAR sparing. Compared with the improved gEUD-based
organ model, the merit of improved dose-based organ model
has been verified in Fig. 3.

The gEUDBO+DVO plan shows improved OARs pro-
tection with similar PTV coverage compared to the DVO
plan. At present, however, the biological optimization has
increasing interests in radiotherapy research. In our proposed
gEUDBO+DVO method, the biologically relevant optimiza-
tion is firstly performed, followed by physical optimization.
There are two reasons that accounts for this procedure. First,
biological optimization has not been widely used due to the
uncertainties associated with biological-based optimization
models. Moreover, our proposed gEUDBO+DVO plan does
not completely neglect biological optimization information
from gEUD-based optimization (gEUDBO).

The initial intensity distributions from the organ-model-
based optimization belong to random intensity distributions
by nature. However, it is very difficult to generate the same
random initial intensity distributions by the randommethods.
In other words, we proposed a more efficient method, com-
pared to random method, to generate random initial intensity
distributions for DVO, which can improve the planning qual-
ity.

Our proposed DVO method will also be beneficial to
biological radiotherapy optimization as described by Das
[2], who performed biological optimization after DVO. This
method can improve the dose distribution without intention-
ally changing the optimization results achieved by DVO.
For example, we can first use our proposed DBO+DVO
method to generate a DVO plan, and then perform the DVO-
guided biological optimization. How to change the quality
of biological optimization plan via improving the quality of
DVO remains uncertain, and this is one of our future research
directions. In addition, improved DVO plan is also helpful
to automatic re-optimization processes, as proposed by Li et
al. [41] and Zarepisheh et al. [42]. Moreover, the improved
increasing sub-scores, owing to their ability to enlarge the
search solution space, will be beneficial to direct aperture
optimization (DAO) [43]. The benefits will be verified in our
thereafter works.
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