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ABSTRACT During the past several years, as one of the most successful applications of sparse coding
and dictionary learning, dictionary-based face recognition has received significant attention. Although
some surveys of sparse coding and dictionary learning have been reported, there is no specialized survey
concerning dictionary learning algorithms for face recognition. This paper provides a survey of dictionary
learning algorithms for face recognition. To provide a comprehensive overview, we not only categorize
existing dictionary learning algorithms for face recognition but also present details of each category. Since
the number of atoms has an important impact on classification performance, we also review the algorithms
for selecting the number of atoms. Specifically, we select six typical dictionary learning algorithms with
different numbers of atoms to perform experiments on face databases. In summary, this paper provides a
broad view of dictionary learning algorithms for face recognition and advances study in this field. It is
very useful for readers to understand the profiles of this subject and to grasp the theoretical rationales and
potentials as well as their applicability to different cases of face recognition.

INDEX TERMS Dictionary learning, sparse coding, face recognition.

I. INTRODUCTION
Face recognition is an important research topic in computer
vision and pattern recognition. With inspiration from the
sparsity mechanism of the human vision system and the
success of sparse coding in image processing, the sparse
representation based classification algorithm has received
sufficient attention and achieved excellent performance in
face recognition [1], [2]. However, research has demonstrated
that learning a desired dictionary from training data instead of
using off-the-shelf bases (e.g., wavelets) could lead to state-
of-the-art results in many practical applications, such as face
recognition [3], [4], de-noising [5], [6], clustering [7], [8],
image super-resolution [9], [10] image de-blurring [11], [12]
and image segmentation [13]. That is, the obtained dictionary
plays an important role in the success of the sparse repre-
sentation, which allows an input signal to be faithfully and
discriminatively represented as a sparse linear combination

of atoms. Therefore, many dictionary learning algorithms
have been proposed for different applications. The charac-
teristics of sparse coding and dictionary learning algorithms
have been presented in the past years. Elad [14] offered
a brief presentation of sparse and redundant representation
modelling and outlined ten key future research directions for
sparse coding. Rubinstein et al. [15] described the evolution
process of how to obtain a dictionary by using mathematical
and learned models. Tosic and Frossard. [16] presented a
broad overview of dictionary learning algorithms and showed
their usage in various applications, such as audio-visual
coding and stereo image approximation. Specifically, they
discussed the discriminative power of sparse representations
and outlined the benefits of dictionary learning in classi-
fication and face recognition applications. Cheng et al. [17]
presented a survey of algorithms on sparse representa-
tion, learning and modelling with an emphasis on visual
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recognition, which addressed both theory and application
aspects. Gangeha et al. [18] provided a review of supervised
dictionary learning and sparse representation and divided the
dictionaries into six categories based on the approach of using
label information in learning the dictionary and/or sparse
representation. Zhang et al. [19] presented a comprehensive
overview of sparse representation, summarized various avail-
able sparse representation methods and discussed their moti-
vations, mathematical representations and applications.

Although the above surveys provide a broad review of
sparse coding and dictionary learning, there is no survey
of dictionary learning algorithms for face recognition. For
face recognition, because of varying poses, illuminations
and facial expressions, a test sample usually cannot be well
represented by original training samples. However, a dic-
tionary is able to effectively model the pose, illumination
and facial expression information including the correspond-
ing variations, so a test sample can be better represented
by atoms of the dictionary. There are a number of works
concerning dictionary learning based face recognition over
the past decade. Therefore, it is necessary to review the ideas,
technical potential and performance of dictionary learning
algorithms for face recognition. Moreover, this survey offers
some in-depth insights into the studies of face recognition
based on dictionary learning, including key points and some
important details. In terms of the objectives of dictionary
learning algorithms for face recognition, we can divide them
into five categories, i.e., shared dictionary learning algo-
rithms, class-specific dictionary learning algorithms, com-
monality and particularity dictionary learning algorithms,
auxiliary dictionary learning algorithms and domain adaptive
dictionary learning algorithms. A shared dictionary learning
algorithm can capture the common characteristics of face
images, and it usually cannot adequately preserve specific
characteristics of face images of each class. A class-specific
dictionary learning algorithm can capture the main charac-
teristics of face images of each class, whereas it usually
contains considerable redundant information. A commonality
and particularity dictionary learning algorithm can not only
preserve common characteristics of the face images but can
also preserve specific characteristics of the face images of
each class. An auxiliary dictionary learning algorithm uses
images of external faces, i.e., outsiders, to represent possible
variations of the face images. A domain adaptive dictionary
learning algorithm applies domain adaption to face recogni-
tion, which can perform well in the case where the training
and test samples do not have the same distribution. Addition-
ally, we provide discussions of the atom selection methods,
which play an important role in the process of dictionary
learning.

The remainder of this paper is organized as fol-
lows. Section II introduces the shared dictionary learning
algorithm. Section III presents the class-specific dictionary
learning algorithm. Section IV gives an introduction to the
commonality and particularity dictionary learning algorithm.
The auxiliary dictionary learning algorithm is presented

in Section V. The domain adaptive dictionary learning algo-
rithm is presented in Section VI. The algorithm for selecting
atoms is introduced in Section VII. The experimental results
of seven dictionary learning and sparse coding algorithms
are presented in Section VIII. Finally, the conclusions are
presented in Section IX.

II. SHARED DICTIONARY LEARNING ALGORITHM
When the inter-class variation of the face images is small, a
shared dictionary can adequately capture the main character-
istics of the face images, such that the dictionary obtained
using the training samples can represent a test sample.
A shared dictionary learning algorithm only learns a dictio-
nary by using training samples of all classes and expects the
obtained dictionary to have discriminative ability for different
classes. Then, a test sample can be represented by using
the learned dictionary, and the representation coefficients are
used for classification. The K-SVD algorithm is one of the
most well-known shared dictionary learning algorithms [20].
Many variants of the original K-SVD algorithm have been
proposed and applied in image de-noising and image recon-
struction [21], [23]. The K-SVD algorithm focuses on recon-
struction. In general, it is used as a benchmark dictionary
learning algorithm for face recognition.

A typical and significant shared dictionary learning algo-
rithm was proposed by Jiang et al. [24], which first assigned
a label to each atom by using the K-SVD algorithm and
then constructed a discriminative sparse coding error term by
exploiting the labels of the atoms (LC-KSVD). Thus, it can
improve the discriminative ability of the shared dictionary.
The objective function of the LC-KSVD algorithm is as
follows.

min
D,X,W,A

‖Y− DX‖22 + α ‖H−WX‖22 + β ‖Q− AX‖22

subjectto ∀i, ‖xi‖0 ≤ T0 (1)

where Y = [y1, · · · , yN ] ∈ <
n×N are the training

samples, and n and N are the dimension and number of
them, respectively. The label matrix of training samples
Y is defined as H = [h1, · · · , hN ] ∈ <C×N (hi =
[0, · · · , 1, · · · , 0]T ∈ <C ). Only the j-th entry of hi is non-
zero if training sample yi is in the j-th class, and C is the class
number of the training samples. D = [d1, · · · , dK ] ∈ <n×K

is the learned dictionary, and K is the number of atoms. X =
[x1, · · · , xN ] ∈ <K×N is the coding coefficient matrix. W is
the classifier parameter, and ‖H−WX‖22 is the classification
error term. Q is the discriminative sparse code of training
sample Y, and it can be defined as Q = [q1, · · · , qN ] ∈
<
K×N . qi =

[
q1i , · · · , q

K
i

]T
= [0, · · · , 1, 1, · · · , 0]T ∈ <K

is the discriminative sparse code corresponding to training
sample yi. The non-zero values of qi occur at those indices
where training sample yi and atom dk share the same label.
For example, for D = [d1, · · · , d7] and Y = [y1, · · · , y7],
if y1, y2, d1 and d2 are from the first category, y3, y4, d3 and d4
are from the second category, and y5, y6, y7, d5, d6 and d7 are
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from the third category, then Q should be defined as

Q =


1 1 0 0 0 0 0
1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 1
0 0 0 0 1 1 1

.

Each column of Q corresponds to a discriminative sparse
code for a training sample. A is the linear transformation
matrix, and ‖Q− AX‖22 is the discriminative sparse-code
error term. α and β are the regularization parameters. T0 is
the sparsity constraint factor that limits the number of non-
zero elements.

The LC-KSVD algorithm classification method is as
follows.
(1) Test sample yt can be represented by shared dictionary

D as

argmin
x
‖yt − Dx‖22

s.t. ‖x‖0 ≤ T0 (2)

This problem can be solved by using the Orthogonal
Matching Pursuit (OMP) algorithm [25].We denote the
obtained optimal representative coefficient by x∗.

(2) The label of test sample yt can be obtained by using the
following equation

j = argmax
(
Wx∗

)
(3)

Classification parameterW can be calculated by using cod-
ing coefficients matrix X and label matrix H of the training
samples as follows:

W = HXT
(
XXT

+ I
)−1

(4)

where I is an identity matrix.
The shared dictionary learning algorithms can also use

the SVM methods to classify the test samples. Regardless,
the coding coefficient matrix plays an important role in
improving the classification performance of the shared dic-
tionary learning algorithm. To improve the discriminative
ability of the shared dictionary, many constrained models
are proposed. We divide these constrained models into two
categories, the locality constrained model and the label con-
strained model.

A. LOCALITY CONSTRAINED MODEL
The locality information of data plays an important role in
sparse coding and dictionary learning. In fact, locality is more
essential than sparsity since locality leads to sparsity but not
necessary vice versa [26]. Therefore, an increasing number of
researchers focus on the locality preservation strategy when
designing dictionary learning algorithms for face recognition.
Their main goal is to preserve the structure information of
training samples and to expect similar training samples to
have more similar coding coefficients than other training
samples, which is helpful for improving the discriminative

ability of the dictionary. A typical algorithmwas proposed by
Zheng et al. [27], which used the training samples to construct
a Laplacian matrix for preserving the locality characteristics.
Additionally, Gao et al. [28] constructed a hypergraph Lapla-
cian matrix to preserve local information of the training sam-
ples for improving the discriminative ability of the learned
dictionary. However, face images of the same person vary
with facial poses and expressions as well as illumination, so it
is difficult to obtain a robust Laplacian matrix to accurately
reflect the locality information of the training samples. Thus,
it may degrade the discriminative ability of the learned dictio-
nary. Jiang et al. [29] modelled the problem of discriminative
dictionary learning as a graph topology selection problem,
which was solved by maximizing a monotonically increasing
and submodular objective function. Haghiri et al. [30] pre-
sented a discriminative dictionary learning algorithm that pre-
served the local structure of the training samples. Because the
face images usually contain noise, this algorithm might not
be robust. Liu et al. [31] constructed a locality constrained
dictionary learning algorithm by using the training samples
and atoms to preserve the locality information. This can
reduce the influence of noise to some extent. Yang et al. [32]
proposed a visual feature coding method by using the dic-
tionary structure. Recently, the locality information of atoms
has also been used to improve the discriminative ability of the
shared dictionary [33].

B. LABEL CONSTRAINED MODEL
The label constrained model belongs to supervised learning.
For face recognition, we usually encounter the problem of
insufficiently available labelled samples. Therefore, the label
information is very important for face recognition based
on dictionary learning. Many dictionary learning algo-
rithms based on the label constraint model have been
proposed. For example, a typical algorithm was proposed
by Zhang and Li [34], which constructed a classification
error term by using the labels of training samples with
the goal of improving the discriminative ability of the
dictionary. Shrivastava et al. [35] proposed a discriminative
dictionary learning algorithm by using partially labelled data.
Pham and Venkatesh [36] proposed a joint representation and
classification framework that achieved the dual goals of find-
ing the most discriminative sparse over-complete encoding
and the optimal classifier parameters. Lin et al. [37] proposed
an incoherent dictionary learning algorithm by explicitly
incorporating a correlation penalty into the dictionary learn-
ing model. Guo et al. [38] used the labels of training samples
to construct a pair-wise sparse code error term and then
combined it with the classification error term to learn a
discriminative dictionary for face verification and recogni-
tion problems. However, since face images usually contain
noise, the coding coefficients would be contaminated and
the discriminative ability of the learned dictionary may be
degraded. In addition, using the label information of the
original training samples to construct the discriminative term
could not exploit the discriminative information hidden in the
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training samples. This also degrades the discriminative ability
of the shared dictionary. Recently, the labels of atoms also
have been used to improve the discriminative ability of the
shared dictionary. Jiang et al. [24] assigned a label to each
atom by using the K-SVD algorithm and then constructed a
discriminative sparse code error term by using the labels of
atoms. Li et al. [33] constructed a label that embedded within
the atoms to improve the discriminative ability of the shared
dictionary.

Moreover, the kernel method [39], [40], non-negative con-
strained method [41], and the Bayesian method [42] are also
used to improve the discriminative ability of the shared
dictionary.

The shared dictionary learning algorithm can learn a dic-
tionary for all classes, and the number of atoms is relatively
small. However, the differences of the different classes may
not be well conveyed in the shared dictionary. Moreover,
the noise of face images can also reduce the robust represen-
tation ability of the shared dictionary.

III. CLASS-SPECIFIC DICTIONARY
LEARNING ALGORITHM
Because face images of the same person vary with facial
poses and expressions as well as illumination, the intra-class
variation of face images is usually large and even greater than
the inter-class variance of face images. Therefore, the class-
specific dictionary learning algorithm is usually designed to
capture the main characteristics of face images of each class.
A class-specific dictionary learning algorithm first learns a
dictionary for each class by using face images of the class,
and then classifies the test face images by judging which
class leads to the minimum reconstruction error. It exploits
the reconstruction term to improve the discriminative ability
of the learned dictionary. A typical algorithm was proposed
by Yang et al. [43], which learned a dictionary based on the
Fisher discrimination criterion (FDDL). Specifically, a struc-
tured dictionary, whose atoms correspond to the class labels,
is proposed, with which not only the representation residual
can be used to distinguish different classes, but additionally
the representation coefficients have smaller within-class scat-
ter and larger between-class scatter. The objective function of
the FDDL algorithm is formulated as follows.

min
D,X

C∑
i=1


‖Yi − DXi‖

2
F +

∥∥Yi − DiXi
i

∥∥2
F

+
∑C
j = 1
j 6= i

∥∥∥DjX
j
i

∥∥∥


+ α ‖X‖1 + β
(
tr(SW (X)− SB (X))+ γ ‖X‖2F

)
(5)

Where Y = [Y1,Y2 · · · ,YC ] is the training sample,
Yi(i = 1, 2, · · ·C) is the i-th class training sample,
D = [D1,D2, · · · ,DC ] is the learned dictionary, and
Di(i = 1, · · ·C) the i-th sub-dictionary corresponding to the
i-th class. X = [X1,X2, · · · ,XC ] is the coding coefficient
matrix, where Xi is the representation coefficient of Yi over

D, and Xj
i is the representation coefficient of Yi over Dj.

SW (X) is the within-class scatter of X and SB (X) is the
between-class scatter of X. tr (•) represents the trace of the
matrix, and α, β and γ are the regularization parameters.
The classification method is as follows:
First, test sample yt is sparsely represented by sub-

dictionary Di, as follows:

xi = min ‖yt − Dixi‖22 s.t. ‖xi‖0 ≤ T0 (6)

Then, test sample yt is classified using

identity (yt) = min ‖yt − Dixi‖2 (7)

where identity (yt) is the obtained label for yt .
Shrivastava et al. [44] proposed a non-linear discrimina-

tive dictionary learning algorithm by using the kernel trick.
Chen et al. [45] proposed a dictionary learning algorithm for
video face recognition. Ma et al. [46] integrated rank mini-
mization into sparse representation for dictionary learning.
Cai et al. [47] proposed a support vector guided dictionary
learning (SVGDL) algorithm by formulating the discrimina-
tion term as the weighted summation of the squared distances
between all pairs of coding vectors. Zheng and Tao [48]
proposed a discriminative dictionary learning algorithm,
the Fisher discrimination K-SVD algorithm. Wang et al. [49]
proposed a supervised class-specific dictionary learning algo-
rithm by incorporating the similarity constraint and dictio-
nary incoherence terms. It not only captured the correlations
between similar samples by sharing dictionaries but also
encouraged dictionaries associated with different classes to
be independent by enforcing the dictionary incoherence term.

The class-specific dictionary learning algorithm learns a
sub-dictionary for face images of each class, and captures par-
ticular characteristic of face images of each class. A problem
in this type of algorithm is that a class in the face recognition
task may have only a few training samples so the information
used to obtain a sub-dictionary is limited and the uncertainty
of the atoms may increase.

IV. COMMONALITY AND PARTICULARITY
DICTIONARY LEARNING ALGORITHM
For complex face recognition tasks, the intra-class variation
of face images is usually large and even greater than the
inter-class variation of face images. Therefore, the com-
monality and particularity dictionary learning algorithm is
proposed to cope with the inter-class variance by using the
commonality dictionary to address the intra-class variance
by using the particularity dictionary. A commonality and
particularity dictionary learning algorithm learns a partic-
ularity dictionary for each category that captures the most
discriminative features of this category, and simultaneously
learns a commonality dictionary whose atoms are shared by
all the categories and only contribute to the representation
of the data rather than discrimination. A typical algorithm is
proposed by Wang and Kong [50], which designed a class-
specific dictionary (called particularity) for each category to
capture the most discriminative features of the category, and
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simultaneously learned a shared pattern pool (called com-
monality), whose atoms were shared by all the categories and
only contributed to representation of the data rather than dis-
crimination (DLSPC). The objective function of the DLSPC
algorithm is

min
D,X

C∑
i=1

{
‖Yi − DXi‖

2
F +

∥∥Yi − DQiQT
i Xi

∥∥2
F

+
∥∥Q̃T

i Xi
∥∥2
F + λφ (Xi)

}

+ η

C+1∑
i=1

�(Di,Dj)∑
j=1
j 6=i

(8)

where Yi is the i-thclass training sample, D =

[D1,D2, · · · ,DC ,DC+1] is the learned dictionary, Di(i =
1, 2, · · · ,C) represents the particularity of the i-th class,
and DC+1 is the commonality dictionary. Xi refers to the
coding coefficients of Yi over D. Qi is a selection operator
and is defined as Qi =

[
qi1, · · · , q

i
j, · · · , q

i
Ki

]
, in which the

j-th column of Qi is of the form

qij =

0, · · · , 0︸ ︷︷ ︸∑s−1
m=1 Km

,

j−1︷ ︸︸ ︷
0, · · · , 0, 1, 0, · · · 0Ks︸ ︷︷ ︸

,

0, · · · , 0︸ ︷︷ ︸∑i+1
m=s+1 Km


T

.

φ (xi) is defined as the l1-norm penalty. Q̃i = [Qi,QC+1],
�
(
Di,Dj

)
=
∥∥DT

i Dj
∥∥2
F . For the DLSPC algorithm, there

are two types of classification methods. λ and η are the
parameters. The first type uses the global coding classifier
as follows.
(1) Test sample yt is represented by using the commonality

and particularity dictionaries and the formula is

X = min
X
‖yt − [D,D1, · · · ,DC ]X‖2 + ‖X‖1 (9)

(2) Test sample yt is assigned to the class with the mini-
mum reconstruction error by using

identity (yt) = min
i
‖yt − [D,Di]Xi‖

2
2 (10)

The second type is the local coding classifier, which is
implemented below.
(1) Test sample yt is represented by using the particularity

dictionary and the formula is

X = min
X
‖yt − [D1, · · · ,DC ]X‖2 + ‖X‖1 (11)

(2) Test sample yt is assigned to the class with the mini-
mum reconstruction error by using

identity (yt) = min
i
‖yt − DiXi‖

2
2 (12)

Sun et al. [51] presented a dictionary learning model
to improve sparse representation for image classification,
with the goal of learning a class-specific dictionary for each
class and a common dictionary shared by all classes. The
model is composed of discriminative fidelity, a weighted
group sparse constraint, and a class-specific dictionary

incoherence term. Because every class must have sufficient
representative training samples and the training data must be
uncorrupted, Yang et al. [52] proposed an analysis-synthesis
commonality and particularity dictionary learning algorithm
for face recognition.
The commonality and particularity dictionary learning

algorithm not only preserves common characteristics of all
face images but also preserves specific characteristics of
face images of each class. Therefore, the commonality and
particularity dictionary learning algorithm is very suitable for
face recognition. However, to design a commonality dictio-
nary and a particularity dictionary with the proper number
of atoms is very important and has a severe effect on the
performance of face recognition.

V. THE AUXILIARY DICTIONARY LEARNING ALGORITHM
Face recognition is a typical small sample size problem
and insufficiently available samples have severe negative
effects on dictionary learning algorithms for face recog-
nition. To address this problem, the auxiliary dictionary
learning algorithm has been proposed to improve the clas-
sification performance of the case where each class has
only one training sample. A typical auxiliary dictionary
learning algorithm for face recognition is proposed by
Wei and Frank Wang [53], which learns a robust auxiliary
dictionary from a generic training set. The objective function
of the algorithm is

min
D,X

N∑
i=1

f

yei − [Ge,De]

 x ig
x id

+ α ∥∥∥x i∥∥∥
1

+βf
(
yei −Geδit

(
x ig
)
− Dx id

)
(13)

where E = [Ye,Ge] are the auxiliary training samples,
Ye =

[
y1e, · · · , y

N
e
]
is the probe set, and Ge is the gallery set.

De is the auxiliary dictionary. x i =
[
x ig; x

i
d

]
is the sparse coef-

ficient of yie and X =
[
x1, · · · , xN

]
is the sparse coefficient

matrix for Ye. x ig and x
i
d indicate the coefficients associated

with gallery Ge and auxiliary dictionary De, respectively.
Function δit

(
x id
)
outputs a vector whose only nonzero entries

are the entries in x ig that are associated with the it-th class
(it denotes the label of yie in the auxiliary training samples).
Function f (.) is defined as

f (ei) = −
1
2µ

(
ln
(
1+ exp

(
−µe2i + µδ

))
− ln (1+ expµδ)

)
f (e) =

d∑
i=1

f (ei) (14)

where ei is the i-th entry of e = y− [Y,De] x.
The classification method is as follows.

(1) Normalize test sample yt and the columns of Y to have
unit l2-norm.

(2) Initialize the weight matrix by setting W = I.
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(3) Calculate the optimal solution of representation
coefficient x and weight matrix W by using

x ← min
x

∥∥∥∥W(
y− [Y,De]

[
xy
xd

])∥∥∥∥2
2
+ λ ‖x1‖

(15)

e ← y− [Y,De] x (16)

W ← diag (w (e1) , · · · ,w (ed ))
1/2 (17)

w (ek) =
exp

(
−µe2k + µδ

)
1+ exp

(
−µe2k + µδ

) (18)

(4) Classify test sample yt via the weighted reconstruction
errors as follows in equation (19).

identity (yt)

= min
l∈{1,2,··· ,L}

∥∥∥∥∥W∗
(
yt − [Y,De]

[
δ
(
x∗y
)

x∗d

])∥∥∥∥∥ (19)

Supposing that the intra-class variations of one subject
can be approximated by a sparse linear combination of other
subjects, the extended SRC algorithm [54] applied to an
auxiliary intra-class variant dictionary to model the possible
variation between the training and testing images. The aux-
iliary intra-class variant dictionary is constructed by using
either the gallery faces themselves or generic faces that are
outside the gallery. To compensate for the missing illumi-
nation information provided by multiple training images,
Zhuang et al. [55] used additional illumination examples of
face images from one or more additional classes to construct
an illumination dictionary. Then, they used the sparse illu-
mination transfer (SIT) technique to transfer the pose and
illumination information from the alignment stage to the
recognition stage. Moreover, Deng et al. [56] proposed a
superposed SRC (SSRC) algorithm, in which the dictionary
was assembled by the class centroids and sample-to-centroid
differences, which led to a substantial improvement in the
SRC algorithm. Gao et al. [57] proposed an intra-class vari-
ance dictionary by using the gallery set.

When a suitable dictionary is learned by using the auxiliary
dictionary learning algorithm, the classification performance
will be improved. However, the method for selecting suitable
auxiliary training samples for learning a dictionary is a key
point of this algorithm.

VI. DOMAIN ADAPTIVE DICTIONARY
LEARNING ALGORITHM
For face images, training samples and testing samples may
come from different domains. In this case, if we still use
conventional dictionary learning algorithms to learn dictio-
naries from the training samples, the performance of face
recognition will degrade. A domain adaptive dictionary learn-
ing algorithm can adequately resolve this problem. It first
learns a dictionary that can transfer the features of the source
domain to the target domain. It then utilizes a source domain
with sufficient labelled data to learn a classifier for a target

domain which is usually collected from a different distribu-
tion. A typical domain adaptive dictionary learning algorithm
is proposed by Zhu and Shao [58], which expanded the
intra-class diversity of original training samples by virtue of
collaboration with the source data. The objective function is
defined as

min
Dt ,Ds,Xt ,A,W

‖Yt − DtXt‖
2
2+

∥∥∥YsAT
− DsXt

∥∥∥2
2

+α ‖Q− BXt‖
2
2 + β ‖H−WXt‖

2
2

subjectto ∀i,
∥∥(xt)i∥∥0 ≤ T0 (20)

where Yt =
[
y1t , · · · , y

L
t
]
∈ <

n×L is the training sample of
the target domain, and L and n are the number of training
samples and dimensions, respectively. Ys =

[
y1s , · · · , y

M
s
]

is the training sample of the source domain, and M is the
number of training samples. Dt is the learned target domain
dictionary and Ds is the learned source domain dictionary.
Xt is the coefficient matrix of the target domain and (xt)i is
the i-th column of coefficient matrixXt .A is a transformation
matrix, and it can transform the source domain data to match
the target domain data. Thus, A can be defined as

A =


A1

A2
. . .

AC

 ,
AC (i, j) =

{
1 if 3C (i, j) = Max (3C (:, j))
0 otherwise

(21)

It is assumed that Yc
t and Yc

s are samples of the
C-th category from the target and source domains, respec-
tively. 3C is the Gaussian distance between each pair of
samples Yc

t and Yc
s . Q is the input signal of Yt , and it

can be defined as Q = [q1, q2, · · · , qL] ∈ <L×L , qi =
[0, · · · , 1, 1, · · · 0]T ∈ <L×1, and non-zero entries of qi
appear at those indices where yit and x

k
t share the same class

label. H is the label matrix of Yt . W is the coefficient of
the linear classifier. B is the linear transformation matrix that
maps the original sparse codes to the target discriminative
sparse codes. The classification method is the same as the
LC-KSVD algorithm.
Qiu et al. [59] presented a function learning frame-

work for the task of transforming a dictionary learned
from a visual domain to another domain and maintain-
ing a domain-invariant sparse representation of a signal.
Huang and Wang [60] proposed a coupled dictionary and fea-
ture space learning algorithm for cross-domain image synthe-
sis and recognition, which not only obtained a shared feature
space for associating cross-domain image data for recog-
nition purposes but also jointly updated the dictionaries in
each image domain for improving the representation ability.
Shekhar et al. [61] proposed a generalized domain-adaptive
dictionary learning algorithm by optimally representing both
source and target domains with a shared dictionary. They
jointly learned projections of data in the two domains, and
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the latent dictionary can succinctly represent both domains in
the projected low-dimensional space. Ni et al. [62] proposed
interpolating subspaces via dictionary learning to link the
source and target domains. These subspaces were able to
capture the intrinsic domain shift and formed a shared feature
representation for cross domain recognition. To compensate
for the transformation of faces due to changes in viewpoint,
illumination, and resolution, Qiu and Chellappa [63] pro-
posed compositional dictionaries for domain adaptive face
recognition.

When a suitable dictionary is learned by using a domain
adaptive dictionary algorithm, the classification performance
of face recognition will be improved. However, adequately
transferring the characteristics of the source domain to the
target domain is very important for this type of algorithm.

VII. NUMBERS OF THE ATOMS
To better represent face images, it seems that a learned
dictionary should contain as many atoms as possible to cover
all the variations of face images for each subject. In general,
a larger dictionary may provide a greater variety of illumina-
tions, poses and occlusion of face images. However, a larger
dictionary is not always better, as the dictionarymight contain
some similar elements or some elements that are seldom used
for representation. To achieve excellent face recognition per-
formance, a learned dictionary should have low reconstruc-
tive error, as well as compact representation and satisfactory
discriminative ability. Specifically, the compact representa-
tion expects that the learned dictionary consists of incoherent
atoms, and encourages similar signals, which are more likely
from the same class, to be consistently described by a similar
set of atoms with similar coefficients [65]. Therefore, many
methods have been proposed for selecting a suitable number
of atoms for different applications.

Mazhar and Gader [64] proposed an Enhanced K-SVD
algorithm (EK-SVD), which combined the competitive
agglomeration algorithm and the matching pursuit algorithm
to develop a dictionary with an optimal size for a given
dataset, without compromising its approximation accuracy.
Qiu et al. [65] used information theory to select atoms from
an initial dictionary for image classification. Winn et al.
[66] used the pair-wise merging of visual words from an
initially large dictionary to obtain an optimally compact
visual dictionary. Krause and Cevher [67] developed an effi-
cient learning framework to construct signal dictionaries for
sparse representation by selecting the dictionary columns
frommultiple candidate bases. Yaghoobi et al. [68] presented
an exemplar-based approach for the linear model (called the
dictionary). Wang et al. [69] proposed a semi-supervised
robust dictionary learning algorithm, which designed a data
adaptive dictionary by imposing structured sparsity on the
data representation coefficients to automatically select promi-
nent dictionary basis vectors, such that the optimal dictionary
size was learned from input data in a principled way and no
heuristic pre-specification was required. Lu et al. [70] pro-
posed a scale adaptive dictionary learning framework, which

jointly estimated suitable scales and corresponding atoms in
an adaptive way, without the need for prior information. They
designed an atom counting function and developed a reli-
able numerical scheme to solve the challenging optimization
problem.

Since the number of atoms varies widely, ranging from
hundreds to hundreds of thousands, the comprehensive classi-
fication performance with different numbers of atoms has not
been presented in previous literature. Therefore, in the next
section we provide the experimental results of six dictionary
learning algorithms with different numbers of atoms on five
face databases. The experimental results can provide some
in-depth insights to the performance of dictionary learning
algorithms for face recognition and are helpful for researchers
to use and design dictionary learning algorithms.

VIII. EXPERIMENTAL RESULTS
In this section, we provide the experimental results of the
K-SVD [20], D-KSVD [34], LC-KSVD [24], FDDL [43],
SVGDL [47] andDLSPC [50] algorithmswith different num-
bers of atoms on the Labeled Faces in the Wild (LFW) [71],
the Georgia Tech (GT) [72], the Extended Yale B [73],
the AR [74] and the CMU PIE [75] face databases. Moreover,
to better show the representation ability of the learned dictio-
nary, we also compare these dictionary learning algorithms
with the SRC [1] algorithm.

A. EXPERIMENT SETTING
In this subsection, we provide the implementation details
of seven comparison algorithms. For the SRC algorithm,
the implementation procedure is presented in [8] and the
representation coefficients of test samples are obtained by
using the DALM-fast method. For the D-KSVD, LC-KSVD,
FDDL, SVGDL and DLSPC algorithms, we use the source
codes provided by the authors. For the K-SVD algorithm,
the K-SVD box is used to learn a dictionary, and it
uses the same classification method as the D-KSVD and
LC-KSVD algorithms. The codes used for the SRC and
K-SVDalgorithms can be downloaded at:http://www.yongxu.
org/default.html. Since the LC-KSVD2 algorithm always
achieves higher average recognition rates than the LC-KSVD1
algorithm, we use the LC-KSVD2 algorithm as the
LC-KSVD algorithm in this paper. For the DLSPC algorithm,
when the global coding classifier is used, we denote it as
the DLSPC-G algorithm. When the local coding classifier is
used, we denote it as the DLSPC-L algorithm.

B. EXPERIMENTAL RESULTS ON THE LFW DATABASE
The LFWdatabase containsmore than 13,000 images of faces
collected from the web, and all of them are labelled with the
name of the person pictured. The main goal is to study the
problem of unconstrained face recognition. In the database,
1,680 of the people have two or more distinct photos. Follow-
ing [76], we use a cropped version (LFW crop) of the LFW
dataset, which retains only the centre portion of each image
(i.e., the face) and almost all of the background is omitted.
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The LFW crop database was created due to concern about the
misuse of the original LFW dataset, where the face matching
accuracy can be unrealistically boosted through the use of
the background portions of the images (i.e., exploitation of
possible correlations between faces and backgrounds). For
each LFW image, the area inside a fixed bounding box was
extracted. The bounding box was at the same location for
all images, with the upper-left and lower-right corners being
(83, 92) and (166, 175), respectively. The extracted area was
then scaled to a size of 64×64 pixels. The selection of the
bounding box location was based on the positions of 40 ran-
domly selected LFW faces. As the location and size of faces
in the LFW database were determined through the use of
an automatic face locator (detector), the cropped faces in
the LFW crop database exhibit real-life conditions, including
misalignment, scale variations, and in-plane as well as out-
of-plane rotations.

In this experiment, we select and use a subset of the LFW
crop database consisting of 1,215 images of 86 people. In this
subset each person has approximately 11 to 20 images. Each
image is resized to a 32×32 pixel image. Sample images from
the LFW crop database are shown in Fig.1.

FIGURE 1. Example images from the LFW crop database.

We randomly select ten images of each person as the
training samples and reserve the remaining images as the
test samples. For the SRC algorithm, the number of train-
ing samples of each class is varied from 2 to 10. For the
K-SVD, D-KSVD and LC-KSVD algorithms, the number of
atoms is varied from 172 to 860 with a step of 86. For the
FDDL and SVGDL algorithms, the number of atoms of each
class sub-dictionary is varied from 2 to 10. For the DLSPC
algorithm, the learned dictionary contains two parts, one is
the shared atoms and the other is the specific class atoms.
The number of atoms of the shared dictionary is 86, and the
number of atoms of each class is varied from 1 to 9. The seven
comparison algorithms are each executed ten times and the
average recognition rates are reported in Fig.2.

C. EXPERIMENTAL RESULTS ON THE GT FACE DATABASE
The Georgia Tech (GT) face database was built at Georgia
Institute of Technology, and contained images of 50 people
taken in two or three sessions. The pictures show frontal
and/or tilted faces with different facial expressions, lighting
conditions and scales. Everyone in the database is represented
by 15 colour JPEG images with a cluttered background and a
resolution of 640×480 pixels. The average size of the faces

FIGURE 2. The average recognition rates of seven algorithms with
different numbers of atoms.

in these images is 150×150 pixels. Each image was manually
labelled to determine the position of the face in the image.
We use the face image with the background removed. Each
image is 30 by 40 pixels. Sample images from the GT face
database are shown in Fig.3.

FIGURE 3. Example images from the GT face database.

We randomly select ten images of each person as training
samples and reserve the remaining images as test samples.
For the SRC algorithm, the number of training samples of
each class is varied from 2 to 10. For the K-SVD, D-KSVD
and LC-KSVD algorithms, the number of atoms is varied
from 100 to 500 with a step of 50. For the FDDL and SVGDL
algorithms, the number of atoms of each class sub-dictionary
is varied from 2 to 10. For the DLSPC algorithm, the learned
dictionary contains two parts, one is the shared atoms and
the other is the specific class atoms. The number of atoms in
the shared dictionary is 50, and the number of atoms in each
class is varied from 1 to 9. The seven comparison algorithms
are each executed ten times and the average recognition rates
are reported in Fig.4.

D. EXPERIMENTAL RESULTS ON THE EXTENDED
YALE B FACE DATABASE
The Extended Yale B face database consists of 2,414 front-
face images of 38 people which were taken under various
illumination conditions and expressions. There are approx-
imately 59 to 64 images for each person and each image was
normalized to the size of 32×32 pixels. Examples of images
from the Extended Yale B face database are shown in Fig.5.
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FIGURE 4. The average recognition rates of seven algorithms with
different numbers of atoms.

FIGURE 5. Example images from the Extended Yale B face database.

We randomly select 32 images of each person as training
samples and reserve the remaining images for testing. For
the SRC algorithm, the number of training samples of each
class is varied from 2 to 32. For the K-SVD, D-KSVD and
LC-KSVD algorithms, the number of atoms is varied from
76 to 1216 with a step of 38. For the FDDL and SVGDL
algorithms, the number of atoms is varied from to 2 to 32 in
each class sub-dictionary. For the DLSPC algorithm, the
learned dictionary contains two parts, one is the shared atoms,
and the other is the specific class atoms. The number of atoms
in the shared dictionary is 38, and the number of atoms of each
class is varied from 1 to 31. The seven comparison algorithms
are each executed ten times and the average recognition rates
are reported in Fig.6.

E. EXPERIMENTAL RESULTS ON THE AR FACE DATABASE
The AR face database contains over 4,000 images of 126 peo-
ple. There are 26 face images of each person taken dur-
ing two sessions, and each image is taken under various
lighting conditions. For each person, there are 12 images
including those with the sunglasses and scarves. Follow-
ing [77], a subset of the AR face database consisting
of 3,120 images from 120 people is used in this experi-
ment. The resolution of the AR images was 40×50 pixels.
Images of one person from the AR face database are shown
in Fig.7.

We randomly select ten images of each class as train-
ing samples and reserve the remaining images for testing.

FIGURE 6. The average recognition rates of seven algorithms with
different numbers of atoms.

FIGURE 7. Example images from the AR face database.

For the SRC algorithm, the number of training samples of
each class is varied from 2 to 10. For the K-SVD, D-KSVD
and LC-KSVD algorithms, the number of atomsis varied
from 240 to 1200 with a step of 120. For the DLSPC algo-
rithm, the learned dictionary contains two parts, one is the
shared atoms and the other is the specific class atoms. The
number of atoms in the shared dictionary is 120, and the
number of atoms of each class is varied from 1 to 9. The seven
comparison algorithms are each executed ten times and the
average recognition rates are reported in Fig.8.

F. EXPERIMENTAL RESULTS ON THE PIE FACE DATABASE
The PIE face database consists of 41,368 front-face images
of 68 people, and the face images of each person are captured
under 13 different poses, 43 different illumination conditions,
and with 4 different facial expressions. Some sample images
from the PIE face database are shown in Fig.9.

Following [78], we choose the five near frontal poses
(C05, C07, C09, C27, and C29) of each subject and use
all images under different illuminations and expressions.
Thus, we obtain 170 images for each individual. Every image
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FIGURE 8. The average recognition rates of seven algorithms with
different numbers of atoms.

FIGURE 9. Example images from the PIE face database.

is normalized to the size of 32×32 pixels.We randomly select
twenty images of each person as training samples and reserve
the remaining images as test samples. For the SRC algorithm,
the number of training samples of each class is varied from
2 to 20. For the K-SVD, D-KSVD and LC-KSVD algorithms,
the number of atoms is varied from 136 to 1360 with a
step of 68. For the DLSPC algorithm, the learned dictionary
contains two parts, one is the shared atoms and the other is
the specific class atoms. The number of atoms in the shared
dictionary is 68, and the number of atoms of each class is
varied from 1 to 19. The seven comparison algorithms are
each executed ten times and the average recognition rates are
reported in Fig.10.

G. ANALYSIS OF EXPERIMENTAL RESULTS
In the above sections, the experimental results on the five face
databases were elaborated. We summarize the experimental
results as follows.

1) Fig.2, Fig.4, Fig.6, Fig.8 and Fig.10 show that the aver-
age recognition rates of the FDDL and SVGDL algo-
rithms are insensitive to the number of atoms. For the
Extended Yale B, AR and PIE face databases, the aver-
age recognition rates of the DLSPC-G and DLSPC-L
algorithms increase with the number of atoms. How-
ever, the average recognition rates of the DLSPC-G and
DLSPC-L algorithms do not always increase with the
number of atoms on the LFW and GT face databases.
The average recognition rates of the K-SVD, D-KSVD

FIGURE 10. The average recognition rates of seven algorithms with
different numbers of atoms.

and LC-KSVD algorithms on the five face databases do
not always increase with the number of atoms. Since
the K-SVD, D-KSVD and LC-KSVD algorithms are
all shared dictionary learning algorithms, the FDDL
and SVGDL algorithms are both specific class dictio-
nary learning algorithms, and the DLSPC algorithm is
the commonality and particularity dictionary learning
algorithm, the experimental results demonstrate that
the specific class dictionary learning algorithm is less
sensitive to the variation in the number of atoms than
the shared dictionary learning algorithm and the com-
monality and particularity dictionary learning algo-
rithm.

2) When the number of atoms is equal to the number
of training samples, the average recognition rates of
the D-KSVD, LC-KSVD, FDDL, SVGDL, DLSPC-G
and DLSPC-L algorithms on the five face databases
are higher than the average recognition of the SRC
algorithm in most cases. This is mainly because the
pose, illumination and expression information in face
images can be implicitly encoded into the learned dic-
tionaries, such that the learned dictionaries can have
more powerful representation ability than the original
training samples.

3) When the number of training samples increases,
the FDDL and SVGDL algorithms achieve higher aver-
age recognition rates than the D-KSVD, LC-KSVD,
DLSPC-G and DLSPC-L algorithms in most cases.
This demonstrates that the specific class dictionary
learning algorithm can preserve main characteristics of
face images better than the shared dictionary learning
algorithm and the commonality and particularity dic-
tionary learning algorithm.

4) For the SRC algorithm,when the number of the training
samples increases, the average recognition rate also
increases in most cases. This demonstrates that the
number of training samples plays an important role in
face recognition.
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IX. CONCLUSION
In this survey, we provide a current review of the existing
dictionary learning algorithms for face recognition, which
covers five types of major and very different algo-
rithms, i.e., the shared dictionary learning algorithm, the
class-specific dictionary learning algorithm, the commonality
and particularity dictionary learning algorithm, the auxiliary
dictionary learning algorithm and the domain adaptive dictio-
nary learning algorithm. Additionally, we offer experimental
results of different dictionary learning and sparse coding
algorithms with different numbers of atoms in face databases.
Experimental results show that the specific class dictio-
nary learning algorithms are less sensitive to the variety of
the number of atoms than the shared dictionary learning
algorithms and the commonality and particularity dictionary
learning algorithms. This review offers important ideas and
cues for designing dictionary learning algorithms for face
recognition.
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