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ABSTRACT The active front steering (AFS) technique is one of the effective methods to handle the
stability of a vehicle. In this paper, some AFS control schemes have been proposed. First, a two degree
of freedom mathematical model for the vehicle dynamics has been introduced in order to calculate the
desired yaw rate. On this basis, the actual sideslip angle is further identified and estimated by constructing
a sliding-mode observer. Then, two kinds of baseline AFS controllers are proposed by using PID and
terminal sliding mode techniques, such that the actual yaw rate will approach its reference value as
closely as possible. To further improve the performance of the closed-loop AFS control system, taking
the uncertainties and external disturbances into account, the composite control schemes are developed by
combining the previous designed state-feedback controllers and feedforward compensation term generated
by the disturbance observer. The effectiveness of the designed AFS control schemes is verified by using the
Carsim Software. It has been verified that the performance under two composite controllers is better than both
baseline controllers.

INDEX TERMS AFS, terminal sliding mode, disturbance observer, finite-time control.

I. INTRODUCTION
Vehicle stability control is an active safety system that helps
reduce the amount of wheel slip during acceleration and in
harsh driving, such that the driver will stay in control of
his/her vehicle during a critical manoeuver. The research on
improving the stability of a vehicle, which is also called
active safety control, has attracted much attention in recent
years and a great of progresses in stability control of vehi-
cles have been made, such as [1]–[5]. Generally speaking,
the active safety control mainly includes anti-lock brak-
ing [1], direct yaw moment control [2], active suspension
system [3], [4] and active front steering (AFS) [5]. AFS is
one of the frequently-used effective methods for active safety
control, because it can modify the steering angle of the driver
by providing an additional angle that does not depend on the
input of the steering wheel angle, so as to help the driver to
avoid getting into critical handling situations. Consequently,
the AFS techniques have been extensively studied both from
auto industry and academia [6]–[8].

In the early stage, the PI (proportion integration) control
technique has been widely employed in the AFS controller

design by regarding vehicle dynamics as a linear system. For
example, a PI feedback controller was designed in [9] tomake
sure that the yaw rate error will converge to zero. However,
the parameters of the PI controller are not easy to tune. As a
matter of fact, it should be noted that the vehicle dynamics
are a class of complicated nonlinear systems with lumped
disturbance including system uncertainties, parameter per-
turbations, speed variations and external disturbances, which
always affect the control performance of the closed-loop
system [10]–[12]. This implies that the performance under
linear controller may not be satisfactory, especially under
some extreme working conditions. To this end, several non-
linear control methods are introduced for AFS control design
problem, such as fuzzy control [13], optimal control [14],
H∞ control [15], nonsmooth control [19] and sliding mode
control (SMC) [16], etc. Among them, the SMC method has
been considered as one of the effective methods to deal with
uncertainties or disturbances.

SMC is a nonlinear control method which alters the
dynamics of a system by using a discontinuous control sig-
nal and forces the system states to slide along a prescribed
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switching manifold. It is known that SMC possess several
advantages, such as rapid convergence, good disturbance
rejection and easy implementation. In addition, it does not
require the considered system having an accurate mathemati-
cal model. Consequently, SMC techniques have been widely
applied in active safety control design [16]–[18]. In [17],
a new robust sliding mode controller is designed for a class of
linear systems and then applied to the path tracking problem
of 4WS (Four Wheel Steering) vehicles. Later, the SMC
theory is applied to the active front and rear wheel steer-
ing control problem in [16] such that the yaw rate and the
sideslip angle can both track their desired values. Meanwhile,
a continuous sliding mode direct yaw-moment controller is
designed in [18] to guarantee that the sideslip angle and
the yaw rate will approach the ideal ones as closely as
possible.

It can be clearly observed from [16]–[18] that the linear
sliding surface is always adopted in the traditional SMC.
This implies that the sliding variables will slide to the origin
asymptotically when they reach the linear sliding surface.
In other words, the states will converge to the origin in
an infinite time no matter how to tune the parameters in
the traditional SMC. Meanwhile, the robust property of the
closed loop SMC system may also not be satisfactory when
the sign function is replaced by using a saturation function
in order to alleviate the chattering. To further improve the
convergence and robustness of the closed-loop SMC sys-
tem, the terminal sliding mode (TSM) has been developed
in [20]–[22]. By introducing a nonlinear sliding surface in
TSM, the system states can converge to the origin in a finite
time along the sliding surface. It has been proved in many
applications that by comparing with the conventional linear
slidingmode, the TSM control exhibits various superior prop-
erties such as faster response, better disturbance rejection
and more control accuracy [23], [24]. However, similar to
the conventional SMC, the chattering problem always occurs.
The conventional way to avoid the chattering problem is
the boundary layer method by replacing the sign function in
the SMC controller with a saturation function. However, the
robustness of the closed-loop system will be partly reduced.
Noth that the amplitude of the chattering is mainly deter-
mined by the control gains of SMC controller, while the
values of the control gains are depended on the bound of
the disturbances. If the disturbances can be observed and be
partly compensated, then the values of the control gains in
sliding mode controller can be chosen to be some smaller
ones. In this case, the chattering problem can surely be
attenuated.

In this paper, four categories of control schemes are pro-
posed for vehicle AFS system. First of all, since the sideslip
angle is usually not easy to be measured by using sensors,
the sliding mode (SM) observer is applied to estimate the
exact value of the vehicle sideslip angle. Based on this, two
baseline controllers are given. The first one is the PI control
by regarding the yaw rate error as the deviation. However,
the tracking performance is not satisfactory under some large

lumped disturbances. The second one is the TSM control
scheme. Although it can be proved that under TSM con-
troller the yaw rate error will converge to the origin in a
finite time, the control parameters are required to be tuned
large enough to restrain the disturbances, which results in
a heavy chattering problem. To fix the problems existing in
the baseline control methods, two composite control schemes
are proposed by combining the aforementioned baseline con-
trollers and the disturbance observer (DOB) technique [25].
A DOB will first be constructed such that the lumped dis-
turbances can be well estimated. And then, the estimated
value will be regarded as a feedforward term to compen-
sate the unknown lumped disturbances. Finally, the base-
line feedback controllers plus the feedforward compensation
composite the composite control schemes. The theoretical
results have been verified by a commercial vehicle dynamic
software.

II. VEHICLE DYNAMICS AND PROBLEM FORMULATION
In this section, a 2DOF vehicle model (the bicycle model)
consisting of lateral and yawmotions is first described, which
is used for calculating the reference yaw rate. Then the prob-
lem statement is followed.

FIGURE 1. 2DOF vehicle model.

A. 2DOF VEHICLE MODEL
In normal ‘on road’ driving, the vehicle’s handling dynam-
ics can be represented by a two degree-of-freedom single
track model, known famously as the ‘bicycle model’ shown
in Fig. 1. It is depicted in Fig. 1 that β is the sideslip angle;
r is yaw rate; m is the vehicle mass, the distances from the
center of gravity to the front and rear axles are given by
a and b respectively; δf is the front wheel steering angle;
Iz is the moment of inertia of the vehicle, Vx and Vy are the
longitudinal and lateral velocities at the center of gravity of
vehicle. In addition, Fxf ,Fyf and Fxr ,Fyr represent the front
and rear tire forces, respectively.

To describe the dynamics of ‘bicycle model’, the following
assumptions have to be made [26]
• Ignore the influence of the steering system;
• Ignore the effect of suspension;
• Ignore the changes of tires characteristic and the effect
of the aligning torque caused by the load change;

• Only consists of lateral motion and yaw motion.
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On these bases, the vehicle motion equations are described
as follows

mVx(β̇ + r) = −2(Cf + Cr )β +
−2(aCf − bCr )

Vx
r

+ 2Cf δf (1)

Izṙ = −2(aCf − bCr )β +
−2(a2Cf + b2Cr )

Vx
r

+ 2aCf δf (2)

where Cf and Cr respectively are the front and rear tyre
cornering stiffness.

B. PROBLEM FORMULATION
The AFS system realizes front-wheel steering control by
superimposing an ‘‘active angle" to the steering-wheel
input (δs) from the driver. Unlike steer-by-wire, the AFS sys-
tem is distinguished by a permanent mechanical connection
between the steering wheel and road wheels, owing to an
innovative design of the planetary gear set [27]. The purpose
of AFS control is to ensure the stability of the vehicles, in such
a way that the actual yaw rate should track its reference value.
The reference yaw rate can be calculated by the steering
wheel angle, vehicle speed and the other vehicle parameters
as follows [28]

rt =
Vx

(a+ b)(1+ KV 2
x )
δs (3)

where K = m(bCr − aCf )/
(
2Cf Cr (a+ b)2

)
is the vehicle

insufficient steering coefficient and δs is the steering wheel
input. Considering the tyre/road condition, the reference yaw
rate is limited as follows

rd =


rt , |rt | <

0.85µg
Vx

0.85µg
Vx

sign(rt ), |rt | ≥
0.85µg
Vx

(4)

where µ is the road adhesion coefficient and g is the gravita-
tional constant.

On the other hand, the actual sideslip angle of the vehicle
is generally difficult to be measured by sensors. The usual
method to obtain the information of the sideslip angle is the
way of designing a state observer.
The goal of the paper is to design the AFS controller such

that the actual yaw rate will track the reference yaw rate (4) as
closely as possible. The diagram of control design is depicted
in Fig. 2.

III. CONTROL SYSTEM DESIGN
A. SIDESLIP ANGLE OBSERVER
Normally, the yaw rate r and the lateral acceleration ay can
be measured directly through sensors. In addition, ay can be
expressed as

ay = Vx(β̇ + r)

=
−2(Cf + Cr )

m
β +
−2(aCf − bCr )

mVx
r +

2Cf
m
δf . (5)

FIGURE 2. Structure of AFS control system.

Introducing the variables x1 = r , x2 = β, X = [r, β]T ,
Y = [y1, y2]T = [r, ay]T , u = [δf ]. The vehicle model
described by Eqs. (1)-(2) and (5) can be rewritten as{

Ẋ = AX + Bu
Y = CX + Du

A =


−2(a2Cf + b2Cr )

IzVx

−2(aCf − bCr )
Iz

−2(aCf − bCr )
mV 2

x
− 1

−2(Cf + Cr )
mVx

 ,

B =


2aCf
Iz
2Cf
mVx

 ,
C =

[
1 0

Vx(A21 + 1) VxA22

]
, D =

[
0

VxB2

]
. (6)

The sideslip angle observer can be designed as follows

˙̂x1=A11y1+A12x̂2 + B1u+ c1|y1 − x̂1|
1
2 sign(y1 − x̂1)

˙̂x2 = A21y1 + A22x̂2 + B2u+ c2sign(y1 − x̂1)

+
1
Vx

(ay − ây)

ây = Vx(A21 + 1)y1 + VxA22x̂2 + VxB2δf

(7)

where the value of ay can be directly obtained by a sensor,
x̂1 and x̂2 are the estimation of r and β respectively, ây is the
estimate of ay, c1 and c2 are two positive constants. Then we
have the following lemma.
Lemma 1: If the sliding model observer is designed as (7),

then the state x2 will be identical to x̂2 in a finite time.
Proof: Let x̃1 = x1− x̂1, x̃2 = x2− x̂2. Taking the derivative

of x̃1 and x̃2 yields{
˙̃x1 = A12x̃2 − c1|x̃1|

1
2 sign(x̃1)

˙̃x2 = F(x̃2)− c2sign(x̃1)
(8)

where F(x̃2) = A22x̃2. The sideslip angle is usually small, so
it can be assumed that there is a positive constant F̄ such that

|F(x̃2)| ≤ F̄ . (9)
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Then we will prove the finite-time convergence of sys-
tem (8) under condition (9).

Introducing E1 =
x̃1

A12F̄
and E2 =

x̃2
F̄
. By (8) and (9), one

obtains 
Ė1 = E2 −

c1

A1/212 F̄
1/2
|E1|

1
2 sign(E1)

Ė2 ∈ [−1,+1]−
c2
F̄
sign(E1)

(10)

Note that sign(E1) = sign(E2 − Ė1). Thus Eq. (10) can be
written as follows

Ė1 = E2 −
c1

A1/212 F̄
1/2
|E1|

1
2 sign(E1)

Ė2 ∈ [−1,+1]−
c2
F̄
sign(E2 − Ė1)

(11)

The rest of the proof is omitted for brevity since the
proof procedure actually does not much differ form that
of Theorem 6.4 in [29]. �

B. BASELINE CONTROLLER DESIGN
In this subsection, two baseline controllers will be proposed.
First of all, the PI controller will be given. Then, the TSM
controller will be further considered in order to improve the
disturbance rejection property of the closed loop system.

1) PI CONTROL
It can be observed from the literature that the PID control
technique has been widely used in AFS control design. Note
that the actual yaw rate should close to its reference value.
Hence, the deviation variable is usually chosen as

e1(t) = r − rd (12)

Then the controller (i.e., the steering angle δf ) can be
designed as

δf = Kpe1(t)+ Ki

∫
e1(t)dt (13)

where Kp and Ki are proportion coefficient and integration
coefficient, respectively. By tuning the parameters Kp and Ki,
the deviation e(t) will converge to zero, which implies the
actual yaw rate will approach the reference value.

On the other hand, the PID control is usually based on
the linear model by linearization technique, while the vehicle
dynamics is in essence a nonlinear system. This implies that
the performance of the closed loop system based on PI con-
troller may be undesirable under some extreme conditions.
To improve the control accuracy of PI controller, a terminal
sliding mode control scheme will be proposed in the follow-
ing subsection.

2) TSM CONTROL
We choose the terminal sliding surface as

s = e1+c ·
∫ t

0
sign(e1)|e1|αdt, 0 < α < 1, c > 0 (14)

Taking the derivative of (14) along system (2) yields

ṡ = A11r + A12β + B1δf + c · sign(e1)|e1|α + D1(t) (15)

where D1(t) = d(t) − ṙd and d(t) is the bounded lumped
disturbance including system uncertainties and external dis-
turbance in the yaw rate dynamics. It is also assumed that
Ḋ1(t) is bounded. Meanwhile, we let D2(t) = D1(t) +
A12(β − β̂). Note that d(t) and ṙd are bounded. And from
Lemma 1, it can be obtained that β will track β̂ in a finite
time. So, we can find a constant γD2 such that

|D2(t)| ≤ γD2

Then we have the following result.
Theorem 1: If the TSM controller is designed as

δf =
1
B1

(−A11r − A12β̂ − c · sign(r − rd )|r − rd |α

−K1 · sign(s)− K2s) (16)

where k1 > γD2 , k2 > 0, then the yaw rate r will converge to
its reference signal rd in a finite time.
Proof:With e1 = r−rd in mind, substituting (16) into (15)

yields

ṡ = −K1 · sign(s)− K2s+ D2(t) (17)

Consider the following Lyapunov function as

V1(s) =
1
2
s2.

Taking the derivative of V (s) along system (17) yields

V̇1 = sṡ

= −k1 · sign(s) · s− k2s2 + D2(t)s

≤ −k1|s| − k2s2 + |D2(t)||s|

≤ −(k1 − γD2 )|s| − k2s
2

≤ −(k1 − γD2 )|s|

Note that k1 > γD2 . We can verify that

V̇1 + cγV
1/2
1 ≤ 0, cγ =

√
2(k1 − γD2 ).

According to the finite-time Lyapunov stability theory pro-
posed in [30], the TSM variable s will converge to the origin
in a finite time. This implies that there exists a finite time
instant T such that s(T ) = 0 and s(t) ≡ 0,∀t > T . When
s ≡ 0, we have s ≡ e1 + c ·

∫ t
0 sign(e1)|e1|

αdt ≡ 0.
It implies ė1+csign(e1)|e1|α ≡ 0.By a simple calculation, we
can obtain the yaw rate error will converge to zero in a finite
time T + |e1(0)|

1−α

(1−α)c . �

Remark 1: It can be clearly seen from Theorem 1 that the
gain k1 of controller (16) should be chosen to guarantee the
condition k1 > γD2 . However, the upper bound of the distur-
bance γD2 is usually difficult to be determined or estimated
much conservative. It means that γD2 may be very large.
In this case, the sliding gain k1 is required to be tuned largely
in order to suppress the lumped disturbances. As a result, the
chattering problem will be very heavy.
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Remark 2: For TSM controller (16), we can first choose a
smallK1, a properK2 and α = 1 such that the sliding variable
will not diverge. Then, We can tune the parameter K1 from
small to large to guarantee that the sliding variable will con-
verge to zero. Finally, we can further tune the fractional power
α until the best convergence and robustness performance of
the closed-loop system can be obtained.

C. COMPOSITE CONTROLLER DESIGN
We should note that if the lumped disturbance is large,
the control performance under PI controller (13) will not
be satisfactory. Although the control performance under
TSM controller (16) is acceptable, the chattering will be
heavy. In the following, by combining the baseline con-
trollers and DOB technique, the composite controllers will be
given to further improve the performance of the closed loop
system.

FIGURE 3. The block diagram of DOB-based PI control.

1) DOB-BASED PI CONTROL
To get rid of the influence of the lumped disturbance, one of
the effective methods is the DOB-based control. The DOB is
used to estimate the unknown lumped disturbance, and then
the estimated value can be utilized to compensate it [31]. The
block diagram of DOB-based PI control scheme is depicted
in Fig. 3 Here, δf is the control input, r is the controlled
output, d is the lumped disturbance in the yaw rate dynamics,
G(s) is the mathematical model of plant, Gn(s) is the nominal
model of plant and Q(s) is the filter of DOB, respectively.
In addition, d̂ is the estimated value of the lumped distur-
bance. In the absence of the lumped disturbance, by using
Laplace transforms and noting the fact that u = δf , system (6)
can also be written as

sX (s) = AX (s)+ Bδf (s) (18)

Y (s) = CX (s)+ Dδf (s). (19)

From (18), one has

X (s) = (sI − A)−1Bδf (s) (20)

By (19) and (20), it follows

Y (s) = C(sI − A)−1Bδf (s)+ Dδf (s) (21)

Hence, the transfer function of the system is

G(s) =
Y (s)
δf (s)

= C(sI − A)−1B+ D (22)

On the other hand, by taking Gn(s) = G(s), it follows from
Fig. 3 that

d̂(s) = Q(s)G−1n (s)r(s)− Q(s)δf (s)

= Q(s)G−1n (s)G(s)(δf (s)+ d(s))− Q(s)δf (s)

= Q(s)d(s) (23)

It is derived from (23) that

Ed (s) = d̂(s)− d(s) = [Q(s)− 1]d(s) (24)

The estimation error Ed (s) will tend to zero as time goes to
infinity if the filter Q(s) is selected as a low-pass form, that
is, lim

s→∞
Q(s) = 1.

Actually, Q(s) can be designed in such a way that [31]:
• The relative degree of Q(s) should be no less than that
of the nominal model Gn(s) and Q(s)G−1n (s) should be
proper.

• In the domain of low-frequency, Q(s) should close to 1,
guaranteeing that the estimate of lumped disturbance
approximately equals to the lumped disturbance.

By following the above rules, the low-pass filter can be
chosen as the following form

Q(s) =
1

λs+ 1
(25)

where λ is the filter parameter. The parameter λ in filter Q(s)
should be chosen to be a small one such that it will possess
low-pass property. According to our experiences, λ = 0.01
or 0.02 will be enough. Then the DOB-based controller can
be designed as

δf = Kpe1(t)+ Ki

∫
e1(t)dt − d̂(t) (26)

2) DOB-BASED TSM CONTROL
By letting x = s, system (15) can be rewritten as

ẋ = F(x)+ G1(x)δf + G2(x)D2(t) (27)

where F(x) = A11r + A12β̂ + c · sign(r − rd )|r − rd |α ,
G1(x) = B1 and G2(x) = 1. Note that the sideslip angle β
is usually change slowly and Ḋ1 is also bounded. Hence, it is
reasonable to assume that the lumped disturbance D2(t) =
A12(β − β̂)+ D1(t) satisfies |Ḋ2(t)| ≤ γḊ2

with γḊ2
being a

positive constant. This property holds at least locally.
Based on the nonlinear disturbance observer (NDOB)

theory, the NDOB can be designed as{
Ṗ = −LG2P− L[G2Lx + F(x)+ G1(x)δf ],
D̂2 = P+ Lx

(28)

where D̂2 is the estimation of the lumped disturbance, P is the
internal state of NDOB and L is the observer gain satisfying
L > γḊ2

.
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Let the estimation error be e2(t) = D2(t) − D̂2(t). Taking
the derivative of e2(x) along systems (27) and (28) has

ė2 = Ḋ2 −
˙̂D2

= Ḋ2 −

[
−LG2P− L2G2x + LG2D2

]
= Ḋ2 − LG2e2 (29)

Select a Lyapunov function as

V2(e2) =
1
2
e22.

Taking the derivative of V2(e2) along equation (29) yields

V̇2 = e2ė2
= e2(Ḋ2 − LG2e2)

≤ |e2|γḊ2
− LG2e22 (30)

Define a region as Q1 =

{
e2 : |e2| ≤

γḊ2
LG2

}
. For any

e2(t) ∈ R/Q1, one has

|e2| >
γḊ2

LG2
.

This, together with (30) yields

V̇2 ≤ −|e2|(LG2|e2| − γḊ2
) < 0.

Note that G2 = 1. It implies that the steady error e2(t) will
reach and stay in the following region

Q1 =

{
e2 : |e2| ≤

γḊ2

L

}
. (31)

Now, we are ready to give the last result of the paper.
Theorem 2: If the composite TSM controller is

designed as

δf =
1
B1

(
−A11r − A12β̂ − c · sign(r − rd )|r − rd |α − D̂2

−K1 · sign(s)− K2s) (32)

where k1 > 0 , k2 > 0 and D̂2 is generated by NDOB (28),
then the yaw rate r will converge to its reference signal rd in
a finite time.

Proof: Substituting controller (32) into system (15)
yields

ṡ = −K1 · sign(s)− K2s+ D2(t)− D̂2

= −K1 · sign(s)− K2s+ e2(t). (33)

By the aforementioned NDOB (28), we know the error e2(t)
is bounded. It implies that there exists a constant γe2 such that
|e2(t)| = |D2(t) − D̂2| ≤ γe2 . Then, it can be observed that
system (33) has the same structure to system (17). The rest of
proof is similar to that in Theorem 1. �

As a matter of fact, due to the fact that the estimation error
e2(t) can be arbitrarily small, Theorem 2 reveals that the value
of k1 in controller (32) can be any positive constant, while
the same gain in controller (16) should satisfy k1 > γD2 .
It can be concluded that the gain k1 in the composite TSM
controller has been significantly reduced. This also implies
that the chattering can partially be attenuated.

Remark 3: For composite TSM controller (32), the param-
etersK2 and α can be the same to that of controller (16), while
the parameter K1 can be chosen to be a rather smaller one.
In addition, the parameter L in NDOB should be large in order
to suppress the disturbance.

FIGURE 4. Carsim vehicle model.

IV. SIMULATION
In order to compare the effectiveness of four kinds of con-
trollers, the vehicle model is established by a standard Carsim
D-Class SUV. It should be noted that the tyre and chassis
models are embedded in Carsim, therefore the longitudinal
and lateral tire forces, yaw rate, sideslip angle, vehicle longi-
tudinal and lateral velocity, etc, can be directly obtained by
Carsim software. The command window of Carsim vehicle
model of a four-wheel-drive vehicle is set as Fig. 4.

TABLE 1. Paraments of Vehicle Model.

The key parameters of the vehicle model in simulation are
presented in Table 1.

TABLE 2. Paraments of Controllers.

The initial speed of vehicle is taken as 80km/h, the max-
imum steering wheel angle is 60deg, and the road adhesion
coefficient µ is chosen as 0.3. Additionally, the parameters
of all the four controllers (13), (16), (26), and (32) are shown
in Table 2.
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FIGURE 5. Steering wheel angle.

FIGURE 6. The vehicle trajectory under different controllers in the case of
single lane change maneuver (without side wind disturbance).

FIGURE 7. The response curves of yaw rate under different controllers in
the case of single lane change maneuver (without side wind disturbance).

A. SINGLE LANE CHANGE MANEUVER WITHOUT
SIDE WIND DISTURBANCE
For the case of single lane change, the steering wheel angle
is regarded as the input of the system, which is shown in
Fig. 5. Without considering the effect of side wind distur-
bance, the simulation results are shown in Figs. 6-7, where
Fig. 6 gives the vehicle trajectories and Fig. 7 shows the
time history of yaw rate. From Fig. 7, it can be clearly seen
that without control the yaw rate is unstable, while it can
well track the reference signal under the given four kinds
of controllers. Consequently, we could arrive at a conclusion
that all the four kinds of controllers have positive impacts on
AFS system.

FIGURE 8. The side wind disturbance input.

FIGURE 9. The vehicle trajectory under different controllers in the case of
single lane change maneuver (with side wind disturbance).

FIGURE 10. The response curve of yaw rate under different controllers in
the case of single lane change maneuver (with side wind disturbance).

B. SINGLE LANE CHANGE MANEUVER UNDER
SIDE WIND DISTURBANCE
To compare the robustness of the proposed controllers, the
effect of side wind disturbance has been taken into account.
The simulation is conducted under a side wind force, which
is shown in Fig. 8. By Fig. 8, we can observe that the side
wind disturbance includes step, ramp and sinusoidal signals.
It can be seen from Fig. 9 and Fig. 10 that, the PI controller
fails to keep the stability, while the other three controllers can
well keep vehicle’s stability. As a matter of fact, by Fig. 10, it
can also be concluded that the PI controller can overcome the
influences of the step and ramp signals, but can not well han-
dle the sinusoidal disturbance. However, the PI controller still
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works if the DOB can be used to compensate the disturbance.
In addition, we can also see that the control performance
under composite controller is better than that under the pure
state-feedback controller.

FIGURE 11. Steering wheel angle.

FIGURE 12. The vehicle trajectory under different controllers in the case
of double lane change maneuver (without side wind disturbance).

FIGURE 13. The response curves of yaw rate under different controllers in
the case of double lane change maneuver (without side wind
disturbance).

C. DOUBLE LANE CHANGE MANEUVER WITHOUT
SIDE WIND DISTURBANCE
Consider the double lane change maneuver, as is shown in
Fig. 11. Under the baseline controllers (13), (16) and the com-
posite controllers (26), (32), without considering the effect
of side wind disturbance, simulation results are shown in
Figs. 12-13. Specifically, Fig. 12 depicts the vehicle trajectory
and Fig. 13 gives the time history of the yaw rate. It can
be clearly seen that without control the yaw rate is unstable,

while the four kinds of controllers designed in this paper are
all effective in keeping the stability of the vehicle. Also, we
can observe from Fig. 13 that the tracking performance under
composite controllers are better than that under baseline
controllers.

FIGURE 14. The side wind disturbance input.

FIGURE 15. The vehicle trajectory under different controllers in the case
of double lane change maneuver (with side wind disturbance).

FIGURE 16. The response curves of yaw rate under different controllers in
the case of double lane change maneuver (with side wind disturbance).

D. DOUBLE LANE CHANGE MANEUVER
WITH SIDE WIND DISTURBANCE
Finally, side wind disturbance is also considered for dou-
ble lane change maneuver so as to compare the robustness
between the baseline controllers (13), (16) and the composite
controllers (26), (32). Fig. 14 displays the time history of the
side wind. Fig. 15 plots the vehicle trajectory. Fig. 16 gives
the response curves of the yaw rate. By Fig. 15 and Fig. 16, it
can be observed that the PI controller fails to keep the stability
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and the performance under TSM controller is also not satis-
factory. This implies that the pure state-feedback control used
to suppress the large disturbancemay also bring some adverse
effects. To fix this problem, the composite control is one
of effective solutions. Under the composite control schemes,
the side wind disturbance can first be estimated by NDOB
and then be compensated. This property can be reflected
in Fig. 16, where the composite controllers (26), (32) exhibit
better performance than the baseline controllers (13), (16).

V. CONCLUSIONS
In this paper, four kinds of AFS controllers are proposed
for keeping the stability of a vehicle. The first two baseline
controllers are respectively constructed based on PI control
and terminal sliding mode control technique, such that the
yaw rate will track its desired value. However, under some
large disturbances, the performance under the baseline con-
trollers are not satisfactory. To further improve the robustness
of the AFS system, the composite AFS controllers are also
developed by combining the baseline controllers and the
disturbance observer technique. The validity of the proposed
AFS controllers are verified by using Carsim software. From
simulation results, it can easily make a conclusion that the
composite TSM controller possesses the best control perfor-
mance. It should also be pointed out that the active safety
control under pure AFS are not enough under some cases.
A more effective method is the AFS and DYC integrated con-
trol. Our future work will focus on the active safety control
by combining the direct yaw moment control and AFS.
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