
Received March 9, 2017, accepted March 22, 2017, date of publication April 17, 2017, date of current version June 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2694843

Query-Based Learning for Dynamic Particle
Swarm Optimization
RAY-I CHANG1, (Member, IEEE), HUNG-MIN HSU1,2, SHU-YU LIN1,3, CHU-CHUN CHANG1,
AND JAN-MING HO4, (Senior Member, IEEE)
1National Taiwan University, Taipei 10617, Taiwan
2Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan
3National Chung-Shan Institute of Science and Technology, Taoyuan 325, Taiwan
4Institute of Information Science and Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan

Corresponding author: Hung-Min Hsu (tsbear1@gmail.com)

This work was supported in part by the Academia Sinica Digital Center: System Management and Content Retrieval Technologies for
supporting Cloud-based Digital Archive Systems and Services Projects through the Academia Sinica and the Ministry of Science and
Technology, Taiwan, under Grant 105-2410-H-002-099-MY3.

ABSTRACT In recent years, many researchers have examined dynamic optimization problems (DOPs).
The key challenge lies in the fact that the optimal solution of a DOP typically changes over time. This
paper focuses on using query-based learning dynamic particle swarm optimization (QBLDPSO) to solve
DOPs. QBLDPSO is mainly used for improving multi-population-based PSO; our QBLmechanism includes
two learning strategies that integrate the concepts of diversity and memory into PSO. The first learning
strategy, QBL quantum parameter adaptation (QBLQPA), is used to apply the concept of diversity to the
multi-population based algorithm. This is different from typical diversity-based PSO approaches, which
passively maintain the diversity of particles in the solution space. We actively adapt the ratio of quantum
particles and neutral particles to achieve diversity without analyzing the distribution of optima in the solution
space. The second learning strategy is query-based learning optima prediction (QBLOP). Although QBLOP
exploits the concept of memory, we do not need to analyze the history of all particles. We select the k nearest
particles to the current best solution and use a minimum encompassing circle as the possible prediction
region. Our experimental results are based on the generalized dynamic benchmark generator (GDBG),
which is adopted as a benchmark for the DOP. The proposed method outperforms two state-of-the-art
multi-population-based PSO methods with the average improvements of 11.37% and 8% using QBLQPA.
In particular, for the recurrent problems in GDBG, our method improves performance by 35.06%.

INDEX TERMS Particle swarm optimization, dynamic optimization, quantum parameter adaptation, optima
prediction, query-based learning.

I. INTRODUCTION
Recently, many researches have focused on stationary opti-
mization problems. Thus, optimization algorithms for these
problems have become robust and efficient. However, many
real applications have optimal solutions that change over
time. Optimization problems in these dynamic environments
have become a challenging and vital issue. The fitness or con-
straint functions change over time when optimization prob-
lems occur in dynamic environments. Dynamic optimization
problems (DOPs) cannot be solved efficiently by simply re-
initializing the population. As a result, DOPs not only search
for a global optimum, but also track the movement of optima.

Most researchers design a particular model for a spe-
cific environment because it is difficult to improve the

performance of various DOPs using a general model. DOPs
are categorized according to spatial and temporal severity [1].
In the first type of DOP, spatial severity is low and temporal
severity is high. Consider step changes as an example, where
the optimal solution for step changes shifts continuously.
The second type of DOP is a recurrent problem, where optima
emerge repeatedly or periodically. In the third type of DOP,
the movement of the optimal solution is random or chaotic.

The problem in a DOP is to find the best solution
and track its movement. There are three categories of
PSO algorithms for DOPs: diversity, memory, and multi-
population. We focus on improving multi-population based
PSO. We propose a query-based learning dynamic particle
swarm optimization (QBLDPSO) method to handle various
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dynamic characteristics. QBL is a machine learning con-
cept that uses a teacher, called an oracle, to guide learning
behavior [2], [3]. PSO in QBLDPSO is referred to as a stu-
dent. When PSO gets stuck in a local minimum, the oracle
will provide guidance to redirect the particles. Based on
the concept of QBL, two learning strategies for the ora-
cle are introduced: query-based learning quantum parame-
ter adaptation (QBLQPA) and query-based learning optima
prediction (QBLOP). We demonstrate that controlling the
ratio of neutral and quantum particles through QBLQPA
is helpful for establishing better subpopulations to improve
the PSO algorithm. Furthermore, we propose a QBLOP that
finds the k nearest neighbor particles based on memory,
and establishes a minimum encompassing circle that allows
the predicted data to effectively improve the performance
of multi-population-based PSO. The two QBL strategies
first evaluate the environment (dynamic characteristics), then
respond with suggestions for the PSO to continue searching
while adaptively tuning parameters or redirecting particles
toward the prediction.

This paper is organized as follows: the next section
provides background information on DOPs, dynamic opti-
mization benchmarks, and related approaches for DOPs.
QBLDPSO is described in Section III, including QBLQPA
and QBLOP. The proposed algorithm is experimentally com-
pared to multi-population based PSO algorithms using the
GDBG benchmark generator in Section IV. Section V con-
tains our conclusions.

II. LITERATURE REVIEW
In this section, we discuss DOPs, benchmarks, and recent
work in dynamic environments.

A. DOPs
There are many real-world problems that change over time,
such as the dynamic knapsack problem, dynamic traveling
salesman problem, and network routing problem [4]–[6].
Nguyen et al. [5] defined DOPs as follows. Given a prob-
lem F , if the fitness landscape of the problem F changes in
the time period between T1 and T2, the problem F is referred
as a DOP between T1 and T2.

The main challenge in DOPs is tracking moving optima.
One important task for DOP algorithms is to detect when
the environment changes. The algorithms then begin to track
the moving optima. Most methods detect new changes, and
otherwise consider the environment to be known. Refer-
ences [5] and [6] show that most benchmarks in DOPs are
detectable, so changes can be detected using various agents.
There are two main mechanisms used to detect changes. One
is re-evaluating solutions, and the other is observing algo-
rithm behavior. Re-evaluating solutions employs detectors to
evaluate functions iteratively. If these detectors observe that
optima are different from the previous iteration, it means
that the environment is changed. For observing algorithm
behavior, we can detect environment changes when fitness
drops.

TABLE 1. Challenges and strategies in DOPs.

However, two important issues are associated with PSO for
tracking moving optima: outdated memory and diversity loss.
The changing environment leads to outdated memory, mean-
ing that previous experience is insufficient for PSO to find
a global optimum or local optima. Diversity loss stems from
PSO converging on previous global or local optimum. The
solution for outdated memory is re-evaluating particle posi-
tions and restoring their best positions when the environment
changes. For diversity loss, many optimization algorithms
tackle the problem using various adaptations, such as main-
taining diversity in each iteration, increasing diversity when
detecting environment changes, memory based approaches,
and multi-population based approaches.

In SOPs, changes occur during a short period of time
and the optimal solution or peak moves in a smooth man-
ner. On the other hand, many DOPs have regular patterns.
The optimal solutions for these DOPs may re-appear after
several environmental changes, these are called recurrent
problems [1], [5]. Table 1 presents the challenges of DOPs
and their solving strategies.

B. DOP BENCHMARK
We introduce the moving peak benchmark (MPB) and gener-
alized dynamic benchmark generator (GDBG) in this section.
MPB and GDBG were developed to enable comparison of
different approaches for DOPs.

MPB is a famous benchmark in dynamic environ-
ments [7], [8]. MPB contains several peaks in its landscape.
Each peak has its own characteristics, such as height, width,
and position. The characteristics of each peak change slightly
as the environment changes. Height is the highest point on
each peak. Width is the drop rate of a point with respect
to the distance from the center of a peak. The global best
value of MPB is the maximum height of each peak, and the
optimization objective of MPB is to search for the highest
point in the landscape.

Similar to MPB, GDBG consists of several peaks, where
the heights, widths, and positions of the peaks change
over time [9]–[11]. The changes can be controlled using
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system parameters. There are several types of system param-
eters, such as small step change, large step change, random
change, chaotic change, recurrent change, and noisy recurrent
change.

C. RECENT WORK IN DYNAMIC ENVIRONMENTS
Recently, several researches have attempted to adapt PSO
algorithms for DOPs [1], [12]–[21]. Their approaches can be
divided into three categories: diversity, memory, and multi-
population.

The first category is the diversity approach. One of the key
issues in DOPs is the convergence capabilities of the PSO
algorithm. If PSO converges too fast, all particles converge to
a single point in the search space. This means particles cannot
find the optimum solution when the environment changes.
As a result, these studies aim to prevent the phenomenon
of premature convergence by introducing diversity after the
environment changes or maintaining diversity during opti-
mization. Introducing diversity requires detection of changes
prior to the introduction. PSO will then increase diversity
as the environment changes. Maintaining diversity means
maintaining particles during the entire search process so that
PSO does not have to detect changes. For this reason, PSO
is also unable to track the moving optimum [12], [13], [15],
[19], [21], [22].

The second category is the memory approach. Memory
approaches try to derive patterns from previous search expe-
riences to predict changes [1], [23], [24] or introduce new
patterns to design self-adaptive mechanisms [25], [26].

The third category is the multi-population approach. Indi-
viduals are clustered into several sub-populations. Each sub-
population is assigned to handle a different sub-region of the
solution space. Additionally, the task for each sub-population
can be different. Some sub-populations aim to track changes
while others search for new optima [13], [15], [19], [27].
Thus, the multi-population approach must assign the tasks for
each sub-population.

Blackwell et al. proposed a multi-swarm
PSO [13], [15], [28] that incorporates two diversity
approaches (charged PSO and quantum PSO) to explore
several optima simultaneously. Multi-swarm PSO has two
types of particles, neutral particles and charged or quantum
particles. Neutral particles are used to update swarm optima
rather than global optima. In contrast to the neutral particles,
the charged or quantum particles try to preserve the diversity
of swarms. In speciation-based PSO, Bird et al. dynamically
regulated the number of neutral and quantum particles to
enhance tracking ability in a dynamic environment [29].

On the other hand, Blackwell et al. proposed exclusion and
anti-convergence concepts to maintain group diversity. The
concept of exclusion is to avoid having different subgroups of
particles focus on the same peak (local optima). If the distance
between two groups of particles becomes too close, the exclu-
sion strategy will activate to re-initialize the worst of the two
subgroups to avoid both subgroups dropping into the same
local optima. In terms of anti-convergence, the mechanism

will be triggered to avoid local optima traps while the number
of peaks is larger than the number of subgroups. Furthermore,
both strategies will re-initialize the worst subgroup to find
new optimum when all subgroups converge.

Multi-swarm PSO can be divided into two types: mQSO
and mCPSO. mQSO uses quantum particles to seek optima,
while mCPSO uses charged particles. Experimental results
show that mQSO generally outperforms mCPSO. Thus,
many approaches have been developed based on mQSO
because mQSO is a powerful tool for solving DOPs.
Novoa-Hernández et al. proposed mPSODE to improve
mQSO. mPSODE is a combination of two strategies: a diver-
sity strategy (mPSOD) and control rules (mPSOE) [19].
mPSOD uses quantum particles to cope with environment
changes. mPSOD provides quantum particles when changes
occur. These provided quantum particles are distributed
around the global optimum. mPSOE determines whether cer-
tain swarms are in unpromising areas in the search space.
mPSOE suspends these swarms using fuzzy rules to prevent
numerous unnecessary computations.

We aim to combine PSO and QBL to handle optimiza-
tion problems in dynamic environments because QBL has
been proven to be a useful machine learning technique.
Some previous works used the QBL technique to train a
neural network based on a small amount of training data,
and others solved various application based problems using
QBL approaches [30], [31]. For example, QBL-PSO used
QBL for swarm redistribution to enhance the exploitation
and exploration abilities of PSO. According to QBL-PSO,
PSO with swarm redistribution achieved superior conver-
gence to a global optimum in the power contract problem [3].
MRPSO-QBL also used QBL to support PSO in order to
escape local optima and aid in finding global optima while
accelerating convergence speed [32].

III. PROPOSED METHOD
In this section, we first introduce the framework of
QBLDPSO, and then further describe the twoQBL strategies:
QBLQPA and QBLOP.

A. QBLDPSO
QBLDPSO is a framework that provides a mechanism
for PSO to interact with a learning process called QBL.
QBLDPSO exploits the characteristics of DOPs to improve
the performance of PSO.

PSO [33] simulates the social behavior of flocks of
birds or schools of fish in order to solve complex problems.
PSO optimizes a problem by using a population of particles.
These particles are a population of candidate solutions that
enable PSO to explore a large solution space. The movement
of these particles is based on their own position and velocity.
The velocity of a particle is driven by local best-known
position of the particle and the best-known positions of other
particles in the search space. PSO searches iteratively until
a stop criterion is satisfied. During the search process, the
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position and velocity of particle i is updated by the following
equations:

Xi (t + 1) = Xi (t)+ Vi(t + 1) (1)

Vi (t + 1) = ω × Vi (t)+ c1r1
(
XpBest − Xi (t)

)
+ c2r2

(
XgBest − Xi (t)

)
(2)

where c1 and c2 are positive acceleration coefficients, and
r1 and r2 are random numbers between zero and one. w is an
inertial weight that is used to determine how previous velocity
influences current velocity. pBest is the best position found so
far by this particle and gBest is the best position found among
all particles so far.

QBL is an active learning method. When a learner (PSO)
is trapped in a difficult problem, the teacher (oracle) can
provide useful information at the proper time to improve
learning efficiency. Instead of using a fixed dataset to train
the model as in passive learningmethods, the strategy of QBL
is to incrementally input training data during the learning
progress. The process of QBL requires PSO to respond to
problems, and the response of PSO is then given to the
learning strategy model called the ‘‘oracle.’’ The oracle will
then guide PSO to search in promising areas. The complete
learning process is called QBL due to the interaction with the
query mechanism.

The role of the oracle in QBLDPSO is to detect prob-
lem characteristics. Because most DOPs change within spe-
cific restrictions and rules, the oracle attempts to analyze
these characteristics to solve DOPs. Through QBL, we can
retrieve the problem characteristics from the oracle. Initially,
the QBLDPSO optimization process operates in in the same
manner as the original PSO. However, the QBL model will
record environment instances in an environment database.
If the dynamic environment changes, the QBL model will
analyze the environment characteristics and provide appro-
priate guidance to enhance the performance of PSO.

FIGURE 1. Framework of QBLDPSO.

Fig. 1 presents the framework of QBLDPSO. The left side
shows the original PSO framework, and the oracle is shown

on the right side. The oracle focuses on analyzing changes in
the dynamic environment so that the QBLmodel can improve
the tracking ability for moving optima. An ‘‘epoch’’ is the
period between two environment changes. When an environ-
ment change is detected by the algorithm, the current epoch
ends and a new epoch begins. The oracle learns problem
characteristics by analyzing the best positions and fitness
value within an epoch. Therefore, QBLDPSO uses the oracle
to improve PSO when a new epoch begins. The oracle will
provide guidance for PSO, and the influence of the oracle’s
guidance may continue for a brief duration (e.g., move partial
particles to an assigned position a few generations after the
change), or an enduring period (e.g., change the parameters
of PSO for the remaining generations). The oracle employs
two learning strategies (QBLQPA and QBLOP) to analyze
environment characteristics. Thus, QBLDPSO can respond
appropriately when the environment characteristics match the
oracle’s prediction.

B. ORACLE FOR QBLDPSO
There are two learning strategies employed by the oracle
for QBLDPSO: QBLQPA and QBLOP. There were designed
specifically to improve the PSO algorithm in this study. Their
details are provided below.

One important issue in DOPs is maintaining diversity.
In order to avoid premature convergence, we extend themulti-
swarm, anti-convergence, and exclusion concepts in [15]
to our algorithm, because these concepts have been proven
to be a superior approach for DOPs [5]. In multi-swarm
approaches, quantum particles are used to track the best
particle positions. A quantum particle can efficiently track
a moving optimal position by changing its movement rules.
However, the movement rules for the quantum particle also
decrease its exploitation abilities. Quantum particles are
suitable for small changes in the environment. They do not
provide good results for drastic changes in the environment.
In other words, quantum particles reduce the efficiency of the
algorithm.

We propose a quantum number self-adapting strategy
called QBLQPA for our oracle, which controls the ratio
between quantum and neutral particles based on the severity
of changes in the environment. Quantum particles are suitable
for solving a DOP where changes in the environment are
gradual. In this case, QBLQPA raises the ratio of quantum
to neutral particles. In contrast, if changes in the environ-
ment are abrupt, quantum particles are less beneficial, and
QBLQPA will reduce the ratio of quantum to neutral parti-
cles in order to improve performance. The function for the
quantum particle number decision is as follows:

Dist t = |HK t−HK t−1| (3)

Pout = Count {Dist t |Dist t > WR, t = 1, . . . ,T } /T (4)

NQ = (1− Pout)× 0.9 (5)

where HXt denotes the best position in epoch t , Distt is the
distance from the best position in epoch tto the best position
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FIGURE 2. Concept of Pout .

in epoch t − 1, WR represents the effective radius of the
quantum particles centered on the best position of the particle
swarm, and T is the size of the environmental dataset being
considered by the QBL model. Pout is the probability that
the movement of the best position exceeds the effective range
of the quantum particle. Furthermore, Pout also indicates the
abruptness of change in the environment. NQ is the ratio used
to control the quantum particle number in QBLQPA. The
concept of Pout in QBLQPA is shown in Fig. 2. The right side
shows that QBLQPA detects an optimal solution for the next
time unit outside the distance that the quantum particle can
capture (large Pout ). In this case, QBLQPAwill automatically
decrease the number of quantum particles (smaller NQ). The
left side depicts a different situation. If Pout is continuously
low, QBLQPA will self-adaptively increase the number of
quantum particles. However, our experiments indicate that
we must reserve at least 10% of the particles as neutral
to avoid QBLQPA transforming all particles into quantum
particles, even in extreme environments. Thus, we use 0.9 to
control the quantum particle number in equation (5). The
default ratio of quantum particles to neutral particles is set to
0.5 based on the results of [15]. We set the basic requirement
for QBLQPA activation to at least three instances in the
environment database.

We establish QBLOP as the second strategy for our
oracle. Some DOPs are predictable or partially pre-
dictable [5]. In QBLOP, we try to identify whether or not
the problem is predictable. QBLOP will then guide PSO to
seek the optimal solution. QBLOP aims to recognize certain
characteristics in the current epoch via the database. Once
a characteristic is identified, QBLOP will generate the pre-
diction region with the highest probability of capturing the
optimal solution in the next epoch.

QBLOP takes advantage of reference data from the
database to predict the possible optimal location only when
the reference data is considered reliable. Therefore, QBLOP
defines two important parameters: reference severity and pre-
diction severity.

Reference severity is used to validate the reliability of ref-
erence data. We denote the current search optima as HXnow.
When changes are detected, QBLOP adopts the first k nearest
data nodes to HXnow in the database as reference data. Refer-
ence severity is defined as the furthest distance between the
reference data and HXnow.

DR = Max{|HX i − HXnow| , i = 1, . . . ,K }. (6)

When reference severity is high, the reliability of the ref-
erence data is low, which means there are no patterns in
common with the previous situation. In contrast, low refer-
ence severity means that the reference data have patterns in
common with HXnow. In this case, we can use the reference
data to predict the location of the optimal solution.

Prediction severity is the metric used to assess the reliabil-
ity of predicted data. After reference data are determined to
be reliable, QBLOP will select the next search optimum of
the reference data as the predicted data PXt (t = 1, . . . ,K ).
Then, a predicted possible region is dawn to cover the pre-
dicted data via a minimum encompassing circle. The defini-
tion of prediction severity is the diameter of the minimum
encompassing circle:

Dp = Max{
∣∣PX i − PX j∣∣ , i = 1, . . . ,K ,

j = 1, . . . ,K } ×
√
3. (7)

In terms of prediction severity, the predicted data is sparse and
the minimum encompassing circle is large when prediction
severity is high; in contrast, predicted data converge when
prediction severity is low.

FIGURE 3. QBLOP.

QBLOP can be used to effectively cope with recurrent
problems because the optima will reappear periodically.
When the optima reappear, QBLOP can exploit the historical
data of the same peak from the database and use the reference
data to predict the next optimal solution. Fig. 3 shows the
concept of QBLOP. QBLOP extracts the k nearest historical
data from the best solution as reference data. QBLOP then
reads the next position of the k reference data from database.
Finally, QBLOP generates a minimum circle encompassing
the next positions of these reference data and refers to the
circle as a predicted possible region. The pink circle covering
the predicted data indicates the possible region that optima
may drop into during the next epoch. Eventually, QBLOPwill

7652 VOLUME 5, 2017



R.-I. Chang et al.: Query-Based Learning for Dynamic PSO

randomly generate neutral and quantum particles only inside
this region.

In QBLOP, we have an important decision to make. That is
deciding the thresholds for reference severity and prediction
severity. In this study, we use the basin of attraction of a
peak to determine the threshold for reference severity. DOPs
typically have several peaks, and each peak has basin of
attraction. Particles will be attracted to converge on a peak
when they are distributed over the peak’s basin of attraction.
Blackwell and Branke [15] define the average diameter of the
basin of attraction of a peak as dboa. dboa can be estimated by
dboa = X /p1/d , whereX is the dynamic range, p is the number
of peaks, and d is the number of dimensions. Therefore,
we use the concept of dboa as the threshold for reference
severity. If DR becomes larger than dboa/2, it means that the
reference data are not tracking the same optima, and we can-
not predict the next optima from the reference data. In terms
of prediction severity, we define a threshold TH . Prediction
severity is reliable while below the threshold. Because the
predicted possible region is valuable only when the predicted
optimal solutions are in the same region, the threshold is set
to dboa/2, the same as reference severity.

IV. PERFORMANCE EVALUATION
In this study, all six dynamic optimization functions from
GDBG are used to evaluate the performance of QBLDPSO.
The six test problems are defined in [9]–[11].

F1. Rotation peak function.
F2. Composition of Sphere’s function.
F3. Composition of Rastrigin’s function.
F4. Composition of Griewank’s function.
F5. Composition of Ackley’s function.
F6. Hybrid composition function.
Only F1 is a maximization problem, and all the others

are minimization problems. In order to provide an intuitive
illustration, we transformed F1 into a minimization problem
as well. In each function, we tested six types of change
from GDBG; the types were selected because they have the
highest probability of becoming real problems. Our goal is to
use QBLDPSO to solve real problems. Thus, QBLDPSO is
designed to cope with these six change types. The framework
for the six types of change is described in Fig. 4.

In Fig. 4, ||ϕ|| denotes the change range of ϕ, ϕseverity is
a constant number that indicates the change severity of ϕ,
ϕmin is the minimum value of ϕ, and noisyseverity denotes a
noise severity between zero and one. α ∈ (0, 1) and β ∈ (0, 1)
are constant values, which are set to 0.04 and 0.1 respectively,
in the GDBG system. In our experiments, all parameters are
the same as in [9]. A logistic function is used in the chaotic
change type, where A is a positive constant between one and
four. If ϕ is a vector, the initial values of the items in ϕ
should be different within ||ϕ|| in the chaotic change. We use
P to denote the period of recurrent change and recurrent
change with noise, φ to denote the initial phase, and r to
denote a random number in the range (−1, 1). The function
sign(x) returns 1 when x is greater than 0, −1 when x is less

FIGURE 4. Function of six types of change in GDBG.

than 0, and 0 otherwise. We use N (0, 1) to denote a normally
distributed one-dimensional random number with a mean of
zero and standard deviation of one. The six types of change
(shown in Fig. 4) are represented as T1 through T6, in the
order of small step, large step, random, chaotic, recurrent, and
recurrent with noise changes. We basically adopt the same
parameters as in [9]–[11]. Additionally, we set the change
period for GDBG to 100, 300, and 500, in order to examine
different levels of abruptness in change with the same test
function. In our experiments, the number of changes is at least
60 (when the change period is set to 500). Thus, the total
fitness evaluation is set to 30000. Each experiment repeats
30 times with different random seeds. For QBLDPSO and
mQSO [15] parameter settings, the number of swarms is
set to 10. Each swarm consists of 10 particles. Following
the parameter settings in [15], the default quantum particle
number is set to 5, the distance threshold for anti-convergence
is 3.0, and the radius of the quantum cloud is 1. For other
basic PSO parameter settings, we also adopt the best settings
proposed by [15]; c1r1 and c2r2 are set to 2.0, and ω is set
to 0.729. For QBL parameter settings, QBL activates after
three changes. We will discuss the parameter settings of WR
in QBLQPA in the following sections.

Because choosing an appropriate performance evaluation
for DOPs is a vital and unsolved issue, many different eval-
uation methods are proposed and discussed in [6]. In our
experiments, we use best of generation (BOG), which is
the most commonly used approach. BOG is an optimality-
based measure for evaluating how well the algorithm finds
the solution with the best fitness values. BOG averages the
best solutions in each iteration (generation) over several runs.
The measure is

BOG =
R∑
i=1

N∑
j=1

fitnessij
R ∗ N

(8)
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FIGURE 5. GDBG with different change types and different WR (average quantum number). (a) F1. (b) F2. (c) F3. (d) F4. (e) F5.

where N is the iteration number in each run and R is the run
number for each experiment.

QBLDPSO uses two learning strategies: QBLQPA and
QBLOP. Each strategy has its own trigger condition. First,
we tested the performance of each strategy individually,
then we evaluated the overall performance of QBLDPSO.
Thus, there are three experiments in this section: the effect
of QBLQPA, the effect of QBLOP, and a comparison of
QBLDPSO with other algorithms.

A. THE EFFECT OF QBLQPA
In the first experiment, we examined the effect of the parame-
terWR in QBLQPA with different kinds of dynamic changes.
The parameter WR defines the effective range of quantum
particles. When WR is large, the acceptable rate of change
is relatively high. In this case, there are large number of
quantum particles. As a result, the quantum particles around
local optimum solutions increase the performance of local
exploitation. However, fewer neutral particles lead to reduced
overall swarm searching ability. There are fewer quantum
particles when WR is smaller. Thus, the number of neu-
tral particles is relatively large. This means that QBLQPA
concentrates on searching all around the swarm rather than
tracking the swarm optima.

In order to find the best setting of WRfor QBLQPA,
we tested WR values ranging from 1 to 9. Fig. 5 displays

the number of quantum particles under varying conditions.
The experiments are run using test problems F1 through
F5 with change types T1 through T6. The experimental
results demonstrate that QBLQPA can adaptively adjust the
number of quantum and neutral particles in the swarm based
on different environment changes. When the changes are
gradual, QBLQPAwill understand that the DOP has the char-
acteristic of small displacement. Take T1 (small step changes)
for example, the optimal displacement between changes is
always within WR. In this case, the optimal solution should
be near the previous optimum. QBLQPA will increase the
density of particles around the last optimal solution to search
for the new best solution. Thus, the adjusted quantum num-
ber in T1 is set larger than for the other change types
in Fig. 5. In contrast to T1, the other types of change have
a higher chance to exceed WR. QBLQPA will consider that
the optimal solution moves quickly. This displacement is too
large for quantum particles to find the optimal solution. Thus,
QBLQPA will adapt the number of quantum particles to be
smaller.

After testing the effect of the parameter WR in QBLQPA,
we examine the efficiency of QBLQPA using different WR
via BOG. Fig. 6 illustrates the BOG of different change types
andWR compared to mQSO. From the results above (Fig. 6),
one can see a range of WR that is the most appropriate.
If WR is large, the distance between changing optima has
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FIGURE 6. GDBG with different change types and different WR (average BOG). (a) F1. (b) F2. (c) F3. (d) F4. (e) F5.

more probability to remain within WR, and QBLQPA cannot
differentiate the changes. Additionally, an adjustment plan
with a large proportion of quantum particles may result in
a loss of exploitation ability and efficiency. However, most
of the distances between changing optima are larger thanWR
if WR is too small. Once QBLQPA becomes aware of quan-
tum particles becoming inefficient, it changes some of the
quantum particles in the swarm to neutral particles to track
the moving optima. Fig. 6 indicates that the best setting for
WR is between three and six.

B. THE EFFECT OF QBLOP
We have discussed the effect of parameter WR in QBLQPA.
In this section, we discuss the influence of QBLOP. QBLOP
is used to handle environment changes with regular patterns.
Thus, we examined QBLOP and compared the results to
original mQSO for T5 (recurrent) and T6 (recurrent with
noisy changes) problems. The equation for the improvement
rate is:

Improvement rate1 (IR1) =
mQSO− QBLDPSO

mQSO
. (9)

Fig. 7 displays the experimental results. In T5, QBLOP can
predict accurate optima to guide the algorithm and solve the
problem more efficiently with a 10% to 40% improvement.
This means that QBLOP is able to exploit the regular patterns
in the historical data because optimal solutions in the same
environment state appear in the same location. For T6, the
changing optima have no recurrent pattern, so QBLOP is
unable to achieve improvements for this type of environment
change.

In our experiment, the noise severity with the parameters
from [9]–[11] is 0.8. The characteristics of T5 mean that
optimal solutions reoccur in exactly the same place after sev-
eral changes. In contrast, the optimal solutions of T6 change
between several states and reappear in different places. The
moving trajectory of T6 is large as a result of the noise.
Therefore, QBLOP has difficulty recognizing the recurrent
pattern in the optima.

C. COMPARISON WITH OTHER ALGORITHMS
We have focused on improving multi-population based PSO.
mQSO and its variant, mPSODE, are two state-of-the-art

VOLUME 5, 2017 7655



R.-I. Chang et al.: Query-Based Learning for Dynamic PSO

FIGURE 7. Improvement rate of QBLOP and mQSO with different
functions and change types.

FIGURE 8. Average improvement rate of QBLDPSO over mQSO with the
six test problems.

FIGURE 9. Average improvement rate of QBLDPSO over mPSODE with the
six test problems.

multi-population based PSO methods. Thus, mQSO and
mPSODE are used as the baseline algorithms to compare with
QBLDPSO. We determined the parameters for QBLDPSO
based on the results of the previous experiments. Thus,WR is
set to five. The improvement rate below is calculated from
the results of equation (9):

Improvement rate2 (IR2) =
mPSODE− QBLDPSO

mPSODE
. (10)

The average improvement rates of all six test problems from
GDBG with different change periods are shown in Fig. 8 and

FIGURE 10. Average improvement rate of QBLDPSO over mQSO with
different change types.

FIGURE 11. Average improvement rate of QBLDPSO over mPSODE with
different change types.

Fig. 9. Additionally, the average improvement rates of all
different change types are shown in Fig. 10 and Fig. 11.
QBLDPSO achieves significant improvements when the
change period is 300. These results indicate that neither
large nor short change periods are suitable for QBLDPSO.
QBLDPSO cannot learn sufficient data in a short change
period, and a large change period will cause QBLDPSO to
learn too much data, leading to lower performance. In our
experiments, we demonstrate that QBLDPSO outperforms
mQSO and mPSODE in the GDBG system. QBLDPSO can
effectively recognize and respond to changes. In particular,
QBLDPSO achieves significant improvements in recurrent
change problems.

V. CONCLUSIONS AND FUTURE WORK
We aimed to use QBLDPSO to solve DOPs based on their
problem characteristics. Twomain issues have been discussed
and tested in this study: the ability of QBLDPSO to respond
to a changing environment and the improvements achieved
by QBLDPSO. We proposed QBLQPA and QBLOP in the
oracle algorithms for QBLDPSO. Based on our experimen-
tal results, QBLQPA and QBLOP can cope with various
dynamic characteristics in DOPs. By correctly tuning its
parameters, QBLQPA can cope with abrupt changes. On the
other hand, QBLOP can cope with predictable changes by
predicting a movement path based on historical data and
the environment. In our experiments, QBLDPSO was able
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to achieve the best results for various types of DOPs and
successfully improve the efficiency ofmulti-population based
PSO in dynamic environments.

To summarize, our study enhances the academic under-
standing of the characteristics of DOPs through the following
features:

1. QBLDPSO combines the QBL mechanism with PSO
to solve DOPs.

2. QBLQPA and QBLOP are proposed in the oracle for
QBLDPSO based on varying dynamic characteristics.

3. QBLQPA can improve efficiency for both gradual and
abrupt changes.

4. For recurrent changes, QBLOP is applied to solve prob-
lems by learning historical data.

In the future, QBLDPSO should be applied to more diverse
academic environments and realistic applications. The oracle
of QBLDPSO could also be given additional characteristics.
For example, penalizing a suggestion if the suggestion has
previously misguided the optimization process, and adap-
tively adjusting the quantum radius when movement between
environment changes is unstable. Additionally, further stud-
ies could combine the QBL mechanism with other optimiza-
tion algorithms.
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