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ABSTRACT The Rao-Blackwellized particle filtering (RBPF) offers a general tracking framework with
linear/nonlinear state space models, which outperforms the standard particle filtering in nonlinear and non-
Gaussian tracking scenarios. Unfortunately, in conventional radar systems, the observations contain no
information about the linear part of target state. In these cases, the RBPF algorithm fails to catch the real
trajectories, because we cannot obtain the enough information to correctly update the linear part of target
state in the tracking procedure. To overcome such an issue, this paper proposes a Kalman estimation-based
BRPF (KE-BRPF) algorithm. In KE-RBPF, the correlation between linear and nonlinear parts of target
state is investigated. Benefitting from such investigation, we derive a new set of formulea to present the
correlation in terms of means and variances. By utilizing these formulas, our KE-RBPF algorithm correctly
tracks the linear part of target state based on the nonlinear one. Finally, the simulation results verify that, our
KE-RBPF performs better than other state-of-the-art tracking methods in nonlinear and non-Gaussian radar
tracking scenarios, with at least 18% reduction in terms of the means and central tendency of error of tracking
root-mean-square-error.

INDEX TERMS Kalman estimation, Rao-Blackwellized particle filtering, central tendency of error.

I. INTRODUCTION
The Bayesian tracking theory [2], [3] is a fundamental struc-
ture for tracking with State Space (SS) model [4], which can
be simplified into Kalman Filtering (KF) algorithms [5], [6]
in the application of tracking with only Gaussian noise. In
non-Gaussian tracking scenarios, a common solution, called
Particle Filtering (PF) or Standard PF (SPF) [7], was worked
out based on the Sequential Monte Carlo sampling [8].
Afterwards, some advanced PF algorithms, such as
Unscented PF (UPF) [9], were proposed to improve the
tracking performance by utilizing better sampling distri-
butions. However, once the dimensions of target state
increase, the computational cost in those PF algorithms
becomes extremely expensive, and the tracking perfor-
mance obviously degrades. To avoid above drawbacks, a
Rao-Blackwellized PF (RBPF) [10], which is also called
Marginalized PF (MPF) [11], was proposed. RBPF is inspired
by the fact that the structure of many SS models is composed
of linear and nonlinear parts [12]. Accordingly, in RBPF,
KF is utilized to handle the linear part, leaving only the
nonlinear part to PF. By this way, the dimension of target

state tracked by PF is compressed as much as possible in
the RBPF algorithm. As such, the RBPF algorithm reduces
the computational resource of the tracking process over PF,
thus more practical for real applications. Moreover, RBPF
can also improve the tracking performance by reducing its
tracking variance [13]. Benefiting from these advantages, the
RBPF has been widely used in the fields of simultaneous
localization [14], visual tracking [15] and automatic control-
ling [16], [17]. Recently, some advanced RBPF algorithms
have been proposed for the implementation in particle swarm
tracking [18], adaptive beamforming with strong interfer-
ence [19], out-of-sequence measurement processing [20] and
other classic tracking and filtering cases [21].

As all we know, the RBPF algorithm separates the esti-
mated state into nonlinear and linear parts, which are calcu-
lated with the previous state and present observations. How-
ever, the observations in conventional radar systems offer no
information about the linear part of target state. For example,
many active (or passive) radars locate the target without its
velocity [22] that is the linear part of target state in SSmodels.
Unlike visual tracking, we cannot obtain a good tracking
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FIGURE 1. Tracking results of RBPF with constant turn model [23], in comparison with SPF. Left figure: The velocities tracked by RBPF and
SPF in X direction are shown. Right figure: The tracking trajectories are shown, in which the tracking trajectory of RBPF gradually deviates
from the real one.

performance without velocity in radar tracking. To compen-
sate this information loss, [11] utilizes the nonlinear part of
the next prediction state as an additional observation of the
present linear part. However, this compensation still cannot
afford enough information to correctly update the linear part1

in the aforementioned scenario. Hence, as seen in Figure 1,
the velocity tracked by RBPF is too smooth to catch the real
one and causes a gradual deviation of the tracking trajectory.

To our best knowledge, few methods are proposed to
overcome this gradual deviation problem in RBPF while
observations contain no information about the linear part
of target state. Hence, in this paper, a Kalman Estimation
based RBPF (KE-RBPF) algorithm is proposed to solve this
problem for the first time. Specifically, by investigating the
Kalman estimation procedure, the correlation between linear
and nonlinear parts of target state is formulated with an equa-
tion set in the form of mean and variance. Benefitting from
such a formulation, the linear part can be correctly estimated,
according to the mean and variance of the nonlinear part at
each time step. Finally, the simulational results verify that
our KE-RBPF algorithm outperforms other classic nonlinear
non-Gaussian tracking algorithms, in terms of means, devi-
ations, and central tendency of error (CTE) [24], [25]. The
meanings of notation in the paper are listed in Table 1. The
contributions of this paper are listed as follows,

• We investigate the tracking degradation of RBPF when
the observation information on the linear part is unavail-
able.

• We propose a novel KE-RBPF to overcome the degrada-
tion of RBPF in tracking by formulating the correlation
between linear and nonlinear parts of target state with an
equation set.

II. RAO-BLACKWELLIZED PARTICLE FILTERING FOR
RADAR TRACKING
This section investigates the degradation of RBPF tracking
performance in the radar tracking systems without the obser-
vation information on the linear part. The linear/nonlinear

1This problem is further discussed in Section II

Algorithm 1 RBPF for Radar Tracking Without the Obser-
vation Information on the Linear Part
Input: N ∈ N+, the prior probability p0 of xn, the mean x̄l0
and variance P̄

ll
0 of xl , the tracking model (1).

Output: {[xn,(i)k|k , x
l,(i)
k|k ]

T
}
N
i=1, at time step k .

Initialize: for i = 1, 2, ...,N , draw particle xn,(i)1|0 ∼ p0 with

the set {xl,(i)1|0 ,P
ll,(i)
1|0 } = {x̄

l
0, P̄

ll
0 }, and the weight w(i)

0 = 1/N .
For: time step k = 1, 2, 3....

1: Weight update: for i = 1, ...,N , given observation zk ,

w(i)
k =

p(zk |x
n,(i)
k|k−1)
Ck

w(i)
k−1, where Ck is the normalized

constant.
2: Particle update: for i = 1, ...,N , particle

unchange, i.e.,xn,(i)k|k = xn,(i)k|k−1, and {xl,(i)k|k ,P
ll,(i)
k|k } =

{xl,(i)k|k−1,P
ll,(i)
k|k−1}.

3: Particles resampling (optional).
4: Nonlinear state prediction: for i = 1, ...,N , draw new

particle xn,(i)k+1|k ∼ p(xnk+1|k |x
(i)
k|k ).

5: Linear state prediction: for i = 1, ...,N , xl,(i)k+1|k and

P ll,(i)k+1|k are calculated with the Kalman Filtering algo-
rithm with decorrelating process [11], given SS model
(1), xl,(i)k|k , P

ll,(i)
k|k and za,(i)k , where

za,(i)k = xn,(i)k+1|k − F
nnxn,(i)k|k . (2)

End

SS model [11] of aforementioned radar tracking systems is
defined as follows,

xnk = Fnnxnk−1 + F
nlxlk−1 + v

n
k−1 (1a)

xlk = Flnxnk−1 + F
llxlk−1 + v

l
k−1 (1b)

zk = h(xnk )+ w
n
k , (1c)

where k is the tracking time. In (1), {xnk ; x
n
k ∈ Rdxn } is

the nonlinear part of target state with dimension dxn , while
{xlk ; x

l
k ∈ Rdxl } is the linear part with dimension dxl . zk is

observation result. Fnn, Fnl , Fln and Fll are state transition
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TABLE 1. Notation list.

matrices. vnk−1 ∼ N (0,Qnnk−1) and v
l
k−1 ∼ N (0,Qllk−1) are

transition noises with zero means, and their variances are
Qnnk−1 andQ

ll
k−1, respectively. In (1c), h(·) is a nonlinear obser-

vation function with arbitrary observation noise wnk , which
obeys Gaussian or non-Gaussian distribution. Based on (1),
the detail of the RBPF [11] for conventional radar tracking is
shown in Algorithm 1.

As seen in this algorithm, at time step k , each particle x(i)k|k
contains nonlinear and linear parts, i.e., x(i)k|k , [xn,(i)k|k , x

l,(i)
k|k ]

T,
which are estimated by PF and KF, respectively. For both PF
and KF tracking procedures, the states are updated first given
observation zk , and then they are predicted with SS model
of (1).2 In fact, there is normally no real observation about
the linear part of target state in the conventional radar tracking
procedure. Specifically, we cannot specify a linear transition
matrix for the linear part of state in the observation function
of (1c). Hence, we cannot calculate the Kalman gain for
updating this linear part xl,(i)k|k , which should only be directly

2These procedures are different from our KE-RBPF which predicts the
target state first then updates it. These differences do not essentially affect
the tracking performance except a little diversity of tracking results in the
beginning of tracking, which is further discussed in Section IV.

replaced by the previous prediction xl,(i)k|k−1 as seen at the sec-
ond step of Algorithm 1. A compensation in RBPF for updat-
ing the linear part of target state is that a new variable za,(i)k
calculated by (2) is utilized as an additional observation of
xl,(i)k|k . Note that x

n,(i)
k+1|k is the prediction of the nonlinear part in

the i-th particle, which is drawn from p(xnk+1|k |x
(i)
k|k ) by a pre-

diction process in [26]. However, according to the SS model
(1) and the procedure of Rao-Blackwellisation [11], [27],
p(xnk+1|k |x

(i)
k|k ) is in fact calculated as follows,

p(xnk+1|k |x
(i)
k|k )

= N (Fnnxn,(i)k|k + F
nlxl,(i)k|k ,F

nlP ll,(i)k|k (Fnl)T + Qnnk ).

(3)

Obviously, in (3), each prediction in particle obeys

xn,(i)k+1|k = Fnnxn,(i)k|k + F
nlxl,(i)k|k + σ, (4)

where σ denotes Gaussian noise with variance of
FnlP ll,(i)k|k (Fnl)T + Qnnk . We derive za,(i)k from (2) and (4),

za,(i)k = Fnlxl,(i)k|k + σ. (5)
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With the direct correlation of nonlinear and linear part in
SS model, we can derive the additional observation for linear
part in (2). However, (5) implies that this additional observa-
tion has no correlation with real observation zk . Hence, we
obtain no information from observation za,(i)k to update the
linear state variable xlk , but only the partial state transition
matrix Fnl . This drawback causes the case, as seen in Figure
1, that the velocity tracked by RBPF is smooth, without
catching any information on real observation zk as SPFworks.
As a result, RBPF incurs the gradual deviation of tracking
trajectory from real one, thus degrading the tracking per-
formance in the radar tracking systems without observation
information on the linear part.

III. KALMAN ESTIMATION BASED RAO-BLACKWELLIZED
PARTICLE FILTERING
In this section, a novel KE-RBPF is proposed to solve the
aforementioned deviation problem of RBPF algorithm in
Section II. Normally, the goal of tracking [10] is to obtain
the expectation3 I (fn) based on the conditional distribution as
follows,

I (fn) =
∫ ∫

fn(xnk , x
l
k )p(x

n
k , x

l
k |z1:k )dx

l
kdx

n
k . (6)

Obviously, from (6), we can derive

I (fn)

=

∫ ∫
fn(xnk , x

l
k )[p(x

n
k |z1:k )p(x

l
k |x

n
k , z1:k )]dx

l
kdx

n
k

=

∫
[
∫
fn(xnk , x

l
k )p(x

l
k |x

n
k , z1:k )dx

l
k ]︸ ︷︷ ︸

Correlation

p(xnk |z1:k )︸ ︷︷ ︸
SPF

dxnk .

(7)

(7) implies that, as soon as we formulate an equation set for
the correlation, we can utilize the statistical characteristics
of nonlinear part xnk to estimate the ones of linear, based on
the RBPF procedure, thus achieving correct tracking results.
However, the traditional RBPF method only uses the SS
model to derive the correlation, seen in (2) of Algorithm 1.
Obviously, this correlation only contains the information of
the predicted state xn,(i)k+1|k , neglecting the variance information
between nonlinear and linear parts. This problem leads to the
loss of observation information, as mentioned in Section II.
To conquer this problem, our KE-RBPF uses the Kalman
estimation procedure [5] to formulate an equation set for
the correlation between xnk and xlk in (7), such that both xlk
and its variance P lk can be correctly estimated through the
nonlinear part. The final tracking procedure of our KE-RBPF
is presented as follows. First, based on the nonlinear part
of linear/nonlinear models, the estimation results of non-
linear part are calculated by standard PF. Then, we utilize
these results to estimate the linear part with the equation set
of correlation formulated by Kalman estimation procedure,
thus obtaining the whole tracking results in our KE-RBPF
algorithm.

3The expectation can be the mean or variance of state variable.

To achieve the Kalman estimation procedure, we need to
combine the linear and nonlinear parts of target state together.
Then, the Kalman filtering is carried out with prediction and
update steps, in which we formulate an equation set of the
correlation in the form of mean and variance. Specifically,
in our linear/nonlinear model (1), we have the following
definition to integrate the transition matrix, state vectors and
their variances into a conventional SS model:

F =
[
Fnn Fnl

Fln Fll

]
, Qk−1 =

[
Qnnk−1 Qnlk−1
Qlnk−1 Qllk−1

]
,

x̂k−1|k−1 =

[
x̂nk−1|k−1
x̂lk−1|k−1

]
, vk−1 =

[
vnk−1
vlk−1

]
,

Pk−1|k−1 =

[
Pnnk−1|k−1 P

nl
k−1|k−1

P lnk−1|k−1 P
ll
k−1|k−1

]
, (8)

where x̂k−1|k−1 and Pk−1|k−1 are the mean and variance of
previous estimation. Specifically, we have

Qnlk−1 = vnk−1(v
l
k−1)

T
= (Qlnk−1)

T, (9)

and

Pnlk−1|k−1 = (xnk−1 − x̂
n
k−1|k−1)(x

l
k−1 − x̂

l
k−1|k−1)

T

= (P lnk−1|k−1)
T, (10)

where [·]T denotes the transpose operator of the matrix.
According to the Kalman estimation procedure, the predic-
tion for target state is given in the following,

x̂k|k−1 = Fx̂k−1|k−1 (11a)

Pk|k−1 = FPk−1|k−1FT
+ Qk−1. (11b)

Based on (8) and (11), we have the integrated prediction as
follows,[

x̂nk|k−1
x̂lk|k−1

]
=

[
Fnn Fnl

Fln Fll

]
·

[
x̂nk−1|k−1
x̂lk−1|k−1

]
, (12)[

Pnnk|k−1 Pnlk|k−1
P lnk|k−1 P llk|k−1

]

=

[
Fnn Fnl

Fln Fll

]
·

[
Pnnk−1|k−1 Pnlk−1|k−1
P lnk−1|k−1 P llk−1|k−1

]

·

[
Fnn Fnl

Fln Fll

]T
+

[
Qnnk−1 Qnlk−1
Qlnk−1 Qllk−1

]
. (13)

Upon (12) and (13), the prediction for linear part of target
sate is derived as follows,

x̂lk|k−1 = Flnx̂nk−1|k−1 + F
ll x̂lk−1|k−1, (14)

P llk|k−1 = FlnPnnk−1|k−1(F
ln)T + FllP lnk−1|k−1(F

ln)T

+FlnPnlk−1|k−1(F
ll)T

+FllP llk−1|k−1(F
ll)T + Qllk−1, (15)

P lnk|k−1 = FlnPnnk−1|k−1(F
nn)T + FllP lnk−1|k−1(F

nn)T

+FlnPnlk−1|k−1(F
nl)T

+FllP llk−1|k−1(F
nl)T + Qlnk−1. (16)
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Pnlk|k−1 = FnnPnnk−1|k−1(F
ln)T + FnlP lnk−1|k−1(F

ln)T

+FnnPnlk−1|k−1(F
ll)T

+FnlP llk−1|k−1(F
ll)T + Qnlk−1. (17)

Obviously, we have Pnlk|k−1 = (P lnk|k−1)
T.

Lemma 1: Given the linear/nonlinear SS model (1), the
correlation between xnk and xlk in the update step can be
calculated as follows,

x̂lk|k = x̂lk|k−1 +Mk (x̂
n
k|k − x̂

n
k|k−1), (18)

P llk|k = P llk|k−1 +Mk (Pnnk|k − P
nn
k|k−1)(Mk )T, (19)

Pnlk|k = Pnnk|k (Mk )T = (P lnk|k )
T, (20)

whereMk = P lnk|k−1(P
nn
k|k−1)

−1.
Proof: We combine the nonlinear part xnk and linear part

xlk into a whole state xk for the Kalman estimation processing,
i.e., xk = [(xnk )

T (xlk )
T]T. To simplify the derivation, we use

a linear approximation to replace (1c) as zk = Hxk +wk ,4 by
defining H =

[
Hn H l ] ,w = [wn], where, H l

≡ O.
According to the Kalman estimation procedure [5],

given (8), the Kalman gain can be derived as follows,

K =

[
Pnnk|k−1(H

n)TS−1

P lnk|k−1(H
n)TS−1

]
,

[
Knn

K ln

]
, (21)

where S = HnPnnk|k−1(H
n)T + Rk , and Rk is the variance of

observation noise wk . Given the observation zk , at time k , we
can further derive[

x̂nk|k
x̂lk|k

]
=

[
x̂nk|k−1
x̂lk|k−1

]
+

[
Knnz̃k
K lnz̃k

]
, (22)

and

Pk|k = Pk|k−1 −
[
KnnS(Knn)T KnnS(K ln)T

K lnS(Knn)T K lnS(K ln)T

]
, (23)

where z̃k , zk − Hx̂nk|k−1. Moreover, based on (21), the
following equations hold,

Pnnk|k−1(H
n)TS−1 = Knn

⇒ (Hn)TS−1 = (Pnnk|k−1)
−1Knn, (24)

and

P lnk|k−1(H
n)TS−1 = K ln

⇒ (P lnk|k−1)
−1K ln

= (Hn)TS−1. (25)

Hence, we have

(P lnk|k−1)
−1K ln

= (Hn)TS−1 = (Pnnk|k−1)
−1Knn. (26)

Then, from (21) to (26), the estimations at the update step for
mean and variance are derived in the following,

x̂lk|k = x̂lk|k−1 + K
lnz̃k

= x̂lk|k−1 + P
ln
k|k−1(P

nn
k|k−1)

−1Knnz̃k

4We do not use ‘‘≈’’ because H can be eliminated at last without error.

= x̂lk|k−1 + P
ln
k|k−1(P

nn
k|k−1)

−1(x̂nk|k − x̂
n
k|k−1)

= x̂lk|k−1 +Mk (x̂
n
k|k − x̂

n
k|k−1), (27)

and

P llk|k = P llk|k−1 − K
lnS(K ln)T

= P llk|k−1 − [P lnk|k−1(P
nn
k|k−1)

−1Knn] ·

·S[P lnk|k−1(P
nn
k|k−1)

−1Knn]T

= P llk|k−1 −Mk [KnnS(Knn)T](Mk )T

= P llk|k−1 +Mk (Pnnk|k − P
nn
k|k−1)(Mk )T, (28)

whereMk , P lnk|k−1(P
nn
k|k−1)

−1.
Then, by replacing Pk|k and Pk|k−1 with the integrated

form in (8), (23) can be derived as follows,[
Pnnk|k Pnlk|k
P lnk|k P llk|k

]
=

[
Pnnk|k−1 Pnlk|k−1
P lnk|k−1 P llk|k−1

]

−

[
KnnS(Knn)T KnnS(K ln)T

K lnS(Knn)T K lnS(K ln)T

]
, (29)

Hence, the covariances of linear and nonlinear parts for
update step are derived as,

Pnlk|k = Pnlk|k−1 − K
nnS(K ln)T

= Pnlk|k−1 − K
nnS[P lnk|k−1(H

n)TS−1]T

= Pnlk|k−1 − K
nnS(S−1)THn(P lnk|k−1)

T

= Pnlk|k−1 − K
nnHnPnlk|k−1

= (I − KnnHn)Pnlk|k−1
= Pnnk|k (P

nn
k|k−1)

−1Pnlk|k−1
= Pnnk|k (Mk )T, (30)

and

P lnk|k = P lnk|k−1 − K
lnS(Knn)T

= P lnk|k−1 − P
ln
k|k−1(H

n)T(Knn)T

= P lnk|k−1(I − K
nnHn)T

= P lnk|k−1[P
nn
k|k (P

nn
k|k−1)

−1]T

= P lnk|k−1(P
nn
k|k−1)

−1Pnnk|k
= MkPnnk|k = (Pnlk|k )

T. (31)

This completes the proof of Lemma 1. �
Lemma 1 shows that the estimation of linear state variable
can be derived from nonlinear one. Hence, we first need to
estimate the mean and variance of nonlinear state with SPF
algorithm.
Lemma 2: Given the combination structure of linear

and nonlinear state variables in (8), the conditional den-
sity function p(xnk |x

n,(i)
k−1, x

l
k−1) for importance sampling of

KE-RBPF is

p(xnk |x
n,(i)
k−1, x

l
k−1) = N (x̄(i)k|k−1,P

∗

k|k−1), (32)

where

x̄(i)k|k−1 = Fnnxn,(i)k−1 + F
nl x̂lk−1|k−1, (33)

and
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P∗k|k−1 = FnlP lnk−1|k−1(F
nn)T + FnnPnlk−1|k−1(F

nl)T

+FnlP llk−1|k−1(F
nl)T + Qnnk−1. (34)

Proof: Given (8), the mean and variance of nonlinear
state are predicted by Kalman filtering algorithm as,

x̂nk|k−1 = Fnnx̂nk−1|k−1 + F
nl x̂lk−1|k−1, (35)

Pnnk|k−1 = FnnPnnk−1|k−1(F
nn)T + FnlP lnk−1|k−1(F

nn)T

+FnnPnlk−1|k−1(F
nl)T

+FnlP llk−1|k−1(F
nl)T + Qnnk−1, (36)

where x̂nk−1|k−1 and Pnnk−1|k−1 are the mean and variance of

the previous particle set {xn,(i)k−1}
N
i=1. Obviously, to guarantee

the consistency in prediction (35) and (36), a correct form of
sampling density function (32) should be a Gaussian distri-
bution with mean

x̄(i)k|k−1 = Fnnxn,(i)k−1 + F
nl x̂lk−1|k−1, (37)

and variance

P∗k|k−1 = FnlP lnk−1|k−1(F
nn)T + FnnPnlk−1|k−1(F

nl)T

+FnlP llk−1|k−1(F
nl)T + Qnnk−1. (38)

This completes the proof of Lemma 2. �
According to Lemma 2, the new particles are correctly
drawn as xn,(i)k ∼ p(xnk |x

n,(i)
k−1, x

l
k−1). The mean and

variance of nonlinear state in the prediction step can
be calculated with the previous weight set {w(i)

k−1}
N
i=1 of

particles as

x̂nk|k−1 =
N∑
i=1

w(i)
k−1x

n,(i)
k , (39)

Pnnk|k−1 =
N∑
i=1

w(i)
k−1(x

n,(i)
k − x̂nk|k−1)(x

n,(i)
k − x̂nk|k−1)

T,

(40)

where N is the amount of particles. Then, the weights
of particles are updated by the standard PF algorithm as
w(i)
k−1 → w(i)

k . The mean x̂nk|k and variance Pnnk|k of nonlinear
state in the update step are calculated from (39) and (40) by

replacing w(i)
k−1 with w

(i)
k .

Finally, the estimation of linear part of target state can be
derived from the correlation between xnk and x

l
k in Lemma 1.

The summary of the our KE-RBPF algorithm is provided
in Algorithm 2.

IV. SIMULATION RESULTS
In this section, we concentrate on a two-dimensional (2-D)
tracking problem. To validate the effectiveness of our
KE-RBPF algorithm, a radar system without the observation
information on velocity is utilized to track the target. In addi-
tion, the observation noise is set to be glint noise. This noise
is a classic non-Gaussian noise which exists commonly in

Algorithm 2 KE-RBPF for Radar Tracking

Input: N ∈ N+, the prior probability p0 of xn, the mean x̄l0
and variance P̄

ll
0 of xl , and the tracking model (1).

Output: particles {xn,(i)k }
N
i=1 and weights {w(i)

k }
N
i=1 of

nonlinear part. Estimation mean x̂lk|k and variance P llk|k of
linear part, at time step k .
Initialize: for i = 1, 2, ...,N , draw particle xn,(i)0 ∼ p0 and
calculate weight w(i)

0 = 1/N . x̂l0|0 = x̄l0, P
ll
0|0 = P̄

ll
0

For: time step k = 1, 2, 3....

1: New particle xn,(i)k is drawn from p(xnk |x
n,(i)
k−1, x

l
k−1) with

(32) for nonlinear state prediction, where i = 1, ...,N .
2: Mean x̂nk|k−1 and variance P

nn
k|k−1 in nonlinear prediction

are calculated with particle set {xn,(i)k }
N
i=1 and previous

weight set {w(i)
k−1}

N
i=1 in (39) and (40).

3: x̂lk|k−1, P
ll
k|k−1 and P

ln
k|k−1 are calculated with (14), (15)

and (16) for linear state prediction.

4: w(i)
k is updated as w(i)

k =
p(zk |x

n,(i)
k|k−1)
Ck

w(i)
k−1, given obser-

vation zk , , where Ck is the normalized constant and
i = 1, ...,N .

5: Particle resampling (optional).
6: Mean x̂nk|k and variance Pnk|k in nonlinear update are

calculated with new weight set {w(i)
k }

N
i=1.

7: x̂lk|k , P
ll
k|k and P

ln
k|k are calculated with (18), (19) and (20)

for linear state update.
End

the radar observation process when target glints [28]. More-
over, we select one constant-velocity (CV) and two constant-
turn (CT) kinematic models to simulate the target trajectories
with Cartesian coordinate. For each target trajectory,
100 Monte Carlo (MC) simulations are run. In each run,
the root-mean-square-error (RMSE) of tracking results is
evaluated. Then, the statistical results of the RMSE in
100 MC runs are provided to validate the effectiveness
of our KE-RBPF algorithm, in comparison with other
algorithms including SPF [7], UPF [9] and RBPF [11].5

The statistical results contain mean, deviation and CTE,
which are estimated by the latest method called iterative
mid-range (IMR) [25].

A. SIMULATION SETUP
In the conventional 2-D radar tracking problem, the original
SS model is shown in the following:

Transition equation : xk = Fxk−1 + vk−1 (41a)

Observation equation : zk = h(xk )+ wk , (41b)

where xk = [dx,k , dy,k , vx,k , vy,k ]T is the tracking
state vector, indicating the 2-D distance [dx,k , dy,k ]T and
velocity [vx,k , vy,k ]T in the x − y plane at time step k .

5It is called MPF algorithm in that paper
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F is the state transition matrix with sampling interval sτ ,
which produces the CV and CT trajectories with two different
models, according to the tracking theory for cruising and
maneuvering targets [23]. In our simulation, we have

F =


1 0 sτ 0
0 1 0 sτ
0 0 1 0
0 0 0 1

 (42)

for CV trajectory. In addition, we have

F =


1 0

sin(αsτ )
α

cos(αsτ )− 1
α

0 1
1− cos(αsτ )

α

sin(αsτ )
α

0 0 cos(αsτ ) − sin(αsτ )
0 0 sin(αsτ ) cos(αsτ )

 , (43)

for CT trajectories with known turn rates α = 2.5◦/s and
α = 5◦/s [29]. vk−1 = [vd , vd , vv, vv]T represents the
state transition noise in distance and velocity, which obeys
the Gaussian distribution, i.e., vd ∼ N (vd ; 0, σ 2

d ) and vv ∼
N (vv; 0, σ 2

v ). Here, σd and σv = 2σd/sτ are standard devia-
tions of transition noise of distance and velocity, respectively.
The three trajectories are plotted in Figure 2.

FIGURE 2. Three trajectories of target. (a) trajectory of CV model.
(b) trajectory of CT model (turn rate α = 2.5◦/s). (c) trajectory of CT model
(turn rate α = 5◦/s).

In addition, the radar system without observation on veloc-
ity is used for tracking, which uses the spherical coordinate
to track target and only contains the observation on distance
and azimuth. Specifically, the nonlinear observation equation
of (41b) is re-defined to be the following nonlinear function:[

θk

rk

]
︸ ︷︷ ︸
zk

=

 arctan
dy,k
dx,k√

d2x,k + d
2
y,k

+ [wθ
wr

]
︸ ︷︷ ︸

w

, (44)

where zk = [θk , rk ]T denotes the observation vector with
azimuth θk and distance rk , at time k , respectively. In (44),
w = [wθ , wr ]T is the glint noise of observation vector
containing azimuth and distance parts, i.e., wθ and wr .

Obviously, from (1c) and (44), the nonlinear part of
tracking state is xnk = [dx,k , dy,k ]T with noise vnk =
[vd , vd ]T, and the linear part is xlk = [vx,k , vy,k ]T with
noise vlk = [vv, vv]T. Furthermore, according to (51) and
(43), the transition matrices of (1) for CV trajectory are
defined as

Fnn =
[
1 0
0 1

]
Fnl =

[
sτ 0
0 sτ

]

Fln =
[
0 0
0 0

]
Fll =

[
1 0
0 1

]
, (45)

and transition matrices of (1) for CT trajectory are defined as

Fnn =
[
1 0
0 1

]
Fnl =

[ sin(αsτ )
α

cos(αsτ )−1
α

1−cos(αsτ )
α

sin(αsτ )
α

]
Fln =

[
0 0
0 0

]
Fll =

[
cos(αsτ ) − sin(αsτ )
sin(αsτ ) cos(αsτ )

]
. (46)

As mentioned before, the observation noise is defined as
the glint noise, which can be modeled as a mixture of a
Gaussian noise with high probability and moderate variance
and a (heavy-tailed) Laplacian distributed noise with low
probability [30], i.e.,

p(w) = (1− ε) · pG(w)+ ε · pL(w), (47)

where ε is the glint probability. In (47), the subscripts G and
L stand for Gaussian and Laplacian, respectively, i.e.,

pG(w) ,
1

√
2πσG

e−(w−ŵG)
2/2σ 2G , (48)

pL(w) ,
1

2σ L
e−|w−ŵL |/σL , (49)

where ŵG and σG are the mean and deviation for Gaus-
sian distribution, and ŵL and σ L are the mean and devia-
tion for Laplacian distribution. In our tracking model, the
observation noise wθ and wr are independent. Hence, we
have

p(w) = (1− ε)pG,θ (wθ )pG,r (wr )+ εpL,θ (wθ )pL,r (wr ),

(50)

where pG,θ (wθ ) and pL,θ (wθ ) are the Gaussian and Lapla-
cian distributions of azimuth with means ŵG,θ and ŵL,θ and
deviations σG,θ and σL,θ , respectively. In (50), pG,r (wr ) and
pL,r (wr ) are the Gaussian and Laplacian distributions of dis-
tance with means ŵG,r and ŵL,r and deviations σG,r and σL,r ,
respectively. ε is set to be 0.2, according to the conventional
glint noise model in [30].

B. EVALUATION
In our simulation, according to [30], the target tracking sce-
nario for each trajectory is simulated with the parameters set
in Table 2. Beside, the initial state for target tracking is set as
x0 = [5km, 2km, 0.18km/s, 0.26km/s]T. Beginning with
x0, our trajectories are simulated with the transition equation
of (41a), given different kinematic models of (51) and (43).
The simulation time is set to be 30s. Then, these trajectories
are observed by the conventional radar system (41b) with
glint noise. The distribution of glint noise is computed with
(47). Furthermore, our KE-RBPF and other algorithms are
used to track the target according to the observations, and the
tracking RMSE of azimuth and distance is obtained. Finally,
Figures 3 to 8 show the statistical results of our and other
algorithms over 100 MC runs, in terms of means, deviations
and CTE for different trajectories.
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TABLE 2. Parameters Setting.

FIGURE 3. Means of tracking RMSE on azimuth for different trajectories.
(a) CV trajectory. (b) CT trajectory with α = 2.5◦/s. (c) CT trajectory with
α = 5◦/s.

1) MEANS OF TRACKING RMSE FOR
DIFFERENT TRAJECTORIES
The means of tracking RMSE on azimuth and distance for
CV and CT trajectories are shown in Figures 3 and 4, respec-
tively. Obviously, we can see from these figures that the

FIGURE 4. Means of tracking RMSE on distance for different trajectories.
(a) CV trajectory. (b) CT trajectory with α = 2.5◦/s. (c) CT trajectory with
α = 5◦/s.

means of tracking RMSE on RBPF increase much faster
than other algorithms. This degradation of RBPF in tracking
performance verifies that the RBPF algorithm does not fit for
conventional radar tracking system of (41b), as the observa-
tion information on the linear part of target state is missing.
Among the remaining three algorithms, the means of tracking
RMSE of our KE-RBPF algorithm is the smallest after 10 sec-
onds. Specifically, the average means of RMSE after 10 sec-
onds of our and other algorithms are shown in Tables 3 and 4.
In these two tables, we can see that the average means
of RMSE of our KE-RBPF for azimuth tracking decrease
around 50% and 25%, in comparison with SPF and UPF
algorithms. Besides, for distance tracking, average means of
our KE-RBPF decrease around 37% and 19%, in comparison
with SPF and UPF algorithms. It can be thus concluded
that our KE-RBPF algorithm produces the best tracking
trajectories.
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TABLE 3. Average means of tracking RMSE for azimuth after 10 Second.

FIGURE 5. Deviations of tracking RMSE on azimuth for different
trajectories. (a) CV trajectory. (B) CT trajectory with α = 2.5◦/s.
(C) CT trajectory with α = 5◦/s.

2) DEVIATIONS OF TRACKING RMSE
FOR DIFFERENT TRAJECTORIES
The deviations of tracking RMSE on azimuth and distance
for CV and CT trajectories are shown in Figures 5 and 6.
From these figures, the performance of RBPF degrades very
fast as expected. In addition, the SPF cannot perform well
in comparison with UPF and our KE-RBPF. Although the
deviations of our KE-RBPF are larger than UPF algorithm

FIGURE 6. Deviations of tracking RMSE on distance for different
trajectories. (a) CV trajectory. (b) CT trajectory with α = 2.5◦/s.
(c) CT trajectory with α = 5◦/s.

before 15 second, they sharply decrease along with time,
and keep a similar level to UPF after 15 seconds. Specifi-
cally, the average deviations of RMSE after 15 seconds of
three algorithms, i.e., SPF, UPF and KE-RBPF, are shown
in Tables 5 and 6. In these two tables, we can see that the devi-
ations of our KE-RBPF and UPF algorithms are similar and
they are much smaller than those of SPF. Therefore, both our
KE-RBPF and UPF outperform the SPF on tracking stability.
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FIGURE 7. CTE of tracking RMSE on azimuth for different trajectories.
(a) CV trajectory. (b) CT trajectory with α = 2.5◦/s. (c) CT trajectory with
α = 5◦/s.

3) CTE OF TRACKING RMSE FOR DIFFERENT TRAJECTORIES
The CTE of tracking RMSE in 100 MC runs is investigated,
and the results are shown in Figures 7 and 8, respectively.
Obviously, the performance of RBPF still degradesmuch fast.
In the rest of three algorithms, our KE-RBPF outperforms
others after around 6 seconds. As of the discussed in [24],
the CTE reflects what the large majority of the data are about
and its measures are usually construed as representatives of
the data set. Hence, our KE-RBPF produces the best tracking
performance in comparison with other algorithms. Specifi-
cally, the average CTE of SPF, UPF andKE-RBPF algorithms
after 6 seconds are shown in Tables 7 and 8, further validating
the effectiveness of our KE-RBPF algorithm.

4) DISCUSSION ON THE KE-RBPF PERFORMANCE
WITH DIFFERENT ε
To investigate the relationship between the value of ε and
the performance of our method, we conduct a tracking

FIGURE 8. CTE of tracking RMSE on distance for different trajectories.
(a) CV trajectory. (b) CT trajectory with α = 2.5◦/s. (c) CT trajectory with
α = 5◦/s.

simulation, in which different ε is set to produce different
glint noises. The tracking model is constant turn (CT) model
with turn rate α = 2.5◦/s. For each ε, 100 MC simulations
are run with 30 s tracking time. The tracking performance,
in terms of means, deviations and CTE of tracking RMSE
for azimuth and distance, is reported in Table 9. In this table,
we can see that the performance of our KE-RBPF becomes
better when the value of ε decreases. In this paper, we set
up our simulation with ε = 0.2 for keeping consistency with
the previous works [30] in the practical application, but it
performs better with smaller ε.

5) SIMULATION ON TRACKING WITH
6 DIMENSIONAL SS MODEL
In this subsection, we extend the SS model to 6 dimension,
containing three-dimensional-Cartesian-coordinate values
and the corresponding velocities. Accordingly, we set the
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TABLE 4. Average means of tracking RMSE for distance after 10 second.

TABLE 5. Average deviations of tracking RMSE for azimuth after 15 second.

TABLE 6. Average deviations of tracking RMSE for distance after 15 second.

TABLE 7. Average CTE of tracking RMSE for azimuth after 6 second.

TABLE 8. Average CTE of tracking RMSE for distance after 6 second.

TABLE 9. Average tracking performance over the whole tracking time with all MC runs, in comparison with different values of ε.

target state xk in (41a) as xk = [dx,k , dy,k , dz,k vx,k ,
vy,k , vz,k ]T. It contains three dimensional distance
[dx,k , dy,k , dz,k ]T and velocity [vx,k , vy,k , vz,k ]T in the
x − y − z space at time step k . The transition matrix is set
to be

F =


1 0 0 sτ 0 0
0 1 0 0 sτ 0
0 0 1 0 0 sτ
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (51)

In (41a), vk−1 denotes the six dimensional state tran-
sition noise in distance and velocity, i.e., vk−1 =

[vd , vd , vd , vv, vv, vv]T. In addition, the observation
equation of (41b) is re-defined to be a three-dimensional-
spherical-coordinate equation as follows,

 θkrk
βk


︸ ︷︷ ︸

zk

=



arctan
dy,k
dx,k√

d2x,k + d
2
y,k

arctan
dz,k√

d2x,k + d
2
y,k


+

 wθ
wr
wβ


︸ ︷︷ ︸

w

, (52)
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where βk denotes the parameter of pitch in target state with
observation glint noise wβ . All parameters are set in Table 2.

FIGURE 9. Means of tracking RMSE on azimuth, distance and pitch with
error bars of 1/5 deviations. (a) Azimuth Tracking Performance.
(b) Distance Tracking Performance. (c) Pitch Tracking Performance.

In the aforementioned tracking scenario, we test our
KE-RBPF to track a target with constant velocity model in
the three dimensional space, comparing to SPF and UPF
algorithms. We simulate this tracking procedure over 100
MC runs. The tracking performance on the means is shown
in Figure 9, with the error bars of 1/5 deviations. From this
figure, we can see that our KE-RBPF yields the smallest
means of tracking RMSE in azimuth, distance and pitch,
in comparison with PF and UPF algorithms. Moreover, our
KE-RBPF yields the same deviation as the UPF algorithm,
which is better than SPF.

6) DISCUSSION ON COMPUTATIONAL COMPLEXITY
In the aforementioned statistical results, our KE-RBPF
produces the best performance on means and CTE, and
UPF performs best on deviations. Although the tracking

performance of UPF on deviation is best, the computational
time of UPF limits its application in real condition. In fact,
because of the extra computation of unscented Kalman filter-
ing for each particle at each time step [9], the time consump-
tion of UPF algorithm is lager than our KE-RBPF. To further
discuss the computational complexity, we have recorded the
computational time of one iteration in the simulation for all
aforementioned algorithms. Specially, the computer used for
the test is with Intel Core i7-3770 CPU at 3.4 GHz and
4 GB RAM. In our conventional radar tracking scenario,
the computational time of each iteration for all algorithms
is listed as: a) SPF, 28.4(ms); b) UPF, 87.5(ms); c) RBPF,
24.0(ms); d) KE-RBPF, 26.6(ms). Obviously, our KE-RBPF
is as fast as RBPF, and much faster than UPF which ranks the
best in tracking performance in terms of deviation among all
compared algorithms. In summary, our KE-RBPF algorithm
outperforms the other classic algorithms in nonlinear and
non-Gaussian radar tracking scenarios, and its computational
time is small as well. Since it is intractable to obtain the
field data in radar tracking, we follow [23] to set up our
simulation scenario, which is also the benchmark for radar
tracking simulation [1], [31]–[34].

V. CONCLUSIONS
In this paper, we have proposed a novel KE-RBPF algorithm
to track target with linear/nonlinear SS model. First, in the
conventional radar tracking scenarios, a gradual deviation
problem about tracking by original RBPF algorithm was
discussed. Then, a novel KE-RBPF algorithm was proposed
in light of the Kalman estimation framework. Based on this
framework, a new formulation on the correlation between
linear and nonlinear parts of target state was investigated.
Benefiting from this correlation, we solved the deviation
problem by correctly updating the linear part with the infor-
mation from nonlinear. Finally, the simulations verified that
our KE-RBPF algorithm improves the tracking performance
on nonlinear and non-Gaussian tracking scenarios.

There are three directions of the future works in our paper.
(1) In fact, our KE-RBPF utilizes the second order statistic
information (variances) of nonlinear part of target state to
update the linear part, by which we obtain a better track-
ing performance than original RBPF. Hence, a higher order
statistic information can be considered in the future to further
reduce the tracking error. (2) Our KE-RBPF estimates the
target state in the form of means and variances, which can
also be used as the tracking algorithm of sensor node for
distributed fusion network. This can be seen as a promising
future work. (3) Our KE-RBPF algorithm cannot obtain a
good tracking performance at the initial stage. Some pre-
processing methods may be combined with our KE-RBPF
for further improving the initial performance of our
algorithm.
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