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ABSTRACT This paper proposes a method for fusing multi-exposed images that can operate on digital
cameras or smartphones. The proposed method consists of an automatic exposure bracketing algorithm
that determines which exposures to capture and a newly proposed multi-exposure image fusion algorithm.
This fusion algorithm attempts to improve the fusion performance on the basis of the recently proposed
no-reference image-quality metrics, noting that the exposure change affects the change in the local luminance
details, contrast, and colorfulness of a pixel. Experimental results of various sample image sequences
show the superiority of the proposed fusion algorithm in terms of both objective and visual evaluations.
By using the proposed method, users can capture high-dynamic range images directly on digital cameras or
smartphones, without using offline image-processing software.

INDEX TERMS Multi-exposure image fusion, exposure bracketing, no-reference image quality metric,
digital camera, smartphone.

I. INTRODUCTION
When photographers take a picture that comprises shadows or
highlighted areas, they are faced with the challenge of setting
the appropriate exposure. Fortunately, modern digital cam-
eras and smartphones provide a high-dynamic range (HDR)
mode to resolve this problem by fusing multi-exposed images
of the same scene.

Figure 1 shows a typical operation ofHDRmode inmodern
digital cameras and smartphones [1]. Modern digital cameras
and smartphones provide their video-rate view-finding mode
for taking pictures. When the shutter is on for HDR imag-
ing, the HDR mode starts automatic exposure bracketing
(or HDR metering) operation to capture images using pre-
defined exposure settings. The exposure of an image may be
controlled by varying the camera’s exposure time and/or lens
aperture. Since varying the aperture affects the depth of field
between different captures, they normally perform exposure
bracketing by varying exposure time via the camera’s shutter
speed [1]. For fast processing, reduced-size images are used
for this operation. After the exposure bracketing operation,
full-size images corresponding to the selected exposure set-
tings are captured. Camera motion is aligned for the captured
images. Then, reduced-size multi-exposure image fusion is
performed for fast previewing. When the previewed fusion
result needs to be changed by the user’s decision, the aperture
is optionally adjusted by the user and the exposure brack-
eting is repeated with a different exposure range. Full-size

FIGURE 1. Typical operation of HDR mode in modern digital cameras and
smartphones.

multi-exposure image fusion is performed when the user
finally decides to save the fusion result.

Many effective methods for fusing multi-exposed images
have been proposed. For example, Debevec and Malik [2]
developed an empirical model for determining the aggregate
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mapping from scene radiance to pixel values. The authors
fuse a set of differently exposed images and recover the
HDR image whose pixel values are proportional to the true
radiance values. Shen et al. [3] reproduced the HDR scene
radiance in the way similar to the response of human visual
system (HVS) by an HDR image generation method based on
retinex theory. Robertson et al. [4] proposed a probabilistic
formulation of the response function of cameras. The authors
give themaximum likelihood solution of the HDR image for a
known camera response and discuss how the response func-
tion can be estimated from the unknown camera response.
Burt and Kolczynski [5] proposed a multi-purpose pyramid-
based image fusion, which uses the gradient pyramid trans-
form that can be used for fusing multi-exposed images.
Jinno and Okuda [6] estimated occlusion and saturation
regions by using maximum posteriori estimation and propose
an algorithm of the HDR estimation based on the Markov
random field model. Even though these methods have
shown satisfactory fusion results, because of their computing
cost, their usage without optimization for fast processing is
inhibitive for the implementation on state-of-the-art digital
cameras and smartphones.

Faster methods have been proposed in the literature on
the subject. Mertens et al. [7] developed a flexible pyramid-
based method by using a Laplacian decomposition of the
multi-exposed images and a Gaussian pyramid of the weight
maps representing measures of contrast, saturation, and well-
exposedness. Goshtasby [8] proposed a block-based method
for fusing multi-exposure images. His method partitions the
image into uniform blocks, selects the image showing the
most information for each block, and blends selected images
together using monotonically decreasing blending functions
centered at the blocks. Raman and Chaudhuri [9] designed a
fast edge-preserving bilateral filter for compositing of a scene
from images obtained through various exposure photographs.
Shen et al. [10] used a generalized random walks framework
for probabilistic model based fusion of multi-exposed images
achieving an optimal balance between local contrast and
color consistency. Gu et al. [11] noted that HVS is sensi-
tive to contrasts between pixel intensities, not the absolute
values. The authors propose the method fusing multi-
exposure images in the gradient field where the gradient
values of every pixel point are generated from maximizing
the structure tensor. Kao et al. [12] proposed an empirical fus-
ing method for multi-exposed images by detecting unstable
pixels. The authors have also employed the sum of abso-
lute difference of macro block for the camera motion
compensation. Jacobs et al. [13] designed a method con-
structing the HDR image by calculating a weighted average
of the irradiance values. The authors use the edge-based
camera alignment. Zhang and Cham [14] proposed a method
to handle the composition of multi-exposed images with
the guidance of visibility and consistency measures derived
from the gradient information. Li and Kang [15] proposed
a weighed sum based multi-exposure image fusion method
whose weight maps are initially measured by local contrast,

luminance, and color dissimilarity, and then refined by the
recursive edge-preserving smoothing filter.

In this paper, we propose a method for providing a novel
HDRmode on digital cameras or smartphones. The proposed
method attempts to include the following features:

1) The proposedmethod includes a newwell-exposedness
metric employed for fast processing. This new metric
is designed on the basis of the usage of the recently
proposed no-reference (NR) image quality assess-
ment (IQA) metrics. NR-IQA provides the absolute
score for the processed image itself without any ref-
erence. Therefore, NR-IQA metrics are very useful in
practical applications where the reference image is not
available, such as in the case of image fusion [16], [17].
Whereas the colorfulness attribute of image quality has
received much less attention in previously proposed
methods [2]–[15], we show that the exposure change
affects the change in the colorfulness of a pixel and
involve this attribute for the design of proposed metric.

2) The proposed method includes an automatic exposure
bracketing procedure. Although HDR imaging has a
long history, the literature on the subject [2]–[15] has
rarely addressed the automatic exposure bracketing
algorithm [1]. Comparedwith thewell-studied problem
of auto-focusing to find the best-focusing lens position,
the problem of exposure bracketing to determine the
priority of exposure settings for selecting input images
for the fusion has received much less attention. Based
on the knowledge that three types of standard search
algorithms have been adopted for auto-focusing: global
search, binary search, and rule-based search [18], [19],
we design an automatic exposure bracketing algorithm
using the proposed well-exposedness metric.

This paper is organized as follows. The proposed method
including the proposed well-exposedness metric and an auto-
matic exposure bracketing algorithm is described in Sect. II.
The experimental results are presented in Sect. III. Finally,
Sect. IV concludes the paper.

II. PROPOSED METHOD
A. PROPOSED WELL-EXPOSEDNESS METRIC
A previous study on human perception on image quality pro-
poses a number of attributes for IQA. These attributes include
overall luminance, contrast, sharpness, details, naturalness,
and colorfulness [16], [17], [20]–[24].Many researchers have
proposed NR-IQA metrics on the basis of these attributes
and investigated the effect of exposure change on these
attributes. Their results show that the exposure change affects
the change in the local luminance details, contrast, and col-
orfulness of a pixel [2]–[15], [25]. Therefore, in this paper,
simple metrics corresponding to these attributes are proposed
on the basis of the research results of previously proposed
NR-IQA metrics. For the metrics measuring each of the local
luminance details, contrast, and colorfulness attributes of a
pixel, the number of zero-crossings (ZC) [20], sum-modified
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Laplacian (SML) [26], and the colorfulness metric M̂ (3) pro-
posed by Hasler and Suesstrunk [22] are chosen, respectively.
All the proposedmetrics are chosen on the basis of their effec-
tiveness and possibility of fast calculation. The definitions of
the proposed metrics with notations are as follows:
Notations:
• X =

{
x(m, n)

}
, (m, n) ∈ � =

{
1 ≤ m ≤ M , 1 ≤

n ≤ N
}
:

An image where M and N denote the vertical and the
horizontal image sizes

• xr (m, n), xg(m, n), xb(m, n), and xy(m, n):
The red, green, blue, and luminance component of
x(m, n), respectively

• Bm,n:
The block centered at (m, n) whose size is 5× 5

Definitions:
• Number of zero-crossings:

ZCX (m, n)

= Number of vertical zero-crossings of xy(k, l) in Bm,n
+ Number of horizontal zero-crossings of xy(k, l) in Bm,n

• Sum-modified Laplacian:

SMLX (m, n)

=

∑
(k,l)∈Bm,n

{
| 2xy(k, l)− xy(k − 1, l)− xy(k + 1, l) |

+ | 2xy(k, l)− xy(k, l − 1)− xy(k, l + 1) |
}

• Colorfulness:

M̂ (3)
X (m, n) =

√
σ 2
rg + σ

2
yb + 0.3

√
µ2
rg + µ

2
yb

whereµrg, µyb, σ 2
rg, and σ

2
yb denote themean of xrg(k, l),

the mean of xyb(k, l), the variance of xrg(k, l), and the
variance of xyb(k, l), respectively, for (k, l) ∈ Bm,n, with
xrg(k, l) = xr (k, l)−xg(k, l) and xyb(k, l) = 1

2 [xr (k, l)+
xg(k, l)]− xb(k, l).

It is noted that ZC and SML are normally computed using
the luminance component. However, in some digital cameras,
RGB color coordinates are the default, so luminance must
be computed from the RGB colors. If this extra processing
becomes a critical burden for fast processing, using just the
green component, which is the largest contributor to lumi-
nance, provides sufficient information.

To demonstrate the effectiveness of proposed metrics, rela-
tive measurements of each metric for two differently exposed
images of the same scene are exemplified. Sample images
are shown in Fig. 2a, b. For each metric, measurements were
obtained for two images and scaled by the same scaling factor
for display. They are shown in Fig. 2c–h. It is shown that each
metric not only reflects the well-exposed regions reasonably
but also shows its own demerits. For example, ZC shows large
overlapped results of similar measurement in the boundary
area between a well-exposed region and a badly-exposed
region. SML is sensitive on edges and does not reflect the

well-exposedness in homogeneous regions. M̂ (3)
X measures

the well-exposedness on the basis of colorfulness, therefore,
its usage is prohibited in a grey area. In conclusion, no single
metric among the proposed metrics can reflect the well-
exposedness effectively.

This paper presents two simple and effective well-
exposedness metrics developed using a combination of the
aforementioned metrics. The first metric called the relative
well-exposedness (RWE) metric measures the relative well-
exposedness between two images. The second metric called
the absolute well-exposedness (AWE) metric measures the
well-exposedness of an image. When two images, namely
image 1 and image 2, are denoted by X (1)

=
{
x(1)(m, n)

}
and

X (2)
=
{
x(2)(m, n)

}
, respectively, the proposed RWE metric

of image 1 to image 2 at (m, n), denoted by RWE1:2(m, n),
is calculated as follows:

1) Three metrics: ZC , SML, and M̂ (3), are calculated for
image X (1) and X (2), respectively.

2) For eachmetric, themaximum andminimum values are
obtained for a set of two images.

3) By using these maximum and minimum values,
the measurement of each metric for image X (1) is
normalized.

4) RWE1:2(m, n) is obtained by summing the results of
three metrics.

It is noted that RWE2:1(m, n), may be obtained by
exchanging X (1) and X (2) in the above procedure.
Figures 2i and 2j show RWE1:2(m, n) and RWE2:1(m, n),
respectively. Compared to the individual metrics shown in
Fig. 2c–h, RWE1:2(m, n) and RWE2:1(m, n) show consider-
ably improved well-exposedness. Similarly, the proposed
AWE metric of image 1 at (m, n), denoted by AWE1(m, n),
is calculated as follows:

1) Three metrics: ZC , SML, and M̂ (3), are calculated for
image X (1).

2) For eachmetric, themaximum andminimum values are
obtained for image X (1).

3) By using these maximum and minimum values,
the measurement of each metric for image X (1) is
normalized.

4) AWE1(m, n) is obtained by summing the results of three
metrics.

B. PROPOSED AUTOMATIC EXPOSURE
BRACKETING ALGORITHM
The goal of automatic exposure bracketing process is to select
the optimal input images for fusion among a sequence of
images obtained by increasing or decreasing the exposure
step (ES). This process needs to determine how many input
images and what values of ES settings are optimal for the best
fusion result. When a larger number of input images are used,
a better fusion result is expected but a higher computing cost
is demanded. Therefore, the number of input images is chosen
as the maximum number of image satisfying the limitation
of the user’s allowable fusion time on a dedicated hardware
platform.
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FIGURE 2. Relative measurements of proposed metrics: (a) sample image
X (1) =

{
x (1)(m, n)

}
, (b) sample image X (2) =

{
x (2)(m, n)

}
, (c) ZC

X (1) (m, n),

(d) ZC
X (2) (m, n), (e) SML

X (1) (m, n), (f) SML
X (2) (m, n), (g) M̂(3)

X (1) (m, n), (h) M̂(3)
X (2) (m, n),

(i) RWE1:2(m, n), and (j) RWE2:1(m, n).

When the number of input images is fixed, the optimal
ESs for capturing input images are determined on the basis
of the AWE. The ith exposed image is denoted X (i)

={
x(i)(m, n)

}
, i = 1, 2, . . . , I, and the well-exposedness change

(WEC) of X (i) is calculated as follow:

WEC(i)

=

∑
(m,n)∈�

[AWE(i−1)(m, n)AWEi(m, n)AWE(i+1)(m, n)].

(1)

Figure 3a shows a graph of WEC for a sample sequence of
multi-exposed images. The images corresponding to several
critical peaks are shown in Fig. 3b. It is shown that the WEC
generates peaks reasonably.

Three types of standard search algorithms, namely
global search (GS), binary search (BS), and rule-based
search (RS) [18], [19], have been proposed for finding peaks
in a graph such as WEC graphs. GS scans the entire range by
eliminating any possibility of falsely obtaining a local peak
but demands the highest computing cost. BS uses a divide
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FIGURE 3. Measurements of WEC for a sequence of multi-exposed
images: (a) measurements and (b) images corresponding to peaks.

and conquer algorithm that is faster than GS but requires
frequent changes in the search direction to reach the local
peak positions. RS scans the search range in a sequential
manner in one direction by classifying the search range into
four types, namely initial, fine, mid, and coarse, and changing
the step size increments on the basis of the type of search
range. RS is adopted in this paper for finding peaks because
RS is known to reduce the number of iteration to about 40 %
of the GS and be faster than BS for graphs similar to WEC
graphs [19], [27].

Once all the local peaks are found, a predefined number
of exposures are selected for fusion. The selection rule with
notations is as follow:
Notations:

• k: Index for the k th ES searched during the RS process
• p: Index for the pth peak found during the RS process
• Num_p: Total number of peaks as the result of RS
• MAX_EV : Predefined maximum number of allowable
selected ESs

Rule:

• Case 1 : Num_p ≥ MAX_EV

1) The global peak is chosen as the first selected ES.
2) The next ranked ES is selected by the following

score:

Score(p) =
WEC(p)
GHeight

+
StepD(p)
ERange

where Score(p), WEC(p), GHeight, StepD(p), and
ERange are the score of the pth peak, the height
of the pth peak, the height of the global peak, the
ES distance from the pth peak to the nearest pre-
selected ES, and the total ES range, respectively.

3) This selecting procedure continues until the num-
ber of selected ESs reachesMAX_EV .

• Case 2: Num_p < MAX_EV
1) All the local peaks are chosen as the selected ES.
2) The next ranked ES is selected by the following

score:

Score(k) =
WEC(k)
GHeight

+
StepD(k)
ERange

where Score(k), WEC(k), and StepD(k) are the
score of the k th ES, the height of the k th ES, and
the ES distance from the k th ES to the nearest pre-
selected ES, respectively.

3) This selecting procedure continues until the num-
ber of selected ESs reachesMAX_EV.

C. PROPOSED MULTI-EXPOSURE IMAGE FUSION RULE
Two types of standard fusion rules, namely weighted-sum-
based rule and selection-based rule, have been adopted for
image fusion [25]. However, previous research shows that
rules have their own demerits. The former rule loses details
and sharpness in homogeneous regions and transition regions
between two differently exposed regions, respectively. The
latter rule is highly sensitive to noise and results in disconti-
nuities between two differently exposed regions [25], [28].
Furthermore, in case of fusing two differently exposed
images with a high luminance difference, both rules typically
show overall luminance discontinuities annoying human eyes
between differently weighted or selected pixels.

To resolve these problems, this paper proposes a fusion
rule which has the combined form of two standard rules
with luminance compensation. The fusion is performed in
the YCbCr color coordinate. Denoting the Y, Cb, and Cr
component of an image x(m, n) by xy(m, n), xCb(m, n), and
xCr (m, n), respectively, and the resulting image of fusing
two images X (1) and X (2) by X (1&2)

=
{
x(1&2)(m, n)

}
, the

following fusion rule is applied for compensating luminance
discontinuities, as shown at the top of the next page, where
λ denotes the threshold value that determines the balance
between the selection-based and the weighted-sum-based
fusion rules. It is noted that we use the weighted-sum-
based fusion rule for all Y, Cb, and Cr components when
the difference between RWE1:2(m, n) and RWE2:1(m, n) is
small. We use the selection-based fusion rule for Cb and
Cr components when the difference between RWE1:2(m, n)
and RWE2:1(m, n) is large. In this case, we also use the
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1) x(1&2)
y (m, n) =

RWE1:2(m, n)x
(1)
y (m, n)+ RWE2:1(m, n)x

(2)
y (m, n)

RWE1:2(m, n)+ RWE2:1(m, n)
,

x(1&2)
Cb (m, n) =

RWE1:2(m, n)x
(1)
Cb (m, n)+ RWE2:1(m, n)x

(2)
Cb (m, n)

RWE1:2(m, n)+ RWE2:1(m, n)
, and

x(1&2)
Cr (m, n) =

RWE1:2(m, n)x
(1)
Cr (m, n)+ RWE2:1(m, n)x

(2)
Cr (m, n)

RWE1:2(m, n)+ RWE2:1(m, n)
,

if RWE1:2(m, n)/RWE2:1(m, n) < λ and
RWE2:1(m, n)/RWE1:2(m, n) < λ;

2) x(1&2)
y (m, n) =

log(1+ RWE1:2(m, n))x
(1)
y (m, n)+ log(1+ RWE2:1(m, n))x

(2)
y (m, n)

log(1+ RWE1:2(m, n))+ log(1+ RWE2:1(m, n))
,

if RWE1:2(m, n)/RWE2:1(m, n) > λ or RWE2:1(m, n)/RWE1:2(m, n) > λ ;

3) x(1&2)
Cb (m, n) = x(1)Cb (m, n) and x

(1&2)
Cr (m, n) = x(1)Cr (m, n) ,

if RWE1:2(m, n)/RWE2:1(m, n) > λ ;

4) X (1&2)
Cb (m, n) = x(2)Cb (m, n) and x

(1&2)
Cr (m, n) = x(2)Cr (m, n) ,

if RWE2:1(m, n)/RWE1:2(m, n) > λ

logarithmic-scaled weighted-sum-based fusion rule for
Y component to compensate luminance discontinuities.

When the number of multi-exposed images is greater than
two, this fusion rule is applied recursively, as follows:

1) Given multi-exposed images X (l)
=
{
x(l)(m, n)

}
, l = 1,

2, . . . , L, set s = 1.
2) Using the above fusion rule, obtain X (s&(s+1)) and save

the result as X (s+1).
3) Obtain X (L−s+1)&(L−s)) and save the result as X (L−s).
4) Repeat steps 2) and 3) by increasing s until all the input

images are involved.
5) Declare the last resulting image as the final fusion

result.

III. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The performance of the proposed method was evaluated on
a digital camera platform powered by a quad-core 2.1-GHz
CPU and 3-GB RAM, which provides a software devel-
opment kit. The camera module installed in this platform
consists of 1/2.8-inch CMOS image sensor and a 20× zoom
lens. For fast processing of exposure bracketing and preview-
ing the fused image, video graphics array (VGA) resolution
(640 × 480) images were used. For fusing full-size images,
full high-definition (FHD) resolution (1920 × 1080) images
were used.

The time for exposure bracketing is affected by the number
of ESs selected during the RS process, the shutter speed
corresponding to each selected ES, the lag time to change
exposure from one ES to another ES, and the time for calcu-
lating WEC. The platform used in the experiment provides
a shutter speed ranging from 0.3 × 10−4s to 1s and an
f-number from 1.6 to 25.6, to set the exposure time and the
lens aperture, respectively. Themaximum lag time of the used
camera to change exposure is 50 ms. For this experiment, the
f-number was set to 2.3 and the range of shutter speed was set

from 0.5 × 10−1s to 0.25 × 10−2s. The computing time
of Eq. (1) for the WEC used for bracketing was almost
negligible as compared to the lag time. Therefore, the number
of ESs to be searched within the search range was set on the
basis of the lag time, shutter speed, average number of ESs
skipped by the RS process, and user-defined allowable time
for bracketing. The number of ESs to be searched was chosen
to limit bracketing times to less than 1 s. In the platform used,
this corresponded to 50 ESs as shown in Fig. 3a.
The time for fusing multi-exposed VGA and FHD images

for previewing and saving, respectively, is dependent on
the number of input images captured with exposure set-
tings resulting from the bracketing procedure. The predefined
number of selected peaks in the exposure-bracketing algo-
rithmwas chosen to be four in order to satisfy the requirement
that the fusion time for VGA images and FHD images be less
than 1 s and 4 s, respectively.
Image alignment by enhanced correlation coeffic-

ient (ECC) maximization [29] was performed following
the exposure-bracketing procedure. The ECC algorithm was
chosen because it is fast, well-known, and widely used in a
wide range of applications, such as image registration, object
tracking, super-resolution, and visual surveillance by moving
cameras.
The size of block Bm,n was set to 5 × 5. Larger sizes may

give a better result, but at the expense of increased com-
plexity. Experiments on various test image sequences showed
that larger block sizes negligibly improved image quality.
The threshold value λ for the fusion rule was experimentally
chosen as 1.4 to achieve the best result on both objective and
visual tests for multi-exposed sample image sequences used
in the experiment.
Five sample image sequences were used to test the

proposed method’s performance. They include indoor and
outdoor multi-exposed image sequences including at least
two critical exposures. For presentation purpose, the VGA
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FIGURE 4. Images selected for fusion from sample image sequences.

images selected by the proposed exposure bracketing algo-
rithm are shown for each sequence in Fig. 4.

B. FUSION RESULTS
Based on a thorough review of previously proposed multi-
exposure image fusion methods, two commercialized meth-
ods, namely ‘‘P’’ [30] and ‘‘H’’ [31], and Li and Kang’s
method [15] abbreviated as ‘‘LK’’ in this paper, were selected
for performance comparison. ‘‘P’’ and ‘‘H’’ were selected
because they are well-known offline software in the industrial
field of multi-exposure image fusion. For the implementation
of ‘‘P’’ and ‘‘H’’, the most recently released programs were
used. ‘‘P’’ and ‘‘H’’ provide several options for adjusting
the fused image quality on the basis of the user preferences.
In this paper’s experiment, default values were set for these
options. ‘‘LK’’ was selected because it shows the best sets
of objective results among the methods that are sufficiently
fast to be implemented on state-of-the-art digital cameras.
For the implementation of ‘‘LK’’, the authors’ providing
program was used. Unfortunately, ‘‘P’’, ‘‘H’’, and ‘‘LK’’ do
not provide an exposure bracketing operation. Therefore, for
comparisons of image quality, four images selected by the
exposure bracketing algorithm proposed in this paper were
used as the input images for the fusion of compared methods.

The mutual information-based quality metric MFXY [32]
proposed by Hossny et al. was used for the objective test
because it is the metric that can be used for the case of fusing

TABLE 1. MX (L)
F comparisons with other methods.

more than two input images and is the most widely used
metric in the recently published papers. MFXY , which was
originally proposed for the case of fusing two input images,
is extended for the case of fusing more than two input images,
X (l), l = 1, 2, . . . , L, as follow:

MX (L)

F =

L∑
l=1

2I (F,X (l))
H (F)+ H (X (l))

, (2)

where F denotes the fused image; I (F,X (l)) represents
the mutual information between F and X (l); H (F) and
H (X (l)) indicates the entropy of F and X (l), respectively;
and L denotes the number of input images. The values of
MX (L)

F for both VGA and FHD images are listed in Table 1.
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FIGURE 5. Fused VGA images using ‘‘P,’’ ‘‘H,’’ ‘‘LK,’’ and the proposed method.

A larger value corresponds to better performance. Therefore,
the proposedmethod can be considered superior based on this
metric.

For a visual test of the global aspect of fused images,
VGA images fused by using the comparedmethods are shown
in Fig. 5. Each method shows a slightly different overall
luminance depending on the sample image sequences. It is
observed that the most distinct characteristic of the proposed
method is colorfulness. This result may be attributed to the
fact that all the other methods perform their fusions mainly
on the basis of the luminance component only, whereas the
proposed method considers colorfulness as one of the key
features for its fusion.

Previous research shows that performance differences are
typically clarified in textured regions, homogeneous regions,
edge regions, and adjacent regions between underexposed
and overexposed regions. Thus, for a visual test of the local
aspect of fused images, portions of each fused FHD image
including these types of regions were selected, enlarged,
and shown in Fig. 6. Further, visual difference in textured
regions or homogeneous regions located inside a foreground
or a background is hardly distinguishable for the compared

TABLE 2. Comparison of execution times (s).

methods. However, the most distinguishing result is observed
near the strong edge regions between a foreground and a
background as indicated by arrows in Fig. 6. The proposed
method alse shows the least distortion.

Besides the quality of fused images, the computing effi-
ciency is an important factor for implementing a fusion
algorithm. Table 2 shows the average execution times for
both VGA and FHD image fusion on the digital camera
platform used in the experiment. As shown in the table, the
execution time of the proposed method was lower than that
of other methods for VGA images. However, in the case
of FHD images, ‘‘P’’ was faster than the proposed method.
The execution time of the proposed method is approxi-
mately proportional to the size of the input images. Thus, the
computing efficiency of ‘‘P’’ increases to be higher than that
of the proposed method as the size of input images increases.
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FIGURE 6. Enlarged parts of fused FHD images using ‘‘P,’’ ‘‘H,’’ ‘‘LK,’’ and the proposed method.

IV. CONCLUSION
In this paper, we proposed a fast method for fusing multi-
exposed images that can be implemented in digital cam-
eras and smartphones. Two new well-exposedness metrics,
namely RWE and AWE, were proposed. The exposure brack-
eting algorithm using AWE was implemented for VGA-
size image sequences. Further, multi-exposure image fusion
method using RWE was proposed. The proposed fusion
method outperformed previously published methods for con-
structing VGA and FHD HDR images for several criti-
cal image sequences in both visual and objective tests of
quality.

The proposed method works for still images. Future
research will be focused on extending this method for multi-
exposure video fusion.
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