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ABSTRACT The wireless energy transfer, which is a promising technology for the wireless sensor net-
works (WSNs), can efficiently solve the energy scarcity that results from the application boosting. However,
not only the energy scarcity, but also the quality of service (QoS) guarantees need to be taken into account
for the WSNs. Different types of applications in the WSNs impose the new challenge on heterogeneous QoS
provisioning for the WSNs. To solve the above problem, in this paper, we develop the joint downlink energy
assignment and uplink power control scheme with the heterogeneous statistical QoS provisioning (HeP) for
wireless powered sensor networks (WPSNs). In particular, we build up the HeP model, where the aggregate
effective capacity (AEC) is defined as the aggregate throughput under the statistical QoS constraints for the
WPSNs. Based on the mode, we formulate the AEC maximization problems for uniformed time division
and dynamic time allocation scenarios, respectively. For the uniformed time division scenario, we divide
the AEC maximization problem into the hybrid access point determined downlink energy assignment
problem and the sensor node determined uplink power control problem. Then, we solve these problems
and obtain the corresponding closed-form solutions. For the dynamic time allocation scenario, we develop
the joint time allocation, downlink energy assignment, and uplink power control scheme to maximize the
AEC and iteratively derive the scheme. Extensive simulations are conducted to demonstrate the effect of
heterogeneous statistical QoS on our developed resource allocation schemes for WPSNs. The results show
that the HeP resource allocation schemes are superior to the schemes with homogeneous statistical QoS
guarantees.

INDEX TERMS Wireless powered sensor networks, heterogeneous statistical QoS, effective capacity, power
allocation, time allocation.

I. INTRODUCTION
Wireless Sensor Network (WSN) is very attractive for wire-
less communications due to its various applications, i.e.,
regional monitoring, medical observation, industrial process
control, military surveillance, etc [1]. A WSN consists of
a large number of spatially distributed sensor nodes (SNs)
with low-power, computational and sensing capabilities. The
distributed SNs can monitor the environment phenomena and
cooperatively transmit their data to an access point (AP)
or base station (BS) [2], [3]. Traditionally, the SNs are
powered by non-rechargeable batteries with finite battery
capacity. However, the finite battery capacity of SNs limits
the applications boosting, which causes the energy scarcity,
in WSNs [4]–[7]. The energy scarcity is a critical prob-
lem that holds back the further popularity and development

of WSNs. Energy harvesting emerges as a promising solution
to provide everlasting energy supply by enabling SNs to har-
vest energy from the ambient energy sources, i.e., solar, ther-
moelectric generator, vibration absorption device, etc [3]–[5].
However, the energy harvesting from the natural sources is an
intermittent and uncontrollable process. In order to maintain
reliable energy harvesting based communications for WSNs,
dedicated radio frequency (RF) radiation is used as energy
supply for SNs, which is known as wireless energy transfer
(WET) [8]–[12]. The WSNs powered by wireless transferred
energy from energy sources is referred to as the wireless
powered sensor networks (WPSNs) [13], [14].

The application boosting in WSNs not only brings the
problem of energy scarcity, but also imposes the new chal-
lenge on quality of service (QoS) provisioning. A great
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deal of existing works focused on the QoS guarantees for
WPSNs [10], [15]–[17]. The authors of [10] proposed the
energy efficiency maximization problem by jointly optimiz-
ing time allocation and power control subject to the min-
imum system throughput requirement. The authors of [15]
jointly optimized the power allocation and time switching to
minimize the average power consumption while satisfying
the minimum signal to interference plus noise ratio (SINR)
requirements. The authors of [16] maximized the throughput
for wireless powered underground sensor networks while
taking into account the communication reliability and data
traffic demands. However, the delay-bounded QoS, which is
urgently required by various WPSN applications, is not taken
into account in these works. In [17], the authors proposed
an optimal power control policy with the QoS constraints
of delay and packet loss rate, where the delay requirement
is supposed to be deterministic. For 5G wireless powered
communications networks, statistical QoS guarantee is more
practical than the deterministic QoS provisioning [18]–[20].

Combing statistical QoS provisioning principle with infor-
mation theory, Wu and Negi [21] proposed the effective
capacity (EC) concept, which refers to the maximum constant
arrival rate that can be supported by the service rate under
specified delay-bounded QoS requirement. Many efforts
have been made on maximizing EC [19], [20], [22], [23].
However, to the best of our knowledge, no work has consid-
ered the statistical QoS guarantees for WPSNs. In practice,
the boosting applications in WPSNs need various delay-
sensitive services. The various QoS requirements for different
types of service thus promote the diverse delay-bounded
QoS guarantees among different uplinks, which correspond
to the heterogeneous statistical QoS provisioning (HeP)
for WPSNs. Some researchers have considered supporting
HeP [18], [24], [25]. The magazine papers [18] proposed
the concept of HeP for wireless communications networks.
In [24], the authors optimized the power allocation scheme
while guaranteeing the downlink HeP. In [25], the authors
jointly optimized the uplink power and downlink bandwidth
allocation scheme tomaximize the EC for the uplink informa-
tion transmission. However, for WPSNs, not only the power
allocation, but also the wireless transferred energy assign-
ment and uplink/downlink time allocation need to be taken
into account while guaranteeing the HeP [9]–[12].

To remedy the aforementioned deficiencies, in this paper
we propose the joint downlink energy assignment and uplink
power control schemes with HeP for WPSNs. In particular,
we consider a network model where downlink transferred
energy are emitted by a hybrid access point (HAP) to replen-
ish SNs and enable the uplink information transmission back
to the HAP. First, we build up the downlink energy transfer
and the uplink information transmissionmodels, respectively.
To support the HeP for uplink information transmission,
we give the aggregate effective capacity (AEC), which is
defined as the aggregate throughput under the delay-bounded
QoS constraints. Then, based on our proposed system model,
we address the uplink AEC maximization problems under

the uniformed time division and dynamic time allocation
scenarios, respectively. For uniformed time division scenario,
the HAP makes the energy assignment for each downlink
based on uplink QoS requirements while the SNs allocate the
uplink transmit power based on the QoS requirements, the
instantaneous channel state information (CSI), and the energy
assigned by the HAP, which yields the optimal joint down-
link energy assignment and uplink information transmission
power control scheme. For dynamic time allocation sce-
nario, we develop the joint time allocation, downlink energy
assignment, and uplink power control scheme. To derive
this scheme, we propose the iterative algorithm based on
Lagrange-Dual method and subgradient algorithm. Finally,
we conduct extensive numerical simulations to demonstrate
the effect of heterogeneous statistical QoS requirements on
our proposed resource allocation schemes and compare the
HeP resource allocation schemes with the schemes under
homogeneous statistical QoS provisioning (HoP).

The remainder of this paper is organized as follows.
Section II presents the system model for WPSNs, including
the downlink wireless energy transfer and uplink informa-
tion transmission models, and introduces some preliminaries
about HeP and AEC. Section III optimizes the joint downlink
energy assignment and uplink power control scheme to maxi-
mize the AEC under uniformed time division. Section IV for-
mulates the AEC maximization problem with dynamic time
allocation and iteratively derive the optimal joint time alloca-
tion, downlink energy assignment, and uplink power control
scheme. Section V simulates and evaluates our developed
heterogeneous QoS guaranteed resource allocation schemes
for WPSNs. Section VI concludes the paper.

II. THE SYSTEM MODEL
We consider the WPSN model, as shown in Fig. 1, where
there is one hybrid access point (HAP) and N wireless sensor
nodes (SNs), denoted by SNi (1 ≤ i ≤ N ), respectively.
As shown in Fig. 1, each SN senses the environment and
sends the collected data information on the orthogonal fre-
quency division multiple access (OFDMA) subchannels to
the HAP while the HAP plays the role of downlink energy
transferring and uplink information receiving. The SNs need
to harvest energy from the received signals radiated by the
HAP in the downlink and store the harvested energy in
a rechargeable battery for uplink information transmission.
This kind of ‘‘harvest-then-transmit’’ protocol is popular used
in existing works [10], [26], [27].

The downlink and uplink channels are quasi-static chan-
nels, where the channel gains are unchanged during a frame
but vary independently from frame to frame [28]. For a frame
duration, denoted by T , the wireless energy transfer (WET)
phase occupies the first τiT (0 < τi < 1) of a frame, during
which the HAP transfers energy to SNi, and the remaining
(1 − τi)T of a frame is used to transmit information for
SNi, which corresponds the wireless information transfer
(WIT) phase [10], [26], [27]. We assume that the CSI of both
downlink and uplink can be efficiently estimated and reliably
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FIGURE 1. The wireless powered sensor network model with
heterogenous QoS provisioning.

transmitted to the HAP and SNs [29], respectively. Each
uplink corresponds to a delay-bounded QoS exponent
required by the service. Based on the QoS exponents required
by the uplink service and the instantaneous CSI fed back
from the HAP, the SNs optimize the information transmis-
sion power allocation to maximize the uplink throughput.
Meanwhile, according to the uplink QoS exponents, the HAP
allocates the energy and transfers it to each SN to coordi-
nate the uplink throughput. The entire uplink throughput of
WPSNs can thus be maximized by joint downlink energy
assignment and uplink power allocation. The Nakagami-m
fading channel model is employed for the uplinks [23]. We
denote by γ the instantaneous channel signal-to-noise ratio
(SNR). The probability density function (PDF) of γ , denoted
by p0(γ ), is given as follows:

p0(γ ) =
γm−1

0(m)

(
m
γ

)m
exp

(
−
m
γ
γ

)
, γ ≥ 0, (1)

where 0(·) represents the Gamma function, m is the
Nakagami-m distribution parameter, and γ denotes the aver-
age SNR.

A. THE DOWNLINK WIRELESS ENERGY TRANSFER
In the downlink, the HAP transfers energy for SNs to prolong
the lifetime of WSNs. Let us denote by Ei (1 ≤ i ≤ N ) and
Etot the energy transferred to SNi and the total energy at HAP
available to be transferred to SNs, respectively. Then, we have

N∑
i=1

Ei ≤ Etot. (2)

The energy harvested from received noise is assumed to be
negligible since the power of noise is much smaller than the

received signal power [10], [26]. The received power for SNi,
denoted by Pr,i, can be formulated as follows [11], [27]:

Pr,i = EiτiTK‖di‖−`, (3)

where K represents the average channel loss coefficient,
‖di‖ is the SNi-to-HAP distance, and ` denotes the path-loss
exponent. We denote by Pi the uplink transmission power for
SNi. Then, the average power of Pi needs to satisfy

Eγi [(1− τi)Pi] ≤ ηEiτiK‖di‖
−`,∀i, (4)

where γi is the instantaneous channel SNR for ith uplink,
Eγi [·] is the expectation over γi, and η ∈ [0, 1] is the power
splitting factor.

B. THE UPLINK INFORMATION TRANSMISSION WITH HeP
In WPSNs, each SN senses the environment and transmits
the collected information to the HAP, forming the uplink
data transmission. Different SNs bring different services with
various delay-bounded QoS requirements, which promote the
needs of HeP for WPSNs. Based on the large derivation
principle (LDP), Chang [30] showed that for a stationary
and ergodic queuing system, the queue length Q(t) (t ≥ 0)
converges in distribution to a finite random variable Q(∞)
satisfying that

− lim
x→∞

log Pr(Q(∞) ≥ x)
x

= θ, (5)

which indicates that the probability of the queue length
exceeding the queue length bound x decays exponentially as
the bound x increases. The parameter θ (θ > 0), which is
called QoS exponent [21], [22], represents the exponential
decay rate dominated by the queue length bound. A large
θ indicates that a stringent QoS demand is supported. In con-
trast, a small θ means that the system can provide a loose QoS
requirement [31].

In this paper, we aim to maximize the entire uplink data
transmission throughput under the heterogenous QoS con-
straints for WPSNs. Let us denote by θ = [θ1, θ2, . . . , θN ]
the heterogeneous QoS exponents for WPSNs, where θi (1 ≤
i ≤ N ) is the QoS exponent corresponds to the ith uplink.
We define {Ri[t], t = 1, 2, . . .} as the instantaneous data rate,
where t is the time index. Consider a stationary and ergodic
service process Si[u] ,

∑u
t=1 Ri[t], which is the partial sum

of instantaneous data rate. We assume that

3C (θi) = lim
u→∞

(1/u) log(E{e−θiSi[u]}), (6)

exists for all θi ≥ 0. Then, we can define effective capacity
(EC) for SNi, denoted by EC (θi), as follows [21]:

EC (θi) , −
3C (−θi)

θi
= −

1
θi
log

(
E
{
e−θiRi[t]

})
, (7)

where E[·] is the expectation operation. We denote by B the
bandwidth for each uplink. Then, Ri[t] can be derived as
follows:

Ri[t] = (1− τi)TB log2(1+ Pi[t]γi[t]). (8)
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To simplify the expression, we omit the index t in the follow-
ing. Substituting Eq. (8) into Eq. (7), the EC for the ith uplink
can be rewritten as follows:

EC (θi) = −
1
θi
log

(
Eγi

{
e−θi(1−τi)TB log2(1+Piγi)

})
. (9)

For the uplinks in WPSNs, the aggregate effective capacity
(AEC), denoted by ẼC , is defined as the sum of effective
capacities for all uplinks. Based on Eq. (9), the AEC can be
derived as follows:

ẼC (θ ) =
N∑
i=1

−
1
θi
log

(
Eγi

{
(1+ Piγi)−(1−τi)βi

})
, (10)

where βi , (θiTf B/ log 2) is the normalized QoS exponent
for SNi.

Even though the function of effective capacity specified by
Eq. (7) is convex [32], the aggregation of effective capacities
with heterogenous statistical QoS requirements is nonconvex.
However, there exists a unique real-valued number θ0 ∈
[θmin, θmax], where θmin , min{θ1, θ2, . . . , θN } and θmax ,
max{θ1, θ2, . . . , θN }, such that the following equation holds
[24]:

ẼC (θ ) =
N∑
i=1

−
1
θi
log

(
Eγi

{
(1+ Piγi)−(1−τi)βi

})
= −

1
θ0

N∑
i=1

log
(
Eγi

{
(1+ Piγi)−(1−τi)βi

})
. (11)

Equation (11) is a simple expression of AEC specified in
Eq. (10) and it is clearly a convex function.

To optimize the resource allocation supporting statistical
QoS requirements for WPSNs, in the following, we formu-
late and resolve the AEC maximization problems for uni-
formed time division and dynamic time allocation scenarios,
respectively.

III. HETEROGENEOUS QoS GUARANTEED RESOURCE
ALLOCATION FOR UNIFORMED TIME DIVISION
In this section, we jointly optimize the heterogeneous statisti-
cal QoS guaranteed downlink energy assignment and uplink
power control scheme under uniformed time division for
WPSNs. We set τi (1 ≤ i ≤ N ) are equal to τ0, which is
defined as the uniformed time division factor. To find the
insights of the relationship among τ0, the downlink energy
assignment, and the uplink power control, we formulate the
AEC maximization problem, denoted by P1, as follows:

P1: arg max
(Ei,Pi):
1≤i≤N

{
−

1
θ0

N∑
i=1

log
(
Eγi

{
(1+ Piγi)−(1−τ0)βi

})}
s.t. : 1). Eγi [(1− τ0)Pi] ≤ ητ0EiK‖di‖

−`, ∀i; (12)

2).
N∑
i=1

Ei ≤ Etot; (13)

3). Ei ≥ 0,Pi ≥ 0,∀i. (14)

Observing problem P1, we find that the objective function
of problem P1 is a sum of logarithmic functions and the
constraints specified by Eqs. (12)-(14) are all linear. Thus, the
optimization problem P1 is convex. Due to the independence
across all uplinks, problem P1 can be equivalently rewritten
as follows:

P1′: arg min
(Ei,Pi):
1≤i≤N

{
Eγ

[
N∏
i=1

(1+ Piγi)−(1−τ0)βi
]}

subject to Eqs. (12)-(14), where γ , (γ1, γ2, . . . , γN ) is the
overall channel SNR in WPSNs.

Even though problem P1 is simplified to problem P1′,
it is hard to obtain the closed-form solutions by solving
problem P1′ with Karush-Kuhn-Tucker (KKT) conditions.
Alternatively, another efficient way is needed to solve prob-
lem P1′. Notice that Ei and Pi are the decision variables
of problem P1′. Thus, the optimal solutions contain the
SN-determined optimal uplink power control scheme and
the HAP-determined downlink energy assignment scheme.
This implies that SNs determine the uplink data transmission
power control scheme while the HAP allocates the wireless
energy to be transferred to each SN. Then, first, we derive the
uplink power control scheme of a single SN. Based on the
uplink power control scheme, the downlink energy assign-
ment scheme can be obtained, which yields the joint downlink
energy assignment and uplink power control scheme.

A. THE UPLINK POWER CONTROL SCHEME
In this subsection, we develop the uplink information trans-
mission power control scheme for a single SN. First, we
formulate the uplink EC maximization problem, denoted by
P2, as follows:

P2: arg max
Pi:1≤i≤N

{
−

1
θi
log

(
Eγi

{
(1+ Piγi)−(1−τ0)βi

})}
s.t. : 1). Eγi [(1− τ0)Pi] ≤ ητ0EiK‖di‖

−`, ∀i; (15)

2). Pi ≥ 0,∀i. (16)

Problem P2 is a convex optimization problem with respect
to Pi for the given Ei. We denote by P∗i and E∗i the optimal
values for Pi and Ei. Then, we can derive the optimal solution
of problem P2, which shows the relationship between P∗i and
E∗i in the following Lemma 1.
Lemma 1: The optimal solution for problem P2 is given

by

P∗i =


(τ0E∗i )

1
(1−τ0)βi+1

(γ̂i)
1

(1−τ0)βi+1 γ

(1−τ0)βi
(1−τ0)βi+1

i

−
1
γi
, γi ≥ γ̂i;

0, γi < γ̂i,

(17)

where γ̂i corresponds to the SNR threshold and can be
obtained by plugging Eq. (17) into the equation Eγi [(1 −
τ0)Pi] = ητ0EiK‖di‖−`.
Proof: Please refer to Appendix A. �
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Lemma 1 gives the optimal uplink power control scheme
under the given downlink assignment. The optimal downlink
energy assignment is dominated by the HAP. Next, we study
the downlink energy assignment based on the uplink power
control scheme of a single SN.

B. THE JOINT DOWNLINK ENERGY ASSIGNMENT AND
UPLINK POWER CONTROL SCHEME
For the assigned energy by the HAP, SNs can allocate uplink
power based on Lemma 1. However, the total transferred
energy at HAP is upper-bounded by Etot. Thus, the HAP
needs to coordinate the downlink transferred energy assign-
ment for SNs to maximize the AEC with HeP. Plugging
Eq. (17) into the objective function of problem P1′, we can
obtain

arg min
(Ei,Pi):1≤i≤N

{
Eγ

[
N∏
i=1

(1+ Piγi)−(1−τ0)βi
]}

= arg min
Ei:1≤i≤N

Eγ
 N∏
i=1

(
τ0Eiγi
γ̂i

)− (1−τ0)βi
(1−τ0)βi+1

 , (18)

where we have γi ≥ γ̂i. Observing Eq. (18), we find
that the objective function decreases as Ei increases. How-
ever, since the HAP coordinates the downlink energy assign-
ment for each SN, the optimal energy assignment needs to
satisfy the total available energy constraint which is shown
as
∑N

i=1 Ei ≤ Etot. Accordingly, the problem P1′ can be
equivalently converted into the optimization problem P3,
which is given as follows:

P3: arg min
Ei:1≤i≤N

Eγ
 N∏
i=1

(
τ0Eiγi
γ̂i

)− (1−τ0)βi
(1−τ0)βi+1


s.t. 1).

N∑
i=1

Ei ≤ Etot; (19)

2). Ei ≥ 0,∀i. (20)

To solve the convex optimization problem P3, we give the
following Lemma 2.
Lemma 2: ForWPSNs under uniformed time division sce-

nario, the maximum aggregate effective capacity needs to
satisfy

∑N
i=1 E

∗
i = Etot .

Proof: Please refer to Appendix B �
Based on Lemma 2, we can derive the optimal joint down-

link energy assignment and uplink data transmission power
control scheme, which is shown in Theorem 1, for WPSNs
under uniformed time division scenario.
Theorem 1: For WPSNs under uniformed time division

scenario, the optimal joint downlink energy assignment and
uplink data transmission power control scheme supporting

HeP is given as follows:

E∗i =
βi

N∏
j=1,j 6=i

[(1−τ0)βj+1]Etot

N∑
k=1

{
βk

N∏
j=1,j6=k

[(1−τ0)βj+1]

} ;

P∗i =



[
τ0βi

N∏
j=1,j6=i

[(1−τ0)βj+1]Etot

] 1
(1−τ0)βi+1

(
γ̂i

N∑
k=1

{
βk

N∏
j=1,j6=k

[(1−τ0)βj+1]

}) 1
(1−τ0)βi+1

γi

(1−τ0)βi
(1−τ0)βi+1

−
1
γi
,

if γi ≥ γ̂i;
0, if γi < γ̂i.

(21)
Proof: Please refer to Appendix C. �
Observing Eq. (21), we find that E∗i is a function of

θi (1 ≤ i ≤ N ) and τ0 while P∗i is a function of θi,
γi (1 ≤ i ≤ N ) and τ0. This implies that for uniformed
time division scenario, the HAPmakes the transferred energy
assignment based on the uplink QoS requirements and the
uniformed time division factor. Then, each SN dynamically
allocates its uplink data transmission power control scheme
based on the corresponding QoS requirement, the instanta-
neous SNR fed back from the HAP and the uniformed time
division factor.

To further analyze the insights of Theorem 1, we dis-
cuss the specific cases of Theorem 1 in the following
Remarks 1 and 2 for single-channel and multi-channel homo-
geneous QoS provisioning (HoP), respectively.
Remark 1 (Single-Channel HoP):When N = 1, the opti-

mal joint downlink energy assignment and uplink power
control scheme is reduced to

E∗i = Etot;

P∗i =


(τ0Etot)

1
(1−τ0)βi+1

(γ̂i)
1

(1−τ0)βi+1 γ

(1−τ0)βi
(1−τ0)βi+1
i

−
1
γi
,γi ≥ γ̂i;

0, γi < γ̂i,

(22)

which is the statistical QoS-driven power allocation for
energy harvesting based wireless networks.
Remark 2 (Multi-Channel HoP): When θi = θ (1 ≤

i ≤ N ), the optimal joint downlink energy assignment and
uplink power control scheme can be derived as follows:

E∗i =
Etot
N ;

P∗i =


(τ0Etot)

1
(1−τ0)β+1

(N γ̂i)
1

(1−τ0)β+1 γ

(1−τ0)β
(1−τ0)β+1
i

−
1
γi
, γi ≥ γ̂i;

0, γi < γ̂i,

(23)

where β = (θTB)/ log 2. Eq. (23) indicates that the HAP
allocates its entire energy equally to each SN forWPSNswith
HoP.

Based on the analyses for Theorem 1, both the opti-
mal downlink energy assignment and uplink power control
scheme are functions of the uniformed time division fac-
tor, which indicates that there is a trade-off between the
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maximized AEC and the time allocation. In the following,
we develop a joint time allocation, downlink energy assign-
ment, and uplink power control scheme forWPSNs with HeP.

IV. HETEROGENEOUS QOS PROVISIONING RESOURCE
ALLOCATION FOR DYNAMIC TIME ALLOCATION
In this section, we jointly optimize the time allocation,
downlink energy assignment, and uplink power control
scheme tomaximize the AEC forWPSNs. The corresponding
AEC maximization for dynamic time allocation scenario,
denoted by P4, is expressed as follows:

P4 : arg max
(Ei,Pi,τi):
1≤i≤N

{
−

1
θ0

N∑
i=1

log
(
Eγi
{
(1+ Piγi)−(1−τi)βi

})}

(a)
= arg min

(Ei,Pi,τi):
1≤i≤N

{
Eγ

[
N∏
i=1

(1+ Piγi)−(1−τi)βi
]}

s.t. 1). Eγi [(1− τi)Pi] ≤ ητiEiK‖di‖
−`, ∀i; (24)

2).
N∑
i=1

Ei ≤ Etot; (25)

3). Ei ≥ 0,Pi ≥ 0,∀i, (26)

where equality (a) holds due to the monotonically increasing
nature of log(·) and mutual independence of each uplink.
Similar to problem P1, the optimization problem P4 is also
convex. However, due to the complex relationship among
Ei, Pi, and τi (1 ≤ i ≤ N ), the method used in Section III
cannot be employed to derive problem P4. In the following,
Lagrange-Dual method and subgradient algorithm are used to
iteratively solve problem P4.

A. LAGRANGE-DUAL METHOD BASED ANALYSES
We derive the Lagrange function of problem P4 as follows:

J3 = Eγ

[
N∏
i=1

(1+ Piγi)−(1−τi)βi
]

+ λi

(
Eγi [(1− τi)Pi]

τiPoi
− ηK‖di‖−`

)
+ϑ

[
N∑
i=1

Ei − Etot

]
, (27)

where λi and ϑ are the non-negative Lagrangian multipliers
associated with constraints in Eqs. (24) and (25). Due to the
convexity of problem P4, the duality gap between problem
P4 and its dual problem is zero. The dual function can be for-
mulated as a pointwise infimum of the Lagrangian function,
which is shown as follows:

D(λ, ϑ) = inf
(Ei,Pi,τi):
1≤i≤N

J3, (28)

where λ = [λ1, λ2, . . . , λN ] is the Lagrangian multiplier.
The dual problem, which defines the maximum value of
the Lagrangian over the non-negative dual variables [34],

is relatively easier to solve. The dual problem can thus be
formulated as follows:

P5 : arg max
λ,ϑ

D(λ, ϑ)

s.t. λ ≥ 0, ϑ ≥ 0. (29)

To establish the KKT conditions with complementary slack-
ness, the Lagrange function J3 is partially derived with
respect to Pi, Ei, and τi. Setting the results to zero, we can
obtain

∂J3
∂Pi
=−(1−τi)βiγi(1+Piγi)−1

N∏
i=1

(1+ Piγi)−(1−τi)βip0(γ )

+ (
1
τi
− 1)

λi

Ei
p0(γ ) = 0;

∂J3
∂Ei
= −

λiEγi
[
(
1
τi
− 1)Pi

]
Ei

+ ϑ = 0;

∂J3
∂τi
= βi ln(1+ Piγi)

N∏
i=1

(1+ Piγi)−(1−τi)βip0(γ )

−
λi

τi2Ei
p0(γ ) = 0.

(30)

Based on Eq. (30), we can obtain the following Theorem 2
which shows the relationship among E∗i , P

∗
i , and τ

∗
i .

Theorem 2: Given λi and ϑ , the relationship among the
E∗i , P

∗
i , and τ

∗
i is given as follows:

P∗i =

 τ ∗i E
∗
i βi

λi
N∏
i=1

(
τ∗i E
∗
i βiγi
λi

) (1−τ∗i )βi
1+(1−τ∗i )Nβi

−
1
γi


+

, (31)

where [b]+ represents the maximum value between b and 0.
Proof: Please refer to Appendix D. �
The complementary slackness conditions are given as fol-

low: 
λi
(
Eγi [(1− τi)Pi]− ητiEiK‖di‖−`

)
= 0;

ϑ

(
N∑
i=1

Ei − Etot

)
= 0.

(32)

The slackness conditions in Eq. (32) indicate that either mul-
tipliers are zero or the equalities in constraints specified by
Eq. (24) and (25) hold. In fact, if the total available power is
not exhausted, the extra power for either downlink or uplink
can improve the AEC. Under the circumstance, the opti-
mal solutions can be achieved by setting Eγi [(1− τi)Pi] =

ητiEiK‖di‖−` and
N∑
i=1

Ei = Etot, which is similar to the proof

of Lemma 2. We can thus obtain λi > 0 and ϑ > 0. In the
following, iterative numerical methods are employed to solve
the dual problem P5.
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Algorithm 1 The Optimal Resource Allocation via Subgra-
dient Algorithm
1: Input η, K , `, di, and θi (1 ≤ i ≤ N ).
2: Initialize maximum tolerance ε and ϑ(0);
3: for each i ∈ [1,N ]; do
4: Initialize λi(0);
5: end for
6: Set s = 0;
7: Set ∂J3/∂Ei = 0, ∂J3/∂Pi = 0, and ∂J3/∂τi = 0;
8: Obtain E∗i (0) , P

∗
i (0), and τ

∗
i (0);

9: Calculate Ẽ∗C (0);
10: repeat
11: s = s+ 1;
12: for each i ∈ [1,N ]; do
13: Set ∂J3/∂Ei = 0, ∂J3/∂Pi = 0, and ∂J3/∂τi = 0;
14: Obtain E∗i (s) , P

∗
i (s), and τ

∗
i (s);

15: Calculate Ẽ∗C (s);
16: end for
17: Update λi and ϑ according to Eq. (33);
18: until | Ẽ∗C (s)− Ẽ

∗
C (s− 1) |< ε.

B. ITERATIVE SUBGRADIENT ALGORITHM
By employing the subgradient projection method [34], the
Lagrangian multipliers are calculated iteratively as follows:λi(s+ 1) =

[
λi(s)+ υ(s)

∂J3
∂λi

]+
, ∀i;

ϑ(s+ 1) =
[
ϑ(s)+ υ(s) ∂J3

∂ϑ

]+
,

(33)

where ∂J3/∂λi and ∂J3/∂ϑ are the gradients, υ(s) is the
gradient step size, and s represents the gradient number. The
dual problem can be iteratively updated via the subgradient
algorithm given by Algorithm 1. In Algorithm 1, we initialize
the Lagrangian multipliers λi(1 ≤ i ≤ N ) and ϑ . During each
iteration, E∗i , P∗i , and τ

∗
i are calculated by solving Eq. (30).

The Lagrangian multipliers λi (1 ≤ i ≤ N ) and ϑ update until
the condition for convergence is satisfied.

We also consider the computational complexity of
Algorithm 1. The complexity from line 3 to 5 is N . From
line 6 to 9, to solve ∂J3/∂Ei = 0 and ∂J3/∂τi = 0 in Eq. (30),
N times product is needed for each uplink and the complexity
is thus N 2. Similarly, the complexity from line 12 to 16 is
also N 2. Since there are N uplinks, the complexity of line 17
isN . Therefore, the complexity of Algorithm 1 isO(N+N 2).

V. PERFORMANCE EVALUATION
In this section, numerical simulations are conducted to evalu-
ate the performance of our proposedQoS guaranteed resource
allocation schemes for WPSNs under uniformed time divi-
sion and dynamic time allocation scenarios, respectively.
We use normalized AEC, which is defined as the AEC per Hz
per second, to evaluate the performance ofWPSNs. Through-
out the simulations, we set the bandwidth, the time frame
length, the available energy at the HAP and the parameters of
Nakagami-m to be B = 10 MHz, T = 0.2 ms, Etot = 3 J,
γ̄ = 5, and m = 2. The power splitting factor and the
downlink path loss parameters are set to be η = 1, K = 1,
di = 10 m, and ` = 4, respectively.
Figures 2(a) and 2(b) depict the optimal energy assign-

ments versus the QoS exponents for SN1 and SN2 (θ1 and θ2),

respectively, under uniformed time division scenario. In this
simulation, the uniformed time division factor is set to be
τ0 = 0.5 and two cases (N = 2 and N = 3) are
considered. As shown in Fig. 2(a), the assigned energy for
SN1 (E1) increases as θ1 increases and θ2 decreases. The
assigned energy for SN2 (E2) increases as θ2 increases and
θ1 decreases. In Fig. 2(b), where the QoS exponent for SN3 is
fixed to be 0.006, the energy assigned to SN3 (E3) increases
as both θ1 and θ2 decreases and E3 decreases as both θ1
and θ2 increases. This implies that the HAP allocate more
energy to the uplink with stringent QoS requirement and less
energy to the uplink with loose QoS requirement so that the
EC of each uplink data transmission can be coordinated, thus
maximizing the AEC for WPSNs. Observing the curves in
Figs. 2(a) and 2(b), we find that the HAP allocates the equal
energy to SN1 and SN2 (E1 = E2) when the statistical QoS
requirement for SN1 is equal to the statistical QoS require-
ment for SN2 (θ1 = θ2). This verifies that our proposed
optimal downlink energy assignment scheme can not only be
used for HeP WPSNs but also for HoP WPSNs.

Figure 3 depicts the curve of optimal uplink power control
scheme of SN1 corresponding to different QoS exponents and
various instantaneous SNR, where the QoS exponent for SN2
is fixed to 0.01. In Fig. 3, we set N = 2 and τ0 = 0.5.
As illustrated in Fig. 3, when the QoS exponent of SN1 is very
large, more power is allocated to the channel with low SNR
and less power is allocated to the channel with high SNR.
When the QoS exponent is very small, the allocated power
to SN1 first increases and then decreases as the instantaneous
SNR increases. This indicates that in the case of stringent QoS
requirement, the optimal uplink power control scheme fol-
lows the channel inversion scheme, while in the case of loose
QoS requirement, the optimal uplink power control scheme
doesn’t monotonously increase or decrease. Traditionally,
the optimal power allocation scheme with HoP is water-
filling scheme in the case of very loose QoS requirement and
total channel inversion scheme in the case of stringent QoS
requirement [32]. However, in our proposed joint downlink
energy assignment and uplink power control scheme, the opti-
mal uplink power control is dominated by the QoS exponents
of both SNs. Based on the downlink energy assignment, the
HAP allocates less energy for the uplink with loose QoS
requirement. Thus, when the QoS exponent is very loose,
the uplink power allocation cannot always increase as the
instantaneous SNR increases.

In Fig. 4, we compare the HeP resource allocation scheme
with HoP resource allocation scheme for uniformed time
division scenario in WPSNs. As depicted in Fig. 4, the HoP
resource allocation scheme achieves the same normalized
AEC as the HeP resource allocation scheme when both two
SNs have the same QoS requirements (θ1 = θ2). However,
when the SNs have different QoS requirements, the HeP
resource allocation scheme achieves larger normalized AEC
than the HoP resource allocation scheme. Also, when the
difference between θ1 and θ2 gets very large, the normalized
AEC achieved by HeP resource allocation scheme gets very
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FIGURE 2. The downlink energy assignment with HeP under uniformed time division scenario for wireless powered sensor nodes: (a) when N = 2;
(b) when N = 3 and θ3 = 0.006.

FIGURE 3. Optimal uplink power control scheme for SN1 with statistical
QoS provisioning for uniformed time division scenario.

large. For dynamic time allocation scenario, Fig. 5 compares
the performance of HeP resource allocation schemewith HoP
resource allocation scheme. In Fig. 5, we set N = 2 and
show the performance of our proposed schemes versus the
QoS exponent of SN1 under two cases (θ2 = 10−2 and
θ2 = 10−4). As shown in Fig. 5, the HeP resource allocation
scheme can achieve lager normalized AEC than the HoP
resource allocation scheme for both θ2 = 10−2 and θ2 =
10−4 cases. The traditional HoP resource allocation scheme
can only achieve the maximum AEC when the required QoS
exponents for SN1 and SN2 are homogeneous, i.e., θ1 = θ2 =
10−2 and θ1 = θ2 = 10−4, respectively. These analyses
for the simulation results presented in Figs. 4 and 5 indicate
that for both uniformed time division and dynamic time
allocation scenarios, our proposed HeP resource allocation
schemes can achieve better performance than the schemes
with HoP.

FIGURE 4. For uniformed time division scenario, the normalized AEC
obtained by HeP and HoP resource allocation schemes, respectively.

Figure 6 plots the curves of normalized AEC versus the
SNi-to-HAP distance corresponding to η = 0.6, 0.8, and 1.0
for uniformed time division and dynamic time allocation
scenarios, respectively. In Fig. 6, we set N = 2 and θ1 =
θ2 = 10−3. Fig. 6 shows that the joint time allocation, down-
link energy assignment and uplink power control scheme for
dynamic time allocation scenario can achieve larger AEC
than the joint energy assignment and uplink power control
scheme for uniformed time division scenario. As depicted
in Fig. 6, the normalized AEC decreases as the SNi-to-
HAP distance increases. This is due to the reason that the
path loss increases as the communication distance increases,
and thus, the received power decreases, which leads to a
low normalized uplink effective capacity. As a result, the
total WPSNs achieves a low normalized AEC. In Fig. 6,
we can also find that for a given SNi-to-HAP distance,
the normalized AEC increases as η increases. This is because
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FIGURE 5. For dynamic time allocation scenario, the normalized AEC
obtained by HeP and HoP resource allocation schemes, respectively.

FIGURE 6. The normalized AEC of our proposed resource allocation
schemes versus the SNi -to-HAP distance.

a large η indicates that abundant supply of energy can be used
for uplink data transmission, and thus high normalized uplink
effective capacity can be obtained, which results in a high
normalized AEC.

To further compare our proposed resource allocation
scheme under uniformed time division with the scheme under
dynamic time allocation, we plot the curves of normalized
AEC versus the total energy at the HAP (Etot) in Fig. 7,
where we show the cases corresponding to θ1 = 10−3, 10−2,
and 10−1, respectively. In this simulation, we set N = 2
and θ2 = 10−2. As depicted in Fig. 7, the normalized
AEC increases as Etot increases. This is because when Etot
increases, more energy can be allocated for the uplink infor-
mation transmission, which leads to larger effective capacity.
For a given Etot, we can observe that when θ1 6= θ2, i.e., θ1 =
10−3 or θ1 = 10−1, the achieved normalized AEC is larger
than that when θ1 = θ2. This indicates that for both uniformed
time division scenario and dynamic time allocation scenario,

FIGURE 7. The normalized AEC of our proposed resource allocation
schemes versus the total available energy at the HAP.

the HeP resource allocation schemes can achieve larger nor-
malized effective capacity than the HoP resource allocation
scheme. Another observation from Fig. 7 is that the joint time
allocation, downlink energy assignment and uplink power
control scheme can achieve larger AEC than the joint down-
link energy assignment and uplink power control scheme for
uniformed time division scenario. Thus, we can obtain the
resource allocation scheme with dynamic time allocation is
superior to the resource allocation scheme under unformed
time division as the dynamic time allocation coordinates the
uplink/downlink time to balance the downlink energy transfer
and uplink information transmission for WPSNs.

VI. CONCLUSIONS
In this paper, we studied the heterogeneous QoS guaranteed
resource allocation schemes for WPSNs. First, we build the
downlink wireless energy transfer and uplink power control
models for WPSNs. Based on the models, we formulated
the AEC maximization problems with HeP for uniformed
time division and dynamic time allocation scenarios, respec-
tively. To efficiently solve the problem for uniformed time
division scenario, we developed the joint downlink energy
assignment and uplink power control scheme, where the HAP
assigns energy for SNs based on the uplink QoS requirements
and SNs allocate the data transmission power according to
the uplink QoS requirements, the instantaneous CSI, and
the energy assigned by the HAP. For dynamic time alloca-
tion scenario, we developed the joint time allocation, down-
link energy assignment, and uplink power control scheme,
where the time allocation are dynamically coordinated to
balance the downlink energy transfer and uplink information
transmission. The Lagrangian-Dual method and subgradient
algorithm are employed to iteratively derive the scheme.
Extensive simulations were conducted to evaluate the effect
of heterogenous statistical QoS on the network performance
for WPSNs and the simulation results demonstrated that our
proposed HeP resource allocation schemes can significantly
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∂J2
∂Ej
= −

(1− τ0)βj
(1− τ0)βj + 1

Eγj

(τ0γj
γ̂j

)− (1−τ0)βj
(1−τ0)βj+1

E
−

(1−τ0)βj
(1−τ0)βj+1

−1

j

 · N∏
i=1,i 6=j

Eγi

(τ0Eiγi
γ̂i

)− (1−τ0)βi
(1−τ0)βi+1

+ ν = 0;

∂J2
∂Ek
= −

(1− τ0)βk
(1− τ0)βk + 1

Eγk

(τ0γk
γ̂k

)− (1−τ0)βk
(1−τ0)βk+1

E
−

(1−τ0)βk
(1−τ0)βk+1

−1

k

 · N∏
i=1,i 6=k

Eγi

(τ0Eiγi
γ̂i

)− (1−τ0)βi
(1−τ0)βi+1

+ ν = 0.

(38)

increase the AEC as compared with the HoP resource alloca-
tion schemes.

APPENDIX A
DERIVATION OF OPTIMAL UPLINK POWER CONTROL
SCHEME (LEMMA 1)
Proof: Due to the monotonically increasing nature of log(·),
the problem P2 can be rewritten as follows:

P2′: arg min
Pi:1≤i≤N

{
Eγi

[
(1+ Piγi)−(1−τ0)βi

]}
(34)

subject to Eqs. (15) and (16). The Lagrangian function of
problem P2′, denoted by J1, is formulated as follows:

J1 = Eγi
[
(1+ Piγi)−(1−τ0)βi

]
+ κi

(
Eγi [(1− τ0)Pi]

τ0Ei
−ηK‖di‖−

)̀
, (35)

where κi is the Lagrangian multiplier which corresponds to
the ith uplink. Then, taking the derivation of J1 with respect
to Pi and setting the results to zero, we can obtain

∂J1
∂Pi
= −(1− τ0)βiγi(1+ Piγi)−(1−τ0)βi−1p0(γi)

+
κi(1− τ0)
Eiτ0

p0(γi) = 0. (36)

Defining γ̂i , κi/βi and solving Eq. (36), we have the
optimal uplink data transmission power control scheme under
the given downlink wireless transferred energy assignment as
shown in Eq. (17).

APPENDIX B
THE TOTAL AVAILABLE ENERGY CONSTRAINT (LEMMA 2)
Proof: We prove Lemma 2 by contradiction. Let us denote
by E∗i (1 ≤ i ≤ N ) and Ẽ∗C the optimal downlink energy
allocated for SNi (1 ≤ i ≤ N ) and the maximum aggre-
gate effective capacity, respectively. If

∑N
i=1 E

∗
i < Etot is

satisfied, we have the residual energy, denoted by Pre, at the
HAP. We denote by Ẽ ′C the maximum aggregate effective
capacity when Pre is additionally allocated to the ith (1 ≤
i ≤ N ) downlink. Then, observing problem P3, the addition-
ally allocated power Pre leads to a smaller objective function
of problem P3 and thus Ẽ ′C > Ẽ∗C , which contradicts the
assumption that E∗i (1 ≤ i ≤ N ) is the optimal downlink
energy assignment and Ẽ∗C is the maximum aggregate effec-
tive capacity. Lemma 2 is thus proved.

APPENDIX C
DERIVATION OF OPTIMAL DOWNLINK ENERGY
ASSIGNMENT (THEOREM 1)
Proof: To derive the optimal downlink energy assignment, we
write the Lagrangian function of problem P3, denoted by J2,
as follows:

J2 = Eγ

 N∏
i=1

(
τ0Eiγi
γ1i

)− (1−τ0)βi
(1−τ0)βi+1

+ ν( N∑
i=1

Ei − Etot),

(37)

where ν is the Lagrangian multiplier. Let us take the deriva-
tion of J2 with respect to Ej (1 ≤ j ≤ N ) and Ek (1 ≤ k ≤
N ), respectively, and set the results to zero. Then, we can
obtain Eq. (38), as shown at the top of this page. Note that
∂J2/∂Ej = ∂J2/∂Ek . Then, combining equations in Eq. (38),
we have

−
(1− τ0)βj

(1− τ0)βj + 1
E−1j

N∏
i=1

Eγi
(τ0Eiγi

γ̂i

)− (1−τ0)βi
(1−τ0)βi+1


= −

(1− τ0)βk
(1− τ0)βk + 1

E−1k

N∏
i=1

Eγi
(τ0Eiγi

γ̂i

)− (1−τ0)βi
(1−τ0)βi+1

 ,
(39)

solving which, we can obtain

Ej =
βj[(1− τ0)βk + 1]
βk [(1− τ0)βj + 1]

Ek . (40)

Based on Lemma 2 and Eq. (40), the optimal solution of
problem P3 can be derived for the special case, i.e., N = 2.
When N = 2, the optimal downlink energy assignment is

E1 =
β1((1− τ0)β2 + 1)Etot

β1((1− τ0)β2 + 1)+ β2((1− τ0)β1 + 1)
;

E2 =
β2((1− τ0)β1 + 1)Etot

β1((1− τ0)β2 + 1)+ β2((1− τ0)β1 + 1)
.

Based on the Mathematical Induction method, we can obtain
the optimal downlink energy assignment as follows:

E∗i =

βi
N∏

j=1,j6=i
[(1− τ0)βj + 1]Etot

N∑
k=1

{
βk

N∏
j=1,j 6=k

[(1− τ0)βj + 1]

} . (41)

Substituting Eq. (41) into Eq. (17), we have Eq. (21), where γ̂i
can be determined by plugging Eq. (21) intoEγi [(1−τ0)Pi] =
ητ0EiK‖di‖−`.
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APPENDIX D
DERIVATION OF THE RELATIONSHIP BETWEEN τ∗

i ,E∗

i ,
AND P∗

i (THEOREM 2)
Proof: Solving ∂J3/∂Pi = 0, N equations can be derived as
follows:

(1+ Pi)−1 =
λi

τiEiβiγi
∏N

i=1(1+ Piγi)−(1−τi)βi
. (42)

Multiplying the N equations in Eq. (42), we can obtain

N∏
i=1

(1+ Piγi)−1=

N∏
i=1

(λi)

N∏
i=1

(τiEiβiγi)
[
N∏
i=1

(1+Piγi)−(1−τi)βi
]N ,

(43)

which leads to
N∏
i=1

(1+ Piγi)−(1−τi)βi =
N∏
i=1

(
λi

τiEiβiγi

) (1−τi)βi
1+(1−τi)Nβi

. (44)

Plugging Eq. (44) into Eq. (42) and making the equation
transformation, we can derive Eq. (31) in Theorem 2.
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